
Genet. Res. Camb. (1997), 70, pp. 205–213. With 2 figures. Printed in the United Kingdom # 1997 Cambridge University Press 205

Information in molecular profile components evaluated by a

Genetic Classifier System: a case study in Picea abies Karst.

FEDERICO MATTIA STEFANINI  ALESSANDRO CAMUSSI*
Genetics Unit, Institute of Sil�iculture, Uni�ersity of Florence, Florence, Italy

(Recei�ed 3 June 1997 and in re�ised form 28 July 1997)

Summary

Individual records from the coding of molecular polymorphism (molecular profiles) are particularly

useful for the identification of clones or cultivars, in pedigree analysis, in the estimation of genetic

distances and relatedness, and as a tool in genome mapping and population genetics. A parametric

statistical analysis of molecular profile components can be infeasible because of the huge number

of observed markers, the presence of missing values and the high number of parameters required

to evaluate the importance of interactions among markers. Moreover, new powerful molecular

techniques make possible the analysis of numerous markers at one time; therefore parametric

statistical methods could result in troublesome models with more parameters than data. The field

of computer-based techniques offers new strategies to cope with the complexity of molecular

profiles. We suggest the use of a Genetic Classifier System to evaluate the importance of profile

components. The procedure is based on a Genetic Algorithm approach, a numerical technique that

simulates some features of the natural selection process to solve problems. A set of isozyme data

from a Norway spruce population is analysed in order to assess their ability to predict the

individual plant response to the presence of abiotic stresses. The results, obtained by three different

computer simulations, show that this computer-based approach is particularly effective for ranking

profile components according to their relevance. Genetic Classifier Systems could also be used as a

preliminary step to reduce the complexity of molecular data sets.

1. Introduction

Genetic fingerprinting (Jeffreys et al., 1985), which

can distinguish even closely related genotypes, is

particularly useful for the identification of clones or

cultivars, in pedigree analysis, in the estimation of

genetic distances and relatedness in the frame of

artificial selection procedures, and as a tool in genome

mapping and population genetics. Fingerprinting can

be based on the use of polymorphic markers (at

protein or DNA level) and in most applications it does

not involve the detection of association with QTLs or

genes of economic importance.

If individual marker-based genetic profiles are used

to assign individuals to a specific population or

heterotic group (as, for instance, in the frame of a

selection procedure), fingerprinting can be seen as a

multivariate discriminant procedure, in which avail-

able marker information is used to predict the value of

a classificatory variable.
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aventura, 13 50145 Florence, Italy. tel : ­39-55 30231 250. Fax:
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The coding of biochemical or molecular poly-

morphism involves, however, inherent difficulties. One

reason lies in the nature of the available genetic

profile : for instance the heterozygote at a dominant

marker has one of its alleles hidden; therefore a loss of

genetic information is expected before a coding scheme

for the information profile is chosen. Moreover

different marker classes provide genetic information

not only of different amounts but also of different

quality. In fact most of the available molecular

methods do not identify the presence of genes but

simply cut the genome into fragments to be compared

as a tool of classification, and the relative importance

of markers in the assessment of genotyping cost is

determined mainly by labour and requirements for

supplies (Ragot & Hoisington, 1993). Nowadays, the

number of available marker types is growing quickly

in most laboratories, making the increase in markers

studied less expensive than the increase in sample

dimension.

As regards, more particularly, the statistical features

of molecular profiles, parametric methods based on

linear models can have serious limitations: for instance
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the presence of multiple phenotypes (or bands in each

electrophoretic lane) and the presence of missing data

increase the complexity of the model ; the increase in

the number of available markers dramatically reduces

the relative weight (partial determination coefficient)

of a single marker ; and, finally, the inclusion of many

interaction parameters can result in overfitted or

saturated models.

For these reasons, it seems of primary importance

to develop methods that can help the researcher to

evaluate the information contained within each

molecular profile component. After ranking the

available markers according to the amount of in-

formation they provide, the most relevant ones could

be included in the individual genetic fingerprint and

further analysed to estimate the genetic base of the

observed variability of profiles or be used for

classification purposes. Inferences based on the chosen

subset of markers would be conditioned by the

observed data and by the rule specified to select the

subset of relevant markers. Therefore, a suitable

method to assess the information of molecular profile

components is required.

