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In a previous paper [4], we studied a class of algebras over a commutative

ring R which we called semisimple algebras. Here we shall study simple

algebras.

In [4], we defined simple algebras over a Prύfer domain R as those

semisimple algebras whose rational hulls are simple. A simple algebra A in

this sense is directly indecomposable (as an algebra) and any (one-sided) ideal

is A -faithful. In agreement with this, we defined simple algebras over a

general commutative ring as semisimple algebras A admitting A -faithful and

(At R)-irreducible modules M (definition below), in the Symposium 1964 in

Sapporo. But, in studying such simple algebras, we need very often that the

natural monomorphism A -» HOIΪXR (M, M) admits an ivNsplitting. In this paper,

we include this property in the definition of simplicity.

1. Let A be an algebra with an identity over a commutative ring R (with

identity). A left yl-module M is called (A, R)-irreducible if M has no non-

trivial A-submodule which is an indirect summand. If R is semisimple, (A,

R) -irreducibility is identical with ^4-irreducibility. In [4], we introduced the

notion of a semisimple algebra over R. If A is left semisimple over R, then

(A, R}-irreducibility coincides with A-indecomposability. It follows at once

the following proposition.

PROPOSITION 1. Let A be an R-finite semisimple algebra over a Noetherian

ring R. Then, a finitely generated left A-module is a direct sum of a finite number

of (A, R)-irreducible modules. In particular\ A itself is a direct sum of a finite

number of (A, R) -irreducible left ideals.

2. A left A -module M is called completely faithful if its trace ideal [1]

coincides with A. This means that there exist a finite number of elements

Received July 7, 1965.

611

https://doi.org/10.1017/S0027763000026428 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026428


612 AKIRA HATTORI

Xu . . . , Xr of M and ^4-homomorphisms ξίt . . . , ξr ' M->A such that Σ?*te)

= 1. In this case, M is faithful, and moreover the canonical monomorphism

A^EomAM, M) admits a left ^4-splitting /-*Σ£ί(/(#i)) . Conversely, if M

is i?-finite and projective, left A-splitting of A^}HomR(M, M) implies the

complete faithfulness of M. Indeed, let ψ - Honii?(M, M)->A provide a left

^4-splitting, and let ψ correspond to Σ£i®#, under the isomorphism [3]

Hoπu(HomΛ(ΛΓ, M), A)^Honu(Λf, A)®SM.

Then we observe Σf/te) = l

Complete faithfulness of a right A -module is defined similarly. Let M*

be the dual right A -module of M M* = Hom^(M, A). For any # e M, there

corresponds x** e Λf ** by x**(ξ) - f U) (f e Λί *), and Λ:^ Λ:** is an A-homomor-

phism M->M^*. If M is completely faithful and Σ&Ui) = 1 as above, then

we have Σ ^ * + (ί/) = 1. Hence M* is also completely faithful. If M is ^4-finite

and projective, then M* is A-finite and projective, and ΛΓ->ΛΓ** gives an isomor-

phism M = M**. We identify M with M**. Then, summarizing above remarks,

we have

LEMMA 1. Let M be an A-module which is R-finite projective as well as A-

finite projective. Then the dual M * is an A-finite and projective right module,

and the following statements are equivalent:

i) M is completely faithful

ii) M * is completely faithful

iii) The canonical mapping A-*KomR(My M) admits a left A-splitting.

iv) The canonical mapping A-*Hom B (M*, M*) admits a right A-splitting.

LEMMA 2. For an idempotent e of At the following three statements are

equivalent:

ϊ) Ae is completely faithful.

ii) eA is completely faithful

iii) AeA = A.

This lemma follows from the simple observation that (Ae)* = eA by the

correspondence ξ-»ζ(e), and Σf/te) = Σ#/?ί(β).

