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THE CLASS A’ (g) AND THE ONE-SIDED
REVERSE HOLDER INEQUALITY

DAVID CRUZ-URIBE, SFO

ABSTRACT.  Wegiveadirect proof that wisan A%, (g) weight if and only if w satisfies
aone-sided, weighted reverse Holder inequality.

1. Introduction. Given afunction f and a non-negative, locally integrable weight
g on R, define the one-sided, weighted maximal function of f, Mgf, to be

+ 1

400~ st o
wherel; = [x, x+t]. Similarly, we can definethe backwards, one-sided maximal operator
Mg . If g = 1, thisisthe maximal operator asoriginally defined by Hardy and Littlewood
[4]. Weighted norm inequalities for Mg were first studied by Sawyer [8] (in the case
g = 1) and by Martin-Reyes, Ortega Salvador and dela Torre [6]. They showed that for
1 < p < 00, My isabounded operator from LP(w) into itself if and only if wisin Aj(g):
there exists a constant C such that

(./r de) (‘/“(\g)l_p/gdx) - < C(/Igdx)p,

where| = [a,b] isany interval, I~ = [a,c], and I" = [c,b] for any a < ¢ < b. These
classes are analogous to the (A) classes which govern the weighted norm inequalities
for the (two-sided) Hardy-L ittlewood maximal operator.

Morerecently Martin-Reyes[5] gavesimpler proofs of theweighted norminequalities
for M§; and Martin-Reyes, Pick and de la Torre [7] showed that A%,(g), the union of all
the A,‘; (9) classes, has many properties similar to those of (A.,). In both papers a central
step is to show that functionsin A’_(g) satisfy what they called a weak reverse Holder
inequality: there exists > 0 such that for any interval | = [a, b],

) (/(Vav)mgdxg C(/lwdx- (M;(Vavx.)(b))é.

Thisinequality islessversatile than areverse Holder inequality, and the proofswhich use
it are correspondingly more difficult. In particular, the proof given by Martin-Reyes [5]
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that w € Aj(g) impliesw € A7 (g) for somee > 0 usesthe weighted norm inequalities
for Mg. Martin-Reyes posed the problem of finding aproof of thisresult which only used
theintrinsic properties of the class Ag(g).

In [3] Cruz-Uribe, Neugebauer and Olesen showed that in the case g = 1, inequality
(1) is equivalent to a one-sided reverse Holder inequality:

1 . 1 145
H/rw”dxgc(m/lwdx) ,

wherel = [a,b] isany interval and |~ = [a, c], where2|I~| = |I|. Using thisthey gavea
direct proof that w € A;; impliesthat w € A;;_f. The purpose of this paper isto generalize
their result to arbitrary g and to give a proof which avoidsinequality (1). To be precise,
we will prove the following theorem.

THEOREM 1.1. Given a weight g, the following are equivalent:

1) we AL(9):
(2) For somes> 1, w € RH{(g): there existsa constant C > 0 such that

1 WS 1 s
TEIATLEE C(@./.de) :
wherel = [a,b] isanyinterval and |~ = [a, c] issuch that 2g(17) = g(l).

To prove Theorem 1.1 it will suffice to show that if w € A’_(g) thenw € RHZ(g) for
some s > 1. The converse is straightforward: if w € RH{(g) then g € Aj(w), and if
g € A_(w) thenw € A’ (g). Thefirst implication follows from the definitionsif 1~ and
I* aresuchthat g(17) = g(I*). (I want to thank A. de laTorre for this observation.) That
thisistruefor arbitrary 1~ and I* followsfor g = 1 from Lemma6.4 in[3], and the proof
of this lemma extendswith slight modification to arbitrary g. The second implication is
from[7].

The proof that wisin RHZ(g) issimilar to the proof of inequality (1) in[6] or [5], each
of whichin turn followsthe proof of the reverse Holder inequality given by Coifman and
C. Fefferman[2]. It dependson asharp covering lemmafor intervalsonthereal line. The
proof itself isin Section 3 below; in Section 2 we gather some preliminary results.

Finally, note that the one-sided reverse Holder inequality and the proof that if w €
A (g) thenw € RHZ(g) simplifies the proof of the main result in [7] (by eliminating the
weak reverse Holder inequality), and the proof that if w € Aj(g) thenw € AJ_(g) given
in [3] extendsto arbitrary g without change.

2. Preliminary Results.

Throughout this paper all functionsare assumedto belocally integrableand theweight
g is assumed to be positive. The letter C denotes a positive constant whose value may
change at each appearance, and for p > 1, p’ = p/(p — 1) is the conjugate exponent of
p. Given a Borel set E and a function f, let |E| denote the Lebesgue measure of E and
f(E) = Jef dx

We will need thefollowing property of A’_(g) weights proved by Martin-Reyes, Pick
and delaTorre [7].
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Lemma 2.1. If w e A’ (g) then for every o, 0 < o < 1, thereexistsa 3 > 0 such
that, givent > 0 and an interval | = [a, b] on which w(ly) > tg(lx) for all Iy = [a,X],
x € 1, then

g({x el :wx > Btgx)}) > ag(l).