We suggested (Stefanini & Camussi, 1994) the use

of Genetic Classifier Systems (GCSs; Holland, 1975,

1986a, b, 1987) to tackle these issues. GCSs are a wide

class of adaptive machine learning algorithms that are

theoretically and empirically studied and that have

found many interesting applications in different fields

such as systems for medical diagnosis, morphogenesis

simulations, predictions of company profitability,

description of consumer preferences (for more details

see Goldberg, 1989a, chapter 6) and, more recently,

the optimizing of pipe networks (Simpson et al.,

1994), the simulation of magnetic resonance spectra

(Clouser& Jurs, 1995) andoptimization of the medium

in microbiology (Weusterbotz & Wandrey, 1995). A

general description of GCSs has been given by Holland

(1986a) and more recently by Michalewicz (1994).

The core of a GCS, called Genetic Algorithm, can

be considered an algorithmic description of some

features typical of the evolutionary process within

natural populations. Individual belonging to a popu-

lation (of hypothetical answers) pass to the next

generation (reproduction) depending on their fitness

values (dissimilarity between hypothetical answers

and the solution). Changes in the population of

individuals (coded as strings of characters) are

introduced using randompointmutation and crossing-

over between mated individuals. Therefore, a string-

based representation of the problem domain is

required together with the specification of a criterion

to assess the fitness for each hypothetical answer

solution, that is an individual of the simulated

population of strings. This simulated evolutionary

process moves towards an optimal population in

which individuals have the highest possible fitness.

Therefore the identified population represents the best

answer to the formulated problem (according to the

defined fitness function). Moreover, no explicit in-

struction on how to reach the goal is contained within

a GCS because it scores the performance of individuals

using a real and known data set built upon experiments

in the domain of the problem (i.e. a data set of

molecular profiles).

In this paper a set of isozyme data from a Norway

spruce population is analysed using a GCS in order to

evaluate the information content of molecular profile

components from the standpoint of their ability to

predict the individual plant response to the presence

of abiotic stresses.

The proposed GCS performs a joint evaluation of

profile components ; therefore it takes into account

the presence of the whole set of markers in the

molecular profile without the need for parametric

modelling. The information content estimated by the

GCS can be used to express a preference relation

(ranking) on profile components that could be used,

together with pragmatic considerations, in the identifi-

cation of the subset of the whole profile to be

subsequently modelled using parametric statistical

techniques.

Some specific improvements are also suggested to

fulfil the requirements of genetic studies.

2. Materials and methods

The proposed algorithm is derived from Goldberg’s

GMBL (1989a) without the ‘bucket brigade’ pro-

cedure and it is implemented using the Borland TC++

compiler for Windows 3.1. In the following paragraph

only a short introduction to GCS is provided, while

the cited reference explains the subject in depth. A

formal description of the reward scheme proposed by

the authors is given in the Appendix.

(i) The case study and the information profile

Forests show variability in the degree of tolerance to

‘new type’ damage probably caused by low but

chronic levels of pollutants, such as ozone, acid

deposition and organic compounds (Ulrich, 1989).

One hundred and ninety-seven pairs of Norway spruce

(Picea abies Karst.) trees were sampled in different

locations of the Northern Italian Alps. Plants within

each sampling unit were growing within a short

distance of each other and were characterized by

their reaction to ‘new type’ damage: one tree was

classified as tolerant and the other as susceptible on

the basis of the degree of defoliation. This structured

sampling is expected to produce a random association

between genotype and environment. Individual trees

were characterized at 18 isozyme loci, and a subset of

14 polymorphic loci was considered in the study.

Details on biochemical techniques and the sampling

design are given by Raddi et al. (1994).