3. Let R be a directly indecomposable commutative ring. An algebra A

over R is called a simple algebra over R if A is (two-sided) semisimple over
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R and if there exists a left A -module M such that

i) M is infinite and projective,

ii) M is A -completely faithful, and

iii) M is (A, R) -irreducible.

By the semisimplicity of A, irreducibility of M coincides with indecompo-

sability. By Lemma 1, the right ^-module M* satisfies also i), ii), iii), and

we may equally define the simplicity of A by the existence of a right module

satisfying i), ii), iii). Again by the semisimplicity of A, condition ii) maybe

replaced by the weaker one:

ii') The canonical mapping ^4-*Homβ(M, M) admits an ^-splitting.

Further, i) and ii') together show that a simple algebra A is R-finite and

projective. If there exists an i?-faithful M satisfying i), ii), iii), then A itself

is also ivNfaithful.

A is called a division algebra if A is semisimple, infinite and projective,

and the left A-module A is {A, R) -irreducible. Since the canonical mapping

A-*Ή.omR(A, A) admits an i?-splitting •* /--/(I), M-A satisfies the above

conditions i), ii'), iii), so that a division algebra is a simple algebra.

THEOREM 1. An R-faithful semisimple algebra A over R is a simple algebra

if and only if 4̂ = HomD(M, M), where D is an R-faithful division algebra over

R and M is an R-finite projective D-completely faithful D-module.

Proof. Let A be a semisimple algebra, M an infinite projective A -completely

faithful module, and J? = Honu(M, M). By [4, Th. 3, 5], B is semisimple, M

is ^-completely faithful, and A = Ή.omn{M, M). Assume further that A is

simple and M is (A, R)-irreducible. If B is not a division algebra, then B

has a non-trivial idempotent e. But, then, M is a direct sum of non-zero A-

submodules eM and (l-e)M, contradicting its irreducibility. This proves the

one half of the Theorem. To prove the other half, assume A is a division

algebra. If M is a direct sum of Z?-submodules Mi and M2, the projections

βi : M-*Mi, ί = l , 2, are idempotent elements of Homβ(M, M) = A and 1 = βι

+ e2, eie2- e2eι = 0, again contradicting the assumption on A.

Remark. In this Theorem, A is separable [resp. central separable] if and

only if D is separable Πresp. central separable] by H5, Th. 1] [resp. by [2, Th.

3, 3]].
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4. In this section we consider the decomposition of semisimple algebras.

PKOPOSITION 2. A simple algebra is directly indecomposable {as an algebra).

Proof. Let M be a faithful (A, R) -irreducible module. If A is the direct

sum of the subalgebras Aι and A2i then M is the direct sum of AM and A2M.

Therefore one of them vanishes, say A]M= 0. As M is faithful, we have A\ = 0.

PROPOSITION 3. For a commutative semisimple algebra A over Ry which is In-

finite and protective, the following three properties are equivalent:

ΐ) A is directly indecomposable.

ii) A is a simple algebra.

iii) A is a division algebra.

Proof is easy and is omitted.

THEOREM 2. Let A be a semisimple algebra over R. If a two-sided ideal I is

an R-direct summand of A, then there exists a two-sided ideal ] such that A —

Proof. By the left semisimplicity of A, I is a left Λ-direct summand of A.

Hence there exists a left ideal / such that A = /Θ/. We shall show that / is

a two-sided ideal. Let e be an idempotent such that / = Ae. Then the right

ideal el, being an indirect summand of /, whence of A, must be a right A-

direct summand of A by the right semisimplicity of A. Hence el is generated

by an idempotent: el= e'A. But e' = (e1)2 e {el)2 c e(IJ)I=0, and we have el=θ.

It follows that JA=JI + J = J, as desired.

COROLLARY. A simple algebra A has no non-trivial two-sided ideal which is

an R-direct summand of A.

PROPOSITION 4. A semisimple algebra A is directly indecomposable as an

algebra if and only if there exists no idempotent e such that (1 — e)Ae = 0 other

than 1 and 0.

