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ON THE #, AND .#, TRANSFORMATIONS

PG, ROONEY

1. Introduction. Denote hy C, the collection of complex-valued
functions which are continuous and compactly supported on (0, o0). The
transformations of the title are dehined on 'y by

L) @) = f @) GO,

and

1D N = [ e o

respectively, where Y, (x) is the Bessel function of the second kind, and
H,(x) is the Struve function; see |1;7.5.4(55)]. The two transformations
are studied briefly in [6; § 8.4]; tables of transform pairs are given in
[2; Chapters IX and XI], where it is also stated that, for —3 < » < 3,
each of the transformations is the inverse of the other.

These transformations are of importance in many axially symmetric
problems. When solutions that are regular on the axis of symmetry are
wanted, the solution often involves the Hankel transformation 17,
defined for f € Cy by

(H,f)(x) =fnm (x)* 7, (xt) f (t)dL.

However when solutions to corresponding problems that are singular
on the axis of symmetry are wanted, the solution will involve %, with its
coefficient determined by ,. For example, in gencralized axially-sym-
metric potential theory (GASP theory), one studies the partial differ
ential equation

¢

2\
A= u,, + 5 Uy + 1, =0

inr > 0,z > 0. The solution of this equation such that u(r, 04+) = f(r),
which is regular on 7 = 0, is given formally by

u(r,z) = r(Hy-1pph.Hr—12/2) (),
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where £,(t) = e=*', and fy(t) = f(¢), and a solution that is singular on
r = 0 is given formally by

u(r,z) = 7_)\(@)\—1/2}12ﬁ/)\—1/2f)\)(r)'

Since GASP theory is perhaps the most important application of the
Hankel transformation, it thus seems worthwhile to obtain the basic
facts of boundedness, range, and inverses, about the %/, and ¢, trans-
formations in approximately the same detail as for the Hankel trans-
formation.

Thus our objective in this paper is to study the boundedness and
ranges of the two transformations on the spaces.?, ,, defined for real u
and 1 £ p < © to consist of those complex-valued functions f, measur-
able on (0, 0 ), and such that /||, , < o, where

( © 1/p
(L3) | fluw = {fo lx"f(x)l”dx/x} .

(For further information on these spaces, see [3; § 3], but notice that the
spaces L, , of that paper are slightly different from %, , here.) We shall
also look into the question of whether the transformations are inverse
to each other.

The results will be largely derived from our results in [4] on the
boundedness of the Hankel transformation. However we shall also need
an integral representation for the Hankel transformation and information
about its inverse. This we shall develop in Section 2. In addition we shall
need considerable information about the even and odd Hilbert trans-
formations, and we shall develop this in Section 3. The results of these
two sections may be of independent interest.

In Section 4 we shall determine the boundedness and characterize the
range of %, on the ¥, , spaces, while in Section 5 we shall do the same
for #°,. In Section 6 we shall show that in some circumstances %, and
A, are inverse to each other, both in the regular sense and in an extended
sense.

A notation we shall use frequently is [X, V] for the collection of
bounded linear operators with domain X and range in ¥; here X and V
are Banach spaces. [ X, X]is abbreviated to [X]. If £ € R, M; will denote
the operator on complex-valued functions on (0, 0 ) defined by

[1.4]  (M:f)(x) = x¥f(x).
Clearly, if £ €¢ R, n € R,
(1.5) MM, = My, and M, = I,

where [ is the identity operator. It is also easy to see that M; is an
isometric isomorphism of ., , onto ¥, _; ,.
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One of our main tools will be the Mellin transformation I, defined as
follows: if f € £, 1 = p < 2, then
(L6) (M) (u + 1t) = (FuH)" (1),

where (%,f) (1) = ev'f(e*), and Fis the Fourier transformation of I, that
isif e Li(—o00,00),

Ry = f et ()dy.

Ulsing standard results about the Fourier transformation, it is easy to see
thatfor 1 £ p £2, M € [(Lyp, Ly (—00,00)], where

(1L.7)  (1/p) + (1/p") = 1.
We shall often write (Wf)(u + 7t) as (W f)(s), with Re s = u. This is

justified by the obvious fact that if f € £, ;,

(1.8)  Mf)(s) = f( )m/""‘f(t)dt, Res = p.

It follows easily from the standard inversion theorems for the Fourier
transformation that if f € %, ,, 1 < p £ 2, then

) 1 iR '
(1.9)  f(x) = 5= lim f xS (s)ds,
2Tl Ry VY u—iR
where the limit is in the topology of £, .

One further fact we will need is the relation between Mt and M;.

It is easy to show thatif f € %, ,, 1 < p £ 2, then for Re s = u — §,

(1.10) (MM ) (s) = (Mf)(s + &).