The coded data set was obtained by assigning a

progressive natural number to each genotype at each
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Table 1. A key to the adopted coding scheme

Selected
markers Names

No. of
genotypes

String
length Sense strings Nonsense strings

1 LapA 4 2 00;01 ;10;11

2 LapB 10 4 0000;0001 ;0010;0011 ;0100;0101 ;
0110;0111 ;1000;1001

1010;1011 ;1100;
1101 ;1110;1111

3 GotA 3 2 00;01 ;10 11

4 GotB 5 3 000;001 ;010;011 ;100 101 ;110;111

5 Fest 5 3 000;001 ;010;011 ;100 101 ;110;111

6 PgmA 2 1 0;1
7 PgmB 5 3 000;001 ;010;011 ;100 101 ;110;111

8 PgiB 3 2 00;01 ;10 11

9 SkdA 2 1 0;1
10 SkdB 7 3 000;001 ;010;011 ;100;101 ;110 111

11 IdhA 2 1 0;1
12 IdhB 2 1 0;1
13 MnrB 4 2 00;01 ;10;11

14 Mnrc 3 2 00;01 ;10 11

Total¯ 30

For each isozyme locus different genotypes are represented by a binary string of a length depending on the number of possible
genotypes. The coding scheme allows a greater number of strings for each locus than are needed to code the genotypes really
present in the actual application (sense strings). The reward scheme, however, decreases progressively the fitness of nonsense
strings until they are eliminated from the population.

isozyme locus (starting value is 0), expressed in binary

base using the alphabet ²0,1´ (Table 1, fifth column

from the left). Elementary substrings for each locus

were joined to obtain a whole string for each individual

tree. At the last string value on the right, the coded

phenotypic value 0 (tolerant) or 1 (susceptible) was

added.

The data set included 394 molecular profiles from

the 197 pairs of plants with string length of 31. The

studied profile components are isozyme markers that

are coded into elementary substrings for each geno-

type, as described in Table 1.

(ii) The Genetic Classifier System

In the present context, any GCS can be seen as a

quintuple ∆ #̄ ©X,C,R,O,Fª, where the letters are

defined as follows:

X is the matrix of molecular profiles from the

known data set, partitioned as X¯ [X
i
,X

ij
] with X

i
the

submatrix of marker information and X
ij

the pheno-

typic value or the classification tag (in this case 0 to

tolerance or 1 for susceptible).

C is the coding system, so that each molecular

profile is uniquely mapped in a string equivalent ; the

map is XU ²0,1´F, with F the number of characters (31

in the case study).

R is the matrix of classification rules with the same

number of columns as X. Rules can be seen as

individuals of a population evolving towards opti-

mality, which is the solution of the task. Each one

belongs to the set of possible rules ²r :r ` ²0,1,g´F´,
therefore they are strings composed of three possible

symbols ; a rule includes some don’t care symbol g,

which can be considered as a short notation for the

sentence ‘0 or 1 ’, thus they indicate that corresponding

characters do not make any contribution to the

predictive or classificatory ability of the rule itself ; the

expanded set of a rule r is obtained by substituting

each symbol g with 0 or 1 in the rule r in all the

possible combinations.

O is the set of operators that can be used during the

learning step of a GCS to cause changes of the R

matrix, i.e. it includes an initialization schedule and a

procedure that establishes how the reproduction of

individuals (rules) is performed.

F is the scoring system constituted by a reward

schedule that increases the fitness of a rule performing

the right classification task, i.e. it correctly predicts X
ij

given X
i
.

The main device of the GCS procedure is repre-

sented by the rule matching. As it is divided into a

condition (here the marker information) and an action

(here the phenotypic tag), each rule expresses a

relation of the type ©IF ‘condition’ THEN ‘action’ª.

By the use of a variable number of g symbols in the

condition part, a rule can express a relation between a

subset of all the possible molecular profiles and the

action part (the phenotypic value tag). The relative

specificity of a rule is the ratio between the length of

the specified (by 0 or 1) part and the total length of a

rule. Stefanini & Camussi (1994) report an example of

some rules and their attributes.

The search for better candidates outside the array

of rules of the first generation needs the third

component of a GCS: the Genetic Algorithm (GA).

The GA is used to generate new candidate rules, while

maintaining the old fittest ones. New rules are

introduced by means of crossing-over (χ) and point

mutation (µ), operators that simulate some features
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of the corresponding biological phenomena in haploid

populations. Details on the adopted GA are described

by Stefanini & Camussi (1994), while methodological

aspects in applied genetics are under development.