Proof. 'If part is clear. So we assume that e{*l, 0) is an idempotent

such that (l—e)Ae=0. Then A(l — e) is a two-sided ideal since A(l — e)A

= A{1 -e)Ae-\- A (I - e) =.4(1 - e). Since A = A (I - e) + Ae, we see that Ae

is also a two-sided ideal from the proof of Theorem 2. Hence A is directly

decomposable.

5. We have seen that a simple algebra A over R is ivNfinite and protective
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and directly indecomposable as an algebra. We have no complete answer to

the problem whether the converse is true or not, but we have affirmative

answers in three particular cases:

1) A is commutative (Proposition 3).

2) A is separable (Theorem 4 below).

3) R is a Dedekind domain (Theorem 3 of this section).

In this section, we shall treat the case 3).

THEOREM 3. An R-finite and torsionfree semisimple algebra A over a Dedekind

domain R is simple if and only if A is directly indecomposable. In this case, every

left \_resp. right! ideal (^0) is A-completely faithful.

Proof. We have only prove the ' if part. Thus we assume that A is

directly indecomposable. Let C be the center of A. Then C is also a Dedekind

domain [4, Th. 4, 5]. Let K and Z be the quotient fields of R and C> re-

spectively. Then Az( = A®Z) is a central simple algebra over Z [4, Th. 4, 3],
c

and A is a maximal order of A?XA, Th. 4, 6]. Now, let M be a non-zero left

ideal of A. As Mκ is Aκ -faithful, M is A -faithful, and the natural mapping

θ: A ^HomB(M, M) is a monomorphism. Now, A coincides with the set

{flG Az\aMaM}, since the latter is an order of Az containing A. Assume

; / = θ(a) for some λt=R, λ ̂ 0, / e Homβ(M, M) and a(=A. Then (a/λ)M<^Mt

so that there exists b^A satisfying a-lb. It follows that f=θ(b). This

means that the i?-finite module Hom^M, M)/Θ(A) is torsionfree, and θ admits

an i?-splitting. Hence M is completely faithful. Taking M = Ae, a minimal

left direct summand of A, we conclude that A is simple.

6. In this section, we consider separable algebras.

LEMMA. In an indecomposable commutative ring R, only finitely generated

idempotent ideals are 0 and R.

Proof. Let α * 0 be a finitely generated ideal such that aa = α. There exists

βGQ such that (1 - a)a = 0 Cβ, p. 215]. It follows that a is an idempotent and

α is generated by a. Hence α = R by the indecomposability of R.

Remark. There may exist non-finitely generated idempotent ideals with

non-zero annihilators. The following example is due to S. Endo. Let o be a

non-discrete valuation ring, and m its maximal ideal. Let a be a non-zero
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element in m. Then m2 = m and am^(a). Put i? = o/#m. Then R is indecom-

posable, m/a\r\ is an idempotent ideal with the non-vanishing annihilator ideal

( 3 (a)/am).

THEOREM 4. A separable algebra A which is R-finite and projective over an

indecomposable Noetherian ring is a simple algebra if and only if its center C is

indecomposable. Every non-zero left (resp. right) direct summand of a simple

separable algebra A is completely faithful.

Proof. Let e be an idempotent of A. By [2, Cor. 3, 2], two-sided ideals

/ of A are in one-to-one correspondence with ideals α of C by the relations

I~aA, a-inc. Now AeA is an idempotent two-sided ideal of A. Hence, if

AeA = aAy α must be an idempotent ideal of C. Assume C is directly indecom-

posable. Then, by the above Lemma, we have α = C so that AeA = A. This

shows that Ae as well as eA is completely faithful (Lemma 2). In particular,

a minimal left direct summand of A is completely faithful, and A is a simple

algebra. Conversely, if C is directly decomposable, then A is also directly

decomposable, and A is not simple.
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