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Abstract. An oft-cited result of Peter Shiu bounds the mean value of a nonnegative
multiplicative function over a coprime arithmetic progression. We prove a variant where
the arithmetic progression is replaced by a sifted set. As an application, we show that the
normalized square roots of —1 (mod m) are equidistributed (mod 1) as m runs through the
shifted primes g — 1.
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1. Introduction. Many problems in elementary and analytic number theory require
estimates for mean values of arithmetic functions. One of our most useful tools for obtain-
ing estimates from above is the following theorem of Peter Shiu [15], which bounds the
mean value of a nonnegative-valued multiplicative function over a coprime arithmetic
progression.

Let .# be the collection of nonnegative-valued multiplicative functions f satisfying
the following two conditions:

(I) There is a constant 41 > 0 such that /(p¥) < A% for all prime powers p*.
(II) For every € > 0, there is a constant 4, (¢) > 0 such that

f(n) < Ay(e)n® foralln> 1.

THEOREM A (Brun—Titchmarsh for multiplicative functions, [15]). Let f € .#, 0 < «,
B < %, and let a, k be integers satisfying 0 <a <k and gcd(a, k) =1. Then for all
sufficiently large x, we have that

y 1 S
3 L P 1.1
X—y<n=x f(n) < (p(k) IOgX =P pP=x p ( )
n=a (m;d k) P?k

whenever a, k, y satisfy
k<yl’“, xP <y<ux

Here, the implied constant in (1.1), as well as the threshold for “sufficiently large”, depends
only on a, B, the constant A in (1) above, and the function A,(€) in (II).

Most of the ideas necessary to prove Theorem A were already in circulation when [15]
appeared (see [1, 4, 7, 16, 17]), but Theorem A has proved more influential than many of
its precursors. (MathSciNet records over 70 citations to Shiu’s paper so far.) No doubt this
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is due to its impressive generality and the ease with which it can be “plugged in” as an
auxiliary tool in number-theoretic investigations.

In this paper, we put forward a variant of Theorem A where the role of the coprime
progression a mod £ is taken by a sifted set.

THEOREM 1.1 (Brun’s upper bound sieve for multiplicative functions). Let ' € .#, let
0<B< % and let k be a nonnegative integer. For each prime p <x, let &, be a union of
v(p) nonzero residue classes modulo p, where we suppose that each v(p) <k. Let

=65,

p=x

(In words, ./ is the set of all positive integers n not belonging to any &,.) If x is sufficiently

large, then
—v
> s« e (Z Hn=vr) ) (12)
log x p
x—y<n=x p=<x

nes

for all y satisfying
¥ <y<u

Here, the implied constant in (1.2), as well as the threshold for “sufficiently large”, depends
only on B, k, the constant A, in (I) above, and the function A;(€) in (I1).

REMARKS.

(i) Theorem 1.1, while obviously a close relative of Theorem A, does not obviously
imply it (nor vice versa).

(ii) It may initially seem strange that we require &), to only contain nonzero residue
classes. This does not entail any loss of generality, since we can effectively
remove n not coprime to a given P by replacing the function f(n) with
]lgcd(n,P) f(l’l)

(iii) Keeping the last remark in mind, one easily deduces from Theorem 1.1 that the
number of n <x that avoid any prescribed v(p) <k residue classes modulo p,
for each prime p <x, is

p=x

this is a familiar form of Brun’s upper bound sieve.

An immediate, but interesting, application of Theorem 1.1 is an upper bound for the mean
value of f(n) with n restricted to shifted primes or shifted twin primes.

COROLLARY 1.2. Let f be a function belonging to #. Let 0 < B < 1/2. For all x >3
andy € (x, x],

(p)—1
P RNACERIRIY: IOJ;x exp (pr—)

X—y<g=<x pP=x p
q prime
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and

> f(q—1)<<fﬂ (Zf(p)_l>

X—y<g=x P=X
q—2, q prime

The first statement of Corollary 1.2 was shown, implicitly, by Barban and Levin [3] in the
special case y = x.! Their argument would also prove the second statement of the corollary
when y = x. However, a different method seems to be needed to get these results for short
intervals.

Taking f'(n) = t*™ and y = x in the second statement of Corollary 1.2, we deduce that
for each fixed ¢y and all x > 3,

> e g s

q=x
q—2, g prime

uniformly for 0 < ¢ < ¢,.