A computer run of a simulation starts with a

randomly generated collection of individuals (array of

rules) with constant fitness and repeats the following

cycle for thousands of generations:

1. A molecular profile is given as input to the GCS

and a check is made for each rule to verify whether

the condition part matches the message (that is,

whether the molecular profile belongs to the

expanded set of that rule).

2. Each matched rule makes a ‘bid’ proportional to

its fitness value and the highest bidding rule

becomes the winner; its action part defines the

predicted phenotype tolerant or susceptible).

3. The algorithm checks whether the prediction of the

winner rule agrees with the experimental value

recorded in the molecular profile ; if the winner rule

has made the right prediction (its action part is

equal to the phenotypic value contained in the

profile given as input), it is rewarded by an increase

in fitness value.

After a fixed number of generations, the GA is

invoked to explore the space of rules, searching for

better individuals. Each rule in the array has a

constant fitness value at the start of the computer run,

but at the end a peaked fitness landscape is obtained,

that is, rules more often rewarded (because they are

effective) have the highest fitness value.

A simulation consists of several independent com-

puter runs to take into account the stochastic nature

of a GCS (Holland, 1986a). Even if the same

initialization is given, different results can be obtained;

but the amount of variability is partly regulated by

the choice of reward scheme and the simulation

parameters (see next paragraph).

(iii) The reward scheme in the fitness function

We propose a particular reward scheme to minimize

the variability among computer runs. The fitness of a

rule in the next generation is obtained from the fitness

in the current generation by adding the reward

obtained if it is the winner rule and by subtracting

several terms. The first one is called ‘ life tax’, and it is

introduced to minimize the presence of bad, un-

rewarded rules over generations. The second one is the

bid amount that is paid only by the winner. The last

term is a tax paid by all the matched rules. Details are

given in the Appendix.

The bid made by a rule is obtained as its current

fitness value multiplied by the weighted linear sum-

mation of its specificity and its generalized profile of

uni�ariate expectation (Appendix). We included the

generalized profile of univariate expectation in the

fitness function to tune up the algorithmic per-

formances in the field of applied genetics, by quanti-

fying the amount of molecular profile that contains

information regarding the phenotype. It is a weighted

linear summation of Pearson’s mean squared con-

tingencies obtained for each component of the

information profile.

The rationale underlying the definition of the fitness

function rests on two opposite tendencies. The first

one puts more and more symbols g in a rule, so that

it recognizes as many profiles as possible, and the rule

has more opportunities to be rewarded. The second

one removes symbols g from rules in order to predict

the right phenotype for a small number of profiles,

eventually only one.

A rule with low specificity (many g) matches many

profiles, but if the predicted phenotype is not correct

then it is not rewarded. A rule with high specificity

matches few profiles ; while it is likely that for this

small class of profiles it could give the right phenotypic

prediction, it is infrequently rewarded due to the small

number of profiles that it recognizes.

(iv) The Genetic Algorithm

The GA component uses single and double point

crossing-over, with probabilities p and p# respectively,

and it substitutes a small proportion of the whole

population of rules at each generation (about 4%).

Probabilistic parameters are defined using the no

preferred �alue principle. When no reason is given to

prefer an outcome, a uniform distribution on the

possible alternatives is adopted. An exception is

represented by the frequency of crossing-over points

that are contained in the condition part of the rules. It

is set to 0±85, a value that makes the recombination of

the message substring more frequent. The adopted

GA uses only substitutions in the mutation operator.

A new individual generated by GA has a fitness value

equal to the minimum of its two parents.

It must be emphasized that values above described

as parameters of the simulation are chosen according

to suggestions of some authors (Goldberg, 1989a ;

Michalewicz, 1994) and to heuristic considerations.

Further work in this area is required.

(v) Output analysis

The collection R∆ of optimal rules at the end of a

computer run is used to build the subset R
X

according

to the following procedure:

1. The fittest rule is chosen at first, because it has the

best performance in the predictive task; profiles

that match this rule are removed from the data set.

2. Subsequent rules are chosen according to the

decrease in fitness value, and for each rule added to

R
X
, the profiles it matches are removed from the

data set.
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3. The procedure stops if no more profiles of the data

set are recognized or the whole set of rules R∆ is

used.