We will also need the following covering lemma due to Jesus Aldaz; the proof isin
Bliedtner and Loeb [1].

LEMMA 2.2. If u isa finite Borel measureon R, and if | is an arbitrary collection
of non-degenerateintervals, then for each 6 > 0 there exists a finite subcollection, |, of
disioint intervalsin | such that

u(lU ) < @+6) % .

el |k6|5

Finally, we will need the following decomposition of finite intervals which can be
thought of as aweighted Whitney decomposition. It wasfirst used in aslightly different
formin[5]; it appeared in this notation (for g = 1) in[3].

DEFINITION 2.3.  Givenaweight gand aninterval | = [a, b], form the “plus/minus’
decomposition of | with respect to g as follows: let x = a, and for k > 0 let x be
the point such that g([x«_1,b]) = 29([%_1,X]). Then for k > 1 define the intervals
Ik = X1, X1l I = X1, %] @nd Jg = [X, Xiewa]-

It isimmediate from this definition that for all k, g(J,) = 29(J), | isthe union of the
Ji's, and the J,’s havefinite overlap.

3. Proof of Theorem 1.1. Wefirst provethat if w € A?_(g) then there exist positive
constants 8 and C such that

@ w({x e 1™ 1w > tg(x)}) < Ctg({x €1 :w(x) > ptg()}),

foral t > to = 3w(l)/g(l), where | = [a,b] isany interval and I~ = [a,c] is such
that g(17) = %g(l). To show this, fix | = [a,b] andt > to. Let O(t) = {x € I :
w(x) > tg(X)}. By the Lebesgue differentiation theorem, for almost every x € O(t), if
Ih = [x,x+h], h> 0, then

0 .1
%ZLL’%@/.K%)W

Therefore, there exists hg > 0 such that if 0 < h < hg then

a(ln)
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On the other hand, fix h such that x + h = b. Then

W) _ gw()

a(ln) = a()

Since this ratio is continuous in h, by the intermediate value theorem there exists

hy > ho suchthat In, C I, w(l,)/9(ln,) = t, and w(lp)/g(ly) > tforal 0 < h < hy.

Let Iy = Ip,. Then, up to aset of measure zero, O(t) is contained in the union of thel,’s.

Therefore, by Lemma 2.2 there exists afinite, disjoint subcollection {I;} of thel,’s such
that

=t <t

w(O()) gw(le) <3 w(l).

By our construction of the l,’'sand by LemmaZ2.1, there exist positive constants « and
(3 such that
3 w(l) = 33" g(h)
J ]

< %Zg({xe lj 2 W) > Btg()})
J

< Ctg({x el :w(x) > ptgXx)}).

Inequality (2) follows at once.

Now fix an interval | and form the plus/minus decomposition of | with respect to g
described in Definition 2.3. For each k, since g(J,) = %g(Jk), inequality (2) holds for
theinterval J, = J, U J:

w({x € J 1w >tg(9)}) < Ctg({x € I : w(x) > Btg(x)}),
fort >t = 3w(J)/9(Jk). Multiply thisinequality by t*~* (6 > 0 to befixed below) and
integrate from ti to infinity. This gives
0 51 — . 0 5 .
‘/tk P w({x € J 1 wx) > tg(x)}) dt < C‘/O Pg({x € J: W) > ptg(x)}) dt
D W 1+6
S 1+6 Jk(a) ng

The constant D depends only on the constants from Lemma 2.1. By Fubini’s theorem,
the left-hand sideis equal to

[ 61 dtwio ox

t

B (W'
 J{xeoweo>ta} e o KQ(X)) b

1 1+6 t
> E/J;<V§v) gdx—gk/J;de.

Therefore, for all k we have the inequality

1 1+5 D 1+6 6
s 1 (5) e g [ (G) aaks g [ wo

.[{xe.]l: W(X)>tg(X)} -

dx
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which in turn implies that
s (WY g SDGIS w1 "
9(J) ./ka(g) gox— ./Jk(g) gdx§35./kadx

Now take the sum of theseinequalities over all k > 0. Sincethe J,’'s havefinite overlap,
the right-hand side becomes

Sézk:(./kadx) H < 35(ij ./kadx)l

Since Jx = Ji U Jg, theleft-hand side becomes
oD 5 W 1+ oD 5 W 1+6
Sl rg)a00 [ (5) o 5000 [ (5) o

Since J; = J,.,, thiswill be a telescoping series in which all terms but the first cancel
one another if there exists§ > 0 such that

+5 145
< C(/dex) .

6D s oD 5
(1— m)g(‘]kﬂ) = mg(Jk) -
Since g(Jk) = 29(Jk+1), thisis equivalent to
1 6D 6D
5(1_ 1+6) 1+

Thisisclearly true for someé > 0. Therefore, for this value of ¢ the seriesis equal to

(1= 135)a00" [ () oo

1

SinceJ; =17 andg(Jy) = %g(l), it followsthat w € RHZ(g) for s= 1+6.
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