One can now extract information on the distribution of w(q — 1) by varying ¢. For
example, mimicking the proof of Theorem 010 in [8] yields: Uniformly for 0 <y <
(loglog x)'/®, the number of prime pairs q — 2, q in [1, x] with |w(qg — 1) — log log x| >
¥ /Toglog x is O(x(log x) 2 exp(—12/2)). This last statement is a strengthened form of a
theorem of Barban [2].

We now describe our original motivation for proving Theorem 1.1. The application is
a riff on two theorems of Hooley.

An infamous conjecture of Landau (one of his “four unattackable problems”) predicts
that there are infinitely many primes of the form x? + 1. This is still open, but the analogous
problem for primes of the form x> + y? + 1 was settled by Hooley in 1957 [9]. Put

r(n) =#{(x, y) € 7> : x* +y* =n).
Hooley gives the mean value of (n) along the shifted primes ¢ — 1.

THEOREM B. For a certain positive constant K, we have

Y Hg-D~K—— (x> o0).
log x
q=x
q prime
Actually, Hooley’s work was conditional on GRH, but the discovery of the Bombieri—
Vinogradov theorem allowed for this dependence to be removed with minimal changes
to Hooley’s argument. See [6]. (In the intervening years, Linnik gave an alternative proof
of Theorem B [13].)
The following variant of Hooley’s result was shown by Katai in 1968 [11] (see

also [12]).

THEOREM B'. For a certain positive constant K', we have

X
E rg—1)~K—— (x = 00).
log x
q=x
q prime
q—1 squarefree

1“Implicitly” means that Barban and Levin only discuss the conjugate problem of estimating Zp NN =p).
Their conditions on f are also slightly more restrictive than ours.
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It is elementary that for squarefree n, the number of square roots of —1 modulo 7 is pre-
cisely @. In particular, Theorem B’ implies that —1 is a square modulo ¢ — 1 for infinitely
many primes g.

We now bring in the second theorem of Hooley. First, a definition: If P(T) is a poly-
nomial with integer coefficients and & is any positive integer, then a normalized root of P,

modulo k, is a rational number of the form @ /k, where
f(@)=0 (mod k), 0<w <k.

In 1964, Hooley proved the following equidistribution theorem for normalized roots [10].

THEOREM C. Let P(T) € Z[T] be an irreducible polynomial of degree at least 2. For
each positive integer k, list the normalized roots of P modulo k (in any order) and then
concatenate the lists sequentially for k=1, 2,3, .... The resulting sequence is uniformly
distributed in [0, 1).

After this set-up, the reader can perhaps guess where we are headed. We prove
that when P(T) = T? + 1, the conclusion of Hooley’s Theorem C holds with the moduli
restricted to the shifted primes ¢ — 1.

THEOREM 1.3. Let P(T) =T? + 1. For each prime g, list the normalized roots of
P modulo q — 1 and then concatenate the lists successively for q=2,3,5,7,.... The
resulting sequence is uniformly distributed in [0, 1).

REMARK. By a different (deeper) method, Duke et al. [5] have shown that Theorem 1.3
holds with the moduli running over primes ¢ rather than shifted primes g — 1.

NOTATION. Most of our notation is standard. A possible exception is our use of P (n)
and P~ (n) for the largest and smallest prime factors of # (respectively); we adopt the con-
vention that P*(1) = 1 while P~ (1) = oo. We let 1 denote the function that is identically 1,
and we use 1 ¢ for the characteristic function of a property or set C. We write e(x) for &>™.
We reserve the letter p for prime numbers.

2. Proof of Theorem 1.1.

2.1. Generalities. Let f € .4, and let A, and A, (¢) be as in (I) and (II). Let x > 3,
and let 6 € (0, 1). For each integer n € [1, x], we may write

n=Pp1...0Djt1 " DPJ,
where
PL=p2=---=py,
and where j is chosen as the largest index for which

9 and pi---pjllin.

P p =X
We let
d::pl pj’

and we refer to d as the canonical unitary prefix divisor of n.
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We will assume that 7 has no proper prime power divisor in the interval (x*/2, x] and
that

Q(n/d)>20"".

(In our eventual application, we will be able to handle the excluded values of # by a separate
argument.)