The collection of rules R
X

recognizes the maximum

number of molecular profiles using the minimum

number of rules ; therefore it jointly makes the

maximum number of right phenotypic predictions

using an association structure summarized by R
X
.

Some specific indexes are proposed to resume the

observed outcomes after the end of a GCS run:

The local compression efficiency obtained by the

GCS is defined as:

ΨF ¯1®
M

c

M®M
n

,

where M
c
is the number of rules contained in R

X
, M

n

is the number of unrecognized molecular profiles out

of the total M, and, consequently, M®M
n

is the

number of those recognized. Its value is contained in

the interval 0–1, with large values preferred to small

ones.

The index of global compression Ψ¯1®(M
c
­M

n
)}

M includes the unrecognized M
n

profiles in the

numerator to establish the original information.

The statistic φ
m
, the Information Contribution of a

Marker as determined by R
X
, is defined as

φ
m

¯
card (F

t
)3F

m

p
i

card (F
m
)3F

t

p
j

.

It is the ratio between the summation of the frequencies

of assigned characters 0 and 1 for the substring

corresponding to the marker m and the summation of

assignment frequencies in the whole string. The

weighting terms are respectively the number of

characters needed to code marker m, indicated as card

(F
n
), and the total number of string characters, card

(F
t
) ; F

m
and F

t
indicate the number of characters used

to code for marker m and to code the whole set of

markers. The rationale underlying the definition of φ
m

is based on the chosen coding scheme. If a profile

component is useless for the predictive task (pheno-

type), it has many symbols g within R
X

; otherwise it

has few or no g symbols in it. By using the index φ
m
,

it is possible to rank the profile components on the

basis of their information content.

(vi) Computer simulations and �alues of parameters

Three simulations were executed in the spruce case

study, each one composed of several computer runs,

in order to evaluate the stability of the estimates

received from the GCS. This characterization was

obtained under the same set of parametric values : 100

generations between GA calls, 30000 generations each

computer run, a matrix R of 100 rules, 1±0 initial

fitness value, point mutation probability equal to

0±007, crowding factor and crowding subpopulation

equal to 3.

The initial rule setting was done by a random

drawing of profiles from the known data set and then

by putting g symbols in each position with probability

equal to 0±8. The derived initial population contains

rather non-informative rules (high frequency of g)

and it is likely that the few 0 or 1 symbols it contains

are in relevant positions.

In the first simulation (S1) the whole set of profiles

was used in the learning phase and the computer run

repeated 350 times. The second (S2) and the third (S3)

simulations were planned to verify the classification

ability of the system. The known data set of molecular

profiles was split into two subsets : one was used in the

learning phase, and the second was used to verify the

ability of R
X

to predict the right phenotype for those

profiles that were not used to obtain R
X
. Each

simulation consisted of 175 computer runs. Data set

splitting was performed once in the S2 simulations,

while it was randomly defined at the beginning of each

computer run in the S3 simulation.

Also in this case, values of parameters for each

simulation were chosen according to suggestions of

some authors (Goldberg, 1989a ; Michalewicz, 1994)

and to heuristic considerations. At present, no general

rule to define values for parameters is known.

3. Results

Several computer runs within the three simulations

allowed us to evaluate the ability of the proposed

Genetic Classifier System to assign the right phenotype

to each tree from its marker profile. The overall ability

within simulations and the possibility of cross-

validating the results starting from different learning

data sets are summarized by appropriate statistics.

The main results of the three simulations are

reported, as box plots, in Fig. 1. All three simulations

showed a quite similar distribution of recognized

profiles, as shown by the values received by the

M®M
n

statistic, even if the use of the whole data set

for the S1 learning phase and the random splitting in

S3 could have produced more similar distributive

shapes in comparison with S2 results. The simulation

S2, based on a fixed splitting, had perhaps penalized

the outcomes. Similar considerations can be made as

regards the cardinality of R
X
.

Results in Fig. 1 show that the distribution of

values is quite concentrated around the median – an

important feature required by applied domains. More

work is required to check whether this feature is also

present in the analysis of other data sets, or whether

it can be improved by further parameter tuning. For

the analysed case study, the algorithm seems fairly

insensitive to the initial conditions. Furthermore, the

S2 and S3 simulations support the hypothesis of

robustness for the proposed algorithm that produces

similar distributions even if half the profiles are not

used to find the optimized set of rules. An alternative
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Fig. 1. Box plots of main results of the S1, S2 and S3 simulations. M®M
n

is the number of recognized profiles, Card
(R

X
) is the cardinality of R

X
, (M®M

n
)1 and (M®M

n
)2 are the number of recognized profiles in the used and unused

halves of the data set respectively. The first three variables on the left have an upper bound of 394, the last three an
upper bound of 196, and the remainder of 100.

explanation of this result could be that the algorithm

does not use the evidence in the data set. But it is

unlikely that similar results are due only to the effect

of randomness, as it results from the predictive

performances at an early stage in a computer run.

The descriptive statistics from the simulations are

reported in Table 2: the cardinality of R
X
, the number

of recognized profiles and the global and local

compression efficiencies, are as described in Section 2.

The high similarity of results, particularly as regards

the number of recognized profiles and the cardinality

of R
X
, suggests that our GCS is able to exploit all the

information included in the data set. Moreover if the

halved data set can be considered homogeneous in its

components from the information point of view, then

the algorithmic performances are not strictly de-

pendent on the availability of the whole data set.

In the simulation S2, while 50% of the computer

runs had a number of recognized profiles near 185 in

both the halved data sets, the 50% of runs globally

produced more than 350 recognized profiles. The

cardinality of R
X

is 30–40 rules in about 50% of runs.

The total number of recognized profiles showed a

range of 362–392 profiles out of 394, with a mean

value of 358 profiles. The 95% interval comprises

325–380 profiles. These are good values, confirmed by

a high level of compression, which is always over

80%. The odds ratio (OR) was calculated from two-

way contingency tables (recognized, unrecognized by

used half data set, unused half data set). They received

values near 1, demonstrating that the number of

recognized profiles is independent of their belonging

to the half data set used during the learning step. As

the single run can be considered a Monte Carlo

simulation, the null hypothesis H° : OR¯1 was

accepted in both S2 and S3 simulations, on the basis

of the 5% to 95% percentile interval as reported in

Table 2. S3 and S2 simulations showed similar

numerical results, particularly as regards the number

of recognized profiles within subdivided data sets.

These results suggest an effective independence of

the performance of the GCS from the choice of data

set subdivision during the initialization procedure. A

null hypothesis of equality of the two distributions in

respect of the whole frequency of recognized profiles

was not rejected by a Kolmogorov–Smirnov test (data

not reported). Accordingly, S2 and S3 simulations

were considered jointly and compared with S1 as

regards the frequency of recognized profiles. Also this

Kolmogorov–Smirnov test resulted in no rejection of

the null hypothesis (data not reported).

The whole collection of 700 computer runs was

screened to identify the best run, in which the criterion
$

%
card (R

X
)­"

%
M

n
is minimized. The weights in the

formula above are chosen so that a decrease of one

unit in M
n

is three times less important than a

decrease of one unit in card (R
X
).

The best computer run belongs to the S1 simulation

(file 280: card (R
X
)¯17, M

n
¯ 28, Ψ¯ 0±88, Ψ

l
¯

0±95). The frequencies of digit assignment within the
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Table 2. Main descripti�e statistics from the simulations

Simulation}
Variable Mean

50th
perc. Min. Max.

5th
perc.