Since pﬁ(f/ D

<Pj+1 - -ps <n <x, we see that
pj1 SxMEOD <P 2.1)
Let # be the largest positive integer for which

DPj+1 =Pj+2 =+ = Dj+s-

Then, p; - - - pj4, is a unitary divisor of n, so that the choice of j forces p; - - - pj, > 7.
Thus,

d=pi---p >x9/P}+1‘

If pl, | > x"/?, then 7 > 1, by (2.1); moreover, some power of p;| is then a proper prime

. . . 0 2 0 . . . t
power divisor of 1 belonging to (x?/?, x?], contradicting our assumptions on 7. So, Djy =
x?/2 and from the last displayed equation,

d>x""?.
From (2.1), there is a (unique) integer » > 2 satisfying

0/r

KB/a+D)
Since

xX=p

Q/d) o Qn/d)6/(r+1)
AR S

we have Q(n/d) < (r+1)-07", so that
Jm)y=f(pr---p) f(pj1---ps)
<f(pr-p)AY < f @Ay
We collect the salient results in the following proposition.

PROPOSITION 2.1. Let f € #, and let 6 € (0, 1). Let x > 3. Let n be an integer in
[1, x], and assume n does not have a squarefull divisor in (x’/*, x]. Let d be the canonical
unitary prefix divisor of n. If Q2(n/d) >2/6, then

X2 <d<x?, XY <Pty <X for some integer r > 2, (2.2)
and

S (n) = exp(O()f (d).

Here, the implied constants depend only on 6, Ay, and A, (€).
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2.2. Completion of the proof of Theorem 1.1. Fix 6 = /4. We put those n € ./
belonging to (x — y, x] into the following three ( possibly overlapping) categories. For each
category, we then bound the corresponding contribution to } ¢ ooy, ./ ().

(1) Arithmetically atypical n: Here, we include all n with a proper prime power divisor in
(x?/2, x%]. We also put in this category all n which have a log(x?)-smooth divisor in the
interval (x/%, x1.

(2) Those n for which Q(n/d) <2/6, where (as above) d is the canonical unitary prefix
divisor.

(3) All remaining n € ..

We handle category (1) using the crude pointwise bound f'(n) <, n¢. The number of n €
(x — y, x] divisible by a proper prime power p* € (x?/2, x?] does not exceed

1
Z (lk+l>§x9 +y Z — <X’ —l—yxf(’/4 <<yx7(’/4.
p m

X012 <pk < m>x®/?

k>2 m squarefull
Similarly, the number of 7 € (x — y, x] possessing a log(x?)-smooth divisor e € (x?/2, x] is
at most

1
Xty Z - <x” 4+ 37 e <X 1 PT(e) <log(x”)}
X012 <ce<x?

P (e)<log(x")
KX 4y «yx0,

(To justify passing from the first to the second line, we use that the count log 7-smooth num-
bers up to T is T°V, as T — oo; see, e.g., [14, Corollary 7.9, p. 209].) Since f'(n) < x/8
(say), it follows that the contributionto ), _ SNyl f(n) from arithmetically inconvenient
nis

0/8

& (x4 - ynO) OIS oy O18,

This is negligible, since our target upper bound—the right-hand side of (1.2)—is >

y(logx)~*.
For n falling into category (2), we have that n=dp;,, - - - p;, where J —j <2071 If
all of pj41, pjt2, - . ., ps are bounded by x”/2, then n < d(x?"1%)2/% < x? _Since f(n) < x’,

these n contribute < x** « yx~?, which is once again negligible. So, we may assume that
Pj+« > x"/2 for some positive integer ¢ <J. If # is chosen minimally, then putting

d=pp;-- *Pi+t—1
we see that d’ is a unitary divisor of n, that
d/ < x20

that

P (n/d) > Pt
and that

fm)= f(d)f(n/d")
< f@)4"" <fd).
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Thus, these » make a contribution that is
xX—y X _ 2
< Zf(d/)-#{m:7<mgj,md/ey,z> (m)>x9/2}. (2.3)
d/SXZQ

We use Brun’s upper bound sieve to bound the count of m appearing in (2.3). Let p be a
prime not exceeding x”/2_The stated conditions imply that m avoids the residue class of 0
modulo p and, if p{d, also an additional v(p) residue classes modulo p. Keeping in mind
that each v(p) < k, Brun’s sieve bounds the sum as

y l—[ ( _v(p)+1) 1—[ <1_l>

<22 psxaz/z p
Md’ pld
y v(p)
< = I1 (1 — —>
d'logx e p
ptd’

We can extend the product over all primes p < x without changing the order of magnitude.