95th
perc.  Variance

S1

M®M
n

357±92 362 267 389 327 378 17±37 301±83
Card (R

X
) 32±70 33 17 47 25 41 5±01 25±12

Ψ 0±8254 0±8325 0±5990 0±9117 0±7462 0±8782 0±0438 0±0019
Ψ

l
0±9085 0±9083 0±8708 0±9535 0±8864 0±9303 0±0140 0±0002

S2
(M®M

n
)1 178±13 180 121 195 162 189 8±96 80±35

(M®M
n
)2 180±04 182 122 197 163 191 9±03 81±52

(M®M
n
)T 358±17 362 243 392 325 380 18±00 323±67

Card (R
X
) 32±07 32 21 47 24 41 5±13 26±281

Ψ 0±8276 0±8350 0±5584 0±9162 0±7462 0±8832 0±0434 0±0019
Ψ

l
0±9104 0±9106 0±8750 0±9375 0±8851 0±9320 0±0136 0±0002

OR 0±9944 0±9890 0±9871 1±1191 0±9879 1±0441 0±0202 0±0004

S3
(M®M

n
)1 178±91 181 134 193 161 190 9±95 99±07

(M®M
n
)2 180±82 183 135 195 162 192 10±05 100±92

(M®M
n
)T 359±72 364 269 388 323 382 20±00 399±87

Card (R
X
) 32±68 33 20 49 25 41 5±07 25±74

Ψ 0±8301 0±8426 0±5939 0±9036 0±7437 0±8883 0±0502 0±0025
Ψ

l
0±9090 0±9099 0±8665 0±9432 0±8822 0±9329 0±0144 0±0002

OR 0±9963 0±9892 0±9860 1±20 0±9880 1±05 0±0260 0±0007

Card (R
X
) is the cardinality of R

X
; M®M

n
is the number of recognized profiles ; (M®M

n
)1, (M®M

n
)2 and (M®M

n
)T are

the number of recognized profiles in the used and unused halves of the data set and their summation, respectively. Ψ and
Ψ

l
are the global and the local compression efficiency. Within the S1 simulation, 350 runs are considered. Within simulation

S2 and S3, statistics are evaluated from a sample of 175 computer runs.
perc., percentile. OR, Odds Ratio.
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Fig. 2. Frequencies of symbol (digit) assignment with R
X

for a selected computer run. No symbol has null frequency,
suggesting that it is a necessary condition to extract the maximal amount of information from the data set.

best run are reported as a frequency profile in Fig. 2.

No digit had null frequency, suggesting that this is a

necessary condition to extract the maximum amount

of information from the data set. The information of

molecular profile components is shown in Table 3,

where they are sorted according to the received φ
m

values. It is evident that in practical applications the

useful markers to classify individual phenotypes are to

be chosen within the highest scored as regards the φ
m

values.
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Table 3. The rele�ance of single markers is shown by

means of an ordinal ranking according to φ
m
, the

information in molecular profile component m

e�aluated using the best computer run (see Section 3)

Marker φ
m

Order Marker φ
m

Order

M1 0±685 9 M6 1±827 1

M2 0±952 7 M5 1±421 2
M3 1±371 3 M3 1±371 3
M4 0±761 8 M13 1±370 4
M5 1±421 2 M10 1±269 5
M6 1±827 1 M9 1±066 6
M7 0±761 8 M2 0±952 7
M8 0±761 8 M4 0±761 8
M9 1±066 6 M7 0±761 8
M10 1±269 5 M8 0±761 8
M11 0±305 11 M1 0±685 9
M12 0±609 10 M14 0±685 9
M13 1±370 4 M12 0±609 10
M14 0±685 9 M11 0±305 11

In the second block of columns, the first column indicates
the marker number, the second column shows φ

m
values,

and the third indicates ordinal ranking. In the first block of
columns the same information is reported but the original
marker order is conserved.

4. Discussion

In this paper, the proposed GCS was able to assess the

information in molecular profile components without

the need for complex parametric models and compu-

tations involving algebraic manipulation (i.e. differ-

entiation and integration). The underlying rationale

rests on the chosen coding scheme and on the definition

of φ
m

: a profile component has no information if it is

useless for the predictive task (phenotype), that is if it

has only symbols g with R
X
. Moreover, it has the

maximum amount of information if no symbol g is

present in the correspondent substring within R
X
.

The results obtained in this case study are pre-

liminary, because more work is required to find a

general procedure for choosing simulation parameters,

but they are also interesting for the new trends present

in applied genetics : the necessity to include a huge

amount of information in the same analysis makes

permanent the need for a general method that uses

simple automated computations in preliminary steps

of the analysis.

According to the fundamental theorem of Genetic

Algorithms (Goldberg, 1989a), a GA is effective if

regularities exist in the real data set of molecular

profiles and if they are expressed in substrings of short

length, so that its main optimizing operator (the

crossing-over) can usefully work.