We conclude that
-1
v v
Z 1« Y 1—[<1_ (P)) 1—[<1_ (P))
o logx ) 0 P ) p
A -
md’ey
P’(m)>x“ 2
Yy v(p) ,
—_ 1— d
(logxl—[< p )) @
p=x
where

sy (1m0

Pl P
Inserting these bounds back into (2.3), we find that the remaining » in category (2)
contribute
y v(p) fd)gd)
. 1 — 22 J RIS\
< (logxn< p )) 2
P=x d'<x?0

y v(p)
< (FH (1- 7))

Now f(p)g(p)/p=f(p)/p+O/p*), while = _ >, f(P")e(p")/p* < 1. It follows
that the last displayed product on p is < exp(prx f(p)/p), leading to an upper bound for

the entire expression of
1—[ (1 +f (P))

y v(p))
< 1—
(10gx171:[)€ ( P )p<x p
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which in turn is

y f(p)—v(p)
< @ exp <Z —)

p=x P

This expression coincides with that on the right-hand side of (1.2), and so the contribution
from the » in category (2) is acceptable.

Finally, we turn to category (3). We subdivide the # in that category according to the
value of 7 for which (2.2) holds. Since we are assuming that n does not have a log(x?)-

smooth divisor in (x?/2, x?], we only consider r for which x?/" > log(x"), so that
1 6
2<r< ﬂ' (2.4)
log log(x?)

By Proposition 2.1, for each fixed r in the range (2.4), the corresponding n make a
contribution that is

< exp(O(r)) Z f(d)- #{ Ty<m<3 Pt (m) > x?/0+D, mdey}

X012 <d<x?
Pt (d)Sx(’/'

In this case, Brun’s sieve gives that the count of m is

< 1L (-2) 11 ()

p<\f6/(r+l) psx(-//(,url) p
ptd pld
. (P &
yal I\k+1 Yy 1— v ,
DA Frs B o))

where g has the same meaning as above. Since (78 ~1)**! = exp(O(r)), we see that these n

contribute
y I v(p) 3 S(d)g(d)
< exp(O(r)) <lo_x 11 (1 — T)) e T (25)

P+(d)§xg/r
The sum on d is estimated by the following special case of [15, Lemma 4].

LEMMA 2.2. Let F € A . Then, for all sufficiently large Z,

Z F Z F 1

ﬁ << exp ﬁ — l_Rl s
n=7\2 n p<Z p 0
P*(m<z'/

uniformly for R satisfying 1 <R < 'Oﬁ) —. Here, the threshold for “sufficiently large”, a

well as the implied constant, depenjs at most on the constant A, and the function Az(e)
associated with F in the definition of A .

Let F=fg, Z=x?, and R =r. Using that f € ./, it is straightforward to check that
F € /; moreover, the 4; and A,(¢) corresponding to f suffice to determlne together
with &, choices for 4; and A4, (€) corresponding to . By (2.4), 2 <R < ]Oglog —. Applying
Lemma 2.2,
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S/ (d)g(d) f (p)g(p) 1
> p ST Gyt
X072 <d<x? p<x?
P+(d)§xg/"
1 f(p)
< ——rl — .
exp( IOF Og}"> €Xp (l; r )

(We used once more than £ (p)g(p)/p =f(p)/p + O(1/p*).) We put this estimate back into
(2.5) and then sum on r in the range (2.4). Since

1
Z exp(O(r)) exp <—Er log r> <1,

we conclude that the total contribution of n from category (3) is

< (lozx I (1 3 v(p)>> (Zf(p)>

p=x

f(p)—v(p)
(T,

p=x P

which is

as desired. This completes the proof of Theorem 1.1.

3. Equidistribution of square roots of —1 modulo shifted primes: Proof of
Theorem 1.3. We follow the original arguments of Hooley [10] as closely as possible.

For each positive integer £, let (k) denote the number of square roots of —1 modulo £.
From elementary number theory, o is multiplicative and o(p*) < 2 for all prime powers p°,
so that o(k) <2“® . Moreover, as noted in the introduction, o (k) = ir(k) for squarefree
values of k. Thus, letting

H ={q—1:q prime},

Theorem B’ gives that

X
> oty —. 3.1)
— log x
ket

For each pair of integers 4, k with k > 0, let

Sthky= > elhw/k).

@ mod k
w?=—1 (mod k)

Trivially, |S(h, k)| <o(k). By Weyl’s criterion and the lower bound (3.1), to prove
Theorem 1.3, it will suffice to show that

> Sth.ky=o(x/logx)  (x— 00)
k<x

ket
for each fixed 4 # 0. (Cf. the discussion on p. 48 of [10].)
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In what follows, we let

X le/loglogx.