Moreover, a different set of GCS parameters causes

different performances, even if the computational

routines remain unchanged, so the main problem is

not completely solved. While some general advice on

the choice of parameters can be formulated (Goldberg,

1989a), the final decision rests more on intuitive-

artistic feeling than on numerical criteria, because of

the high non-linearity of the GCS dynamic. The same

comments can be made about the structure of the

algorithm. However, the choice of the computational

scheme can be inspired by a simplicity principle that

introduces only well-motivated procedures by heu-

ristic reasoning based on computer simulation, while

the study of optimal parameter identification could

adopt standard statistical techniques in future.

Before this approach can be applied widely,

sampling variation must be taken into account and a

general rule to choose the length of a computer run

should be formulated. In this paper, some stability

was observed even if a reduced amount of information

was furnished during the learning phase, but a refined

study of these features should be performed. Never-

theless, our preliminary results support the idea of the

GCS method for discovering and exploiting infor-

mation, perhaps even if huge data sets with sparse

missing values are considered. Moreover, the selection

of a subset of profile components to make further

parametric analysis should include both the infor-

mation found using the proposed GCS and pragmatic

considerations coming from the field of applications.

We proposed the use of a term called the generalized

profile of univariate expectation to restrict the

algorithmic dynamic so that no unsound conclusions

from the standpoint of applied genetics can result.

This choice is rather conservative of the opinion built

on univariate statistics, but a deeper study is required

to prove that no interesting solution is lost by including

this term during the fitness evaluation.

Finally, according to Goldberg (1989b), the use of

our reward scheme could be criticized because it

forces the dynamic of the GCS by restricting the space

of searches. However, even in the worst case, when the

solution of a similar GCS is totally different from that

of our GCS, it would be hard to believe that it has a

sound biological meaning from only heuristic con-

siderations. A further look at these aspects is in

progress.

Appendix

Some computational details are shown here regarding

the reward scheme of the adopted GCS, which is

formulated to minimize the variability among simu-

lations. The difference equation of fitness changes is :

S(i, t­1)¯S(i, t)®P(i, t)®T(i, t)®Q­R(i, t),

P(i, t)¯B(i, t)I²‘winner’´
(i),

T(i, t)¯C
t
S(i, t)I²‘matched’´

(i),

R(i, t)¯C
r
I²‘winner’f‘right’´

(i),

where S(i, t­1) is the fitness of rule i at the next

generation t­1, Q is the life tax, P(i, t) is the bid

amount paid only by the winner, T(i, t) is a tax paid by

all the matched rules, R(i, t) is the reward term
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collected only by the winner, I(i) is the characteristic

function, and the remaining quantities are set as

follows:

The bid B(i, t) made by a rule i at cycle t is

B(i, t)¯C
b
S(i, t) [C

"
­C

#
C(i, t)­C

$
U(i, t)],

where S(i, t) indicates the fitness of rule i at generation

t, C(i, t) is the specificity and the other terms are

constants. We choose constant values as follows: C
b
¯

5¬10−', C
t
¯1¬10−', C

r
¯1¬10−%, Q¯1¬10−',

C
"
¯ 0±01, C

#
¯1±0, C

$
¯ 2±0.

U(i, t) is the generalized profile of uni�ariate ex-

pectation, a weighted linear summation of Pearson’s

mean squared contingencies obtained for each binary

symbol within the profile component. At generation t,

a generic rule i has a generalized profile of univariate

expectation equal to

U(i, t)¯3u
j
I²
",!

´(x)

m
,

with j the position of the considered symbol in the

condition part of rule i, m the total number of those

symbols, and I the characteristic function taking into

account only symbol values that differ from the don’t

care g. U(i, t) is bounded in [0,1]. The values u
j
are

obtained on the basis of the original information

coding. A k by 2 contingency table is built counting

for k genotypes at locus g, and for the correspondent

phenotype (two classes of new type damage in the

present application). The Pearson’s mean squared

contingency coefficient is derived for each locus as

u
i
(t)¯wg

03k,r

p
k,r

p
k,E

p
E,r

1®1

n
k
®1

,

where p
kr

is the relative frequency of profiles with

genotype k at locus g and phenotype r, while n
k
is the

number of genotypes at locus g and wg is the inverse

of the number of symbols necessary to code the

marker information. The point notation (e.g. p
k,E

and

p
E,r

) refers to marginal frequency values.
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