For each positive integer k <x, we write k =k k,, where k; is X-smooth and k; is
“X-rough” (meaning that P~ (k;) > X). We decompose

Y Sthky= Y Shi+ Y Shhk=) +) .

k<x k<x k<x
ket ket ket
fy<x'3 ky>x!3

say. Concerning Y _,, Cauchy—Schwarz gives

1/2 172
2
D DI oISl | (3.2)
k<x k<x
fy>x!/3 ke >x'/3

Since |S(h, k)| <22®, we have that

IS P <Y 220 < x(logx)®;

k<x k<x

Ty >x'/3

the final estimate here follows, for instance, from Shiu’s Theorem A (or the much more ele-
mentary Theorem 01 in [8]). On the other hand, by the estimate for “® (x, y, z)”” appearing
at the bottom of p. 9 of [8],

1
Z 1 <xexp (— <§ +0(1)> log log x - log log logx),

as x — o0o. Putting these estimates back into (3.2), we see that
Y, =0/ (logx)")

for each fixed 4. Thus, it will suffice to show that ) °; = o(x/ logx), as x — oc.

Exactly as in [10] (see that paper’s Lemma 3), we have S(4, k) = S(hl_cz, lq)S(hl_q, k),
where l_cl denotes the inverse of k; modulo k&, and l_cz denotes the inverse of k, modulo k.
Now using k; and k, for generic X-smooth and X-rough numbers,

2= ) Stk k)S(hki. k)
k]szx
kkye X, ky<x'/3

< Y ok)ISthin, k)l < Y OG/ki k),

kky<x ky <x1/3
kikoe X, k15x1/3

where, for y > x?/3 and k; <x'/3, we set

O, k)= Y ok)ISthk, k).

ky<y
klkze%
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Note that by Cauchy—Schwarz,

ok’ > o) > ISk, k)P | (33)
k<y ko <y
kika+1 prime kika+1 prime

The first parenthesized sum in (3.3) can be handled by Theorem 1.1. With P, the product
of the primes not exceeding X, we have that

Yo ek > Lgam=127".

k<y n<y
kiky+1 prime kyn+1 prime

To proceed, we observe that for k;n + 1 to be prime, either n < y'/? or n avoids the class
of —k; ' mod p for all primes p < X not dividing k. The former case accounts for O(y'/?)
values of 7, which make a total contribution to the sum that is O(y*/?). By Theorem 1.1,
the latter values of » make a total contribution to the sum that is

-1 4
< IOL exp E — + -
gy x P x5 P

ik

4 6
y 1 logy 1 y(log log x)
< logy log X <logX> xp 1; P < (logx)? ~

(We used here that log y < logx, that log X =logx/ loglogx, and that exp (3, %) <

ﬁ « loglog 3k <« loglogx.) The contribution of /3

and so

is negligible compared to this,

, _ y(loglogx)®
Yo o)< ~lomay

k<y
kika+1 prime

Turning to the second parenthesized sum in (3.3), we have that

> Stk k)P =Y |S(ah. k) - #{ky <y:ky=a (mod k). kiky + 1 prime}.

k=<y 0<a<k
kika+1 prime

Writing aq for the least nonnegative residue of @ modulo 4, we see that the values of k&,
counted here have the form ay + k¢ for some ¢ < y/k;. Moreover, either ¢ < (y/k;)'/? or
both ay + kit and ky(ap + kit) + 1 have no prime factors exceeding X. Brun’s sieve now
implies that the count of 4 is

y 2 y(log log x)*
P> o

< k1 (log X)? x o p ky(logx)?
1
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and thus

§j |S(ah, k\)|> - #{ky <y:ko=a (mod k), kik, + 1 prime}
0<a<k

y(loglogx)4 2

—= =7 S(ah, k).

< (log.)? > 1S(ah, k)|

0<a<k

Exactly as in [10] (see Lemma 1 there), the sum on a is at most o (ky)k; ged(h, k), and
now collecting estimates yields

- y(log log x)*
S(hky, k)| €« —=——2"0(k
; ISChz. k)P <=, 55— th)
klkz-ﬁl_grime

where here and for the remainder of the argument, the implied constants may depend on /4.
Referring back to (3.3),

Oy, k1)<<( )2(10g]0gx) Q(kl)l/z
so that
k)12
Z < Z OW/k, k) < 2(1Og10gx)5 Z Q( 1)
| f= ( ) oy <x1/3 1

Bounding the sum on k; by an Euler product, as in [10] (cf. the display immediately
preceding that paper’s equation (12)), we find that

ZQ(

fy<x!/3

D'
< (logx)l/ﬁ.

We conclude that

Zl < ;2 (log log x)°.
(log x)

Since 2 — 75 > 1, this implies that ) °, = o(x/ log x), as desired. This completes the proof
of Theorem 1.3.
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