2. The Hankel transformation. The Hankel transformation H, is
defined for v > —1 on Cy by

@.1)  (H,f)() = f m ()27, (et) f (1)t

where J,(x) is the Bessel function of the first kind. In [4; § 7] we showed
that if 1 < p <0, y(p) £ u < v+ 3/2, where

(2.2)  y(p) = max (1/p, 1/p"),

then for all ¢ = p such that ¢ = 1/u, H, € [ Ly £ 1_u,], while in [5],
we characterized the range of H, on.¢, ,. A fact about H, that we shall
make considerable use of is that from [3; § 8] or (4; § 7] if f€ %, ,,
1<p 2, v(p) £u<v+3/2 thenforRes =1—p

(2.3)  (MHf)(s) = m,(s)(MNH A — 5),
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where
(2.4)  my(s) = 27T A 45 + 5)/ T — s 4+ 372)).

In this section we shall develop an integral representation for /1,, and
also discuss the inversion of the transformation. To these ends, we hirst
need a product theorem for the Hankel transformation, and a lemma.

TuroreM 2.1, If f ¢ Xy g0 Ly where 1 < p <o, | < g < 1,
P4 gt 2 1, and max(y(p), v(q)) S p < v+ 32 then

(2.5) jT(HMﬂ@gWMx=th@KHgﬂwmA

Proof. If f € Cyand g ¢ (', then from (2.1)
fm (H,f)(x)g(x)dx =fmg(x)a’xfm‘(xl)1/2./;.(\'{)_!‘(/)(1/
0 0 0
" rwa | s - [ o e o

- fw f) (H,g) (v)d,

the interchange of the orders of the integrations being easily justified by
Fubini's theorem. Thus (2.5) is true if f € 'y and ¢ & Cy, and hence,
since from [3; Lemma 2.2], Cyis dense in , , and &, ,, the general result
will be true if we show that both sides of (2.5) represent bounded hilinear
functionals on % , , X . ...
Now since p=' 4+ ¢7' = 1, p’ = ¢; also since p=' = v(p) = u, (')

p = 1/p, and hence H, ¢ [ Y., Z 1wy, and thus using Iolder's
inequality

L (= 1
’f ‘/'(x)(ll,,g)(x)dxl §f I F (o) | [t (L) () [do

< [ fuollHogllhowr = Kl fllapllglu. o
where K, is a bound for F, as an element of |4, ,, % 1-,,], so that the
right hand side of (2.3) is a bounded bilinear functional on. ¢, , X %, ..

as is the left hand side of (2.3) by a similar calculation, and the result
follows.

Definition 2.1. For x > 0, v real, let

Itv—i-llif’ 0<t=x and
26)  ¢.0) =7 (> |

(27)  raL(f) = xR (xt).
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Lemma 2.1, Suppose 1 < p < o. Then q,, €Ly, if and only if
w> — @+ 5. dlso, if v> —3/2, r,. €Ly, if and only if — (@ + 1)
< u < 1. Further, if v > —1,

(28) quv,.r =Ty
and
(29) Huru..r = v

Proof.

[ . } ! p(u+V+l/2)—1d 11/1)
fqvw”mp = 1 . t ':f < 0

ifandonly if u > — (v 4+ ). Since, from the series for the Bessel function,
ifv > —2

rv,z([) ~ x2v+lfv+l/2;/ F(y + 1) as ¢ __)0+'
and from |1; 7.13.1(3)]
Po (1) ~ (2/7) 2012 cos(xt — (v + 3)m)/tast — o0,

7o € L., if and only if

8 oS}
f pEHE=T0 < o and f PEVTE < o0
0 R

for some positive 6 and R, and thusfor — (» + %) < u < 1;but — (v + %)
< 1implies v > —3/2. In particular, ¢, , ¢ L 1p2if — (v + 3) < 3, that
isif v > —1, and then from [6; Theorem 129 and § 8.4, Example (1)], and
[1;7.7.1(2)], for almost all t > 0

i

_e Lo fm 172 _ifx vl fl 1/2 Y
=aJ. u du , v J”(v)dv—dt , 1w du Y I, (uv)dv

d ! 172 ‘ r4-1
— vy | T, (vu)du
dt J 0

£ xt
= lm‘f W, () du = F(”m)f W, ()du
0 0

= x”+lt—l/2jy+1(xi) = 7».;r([)-

Also, from |6; Theorem 129, and § 8.4, Example 1], on ¥ 1,00, H,2 = I,
and thus since if v > —1, q,., € F1,0.0,

d a d lu
(H.q..) (1) = 5, f @rs) = f REAACTE

I

Hvrv,r = ][v2q»,r, = Gy 1.
THEOREM 2.2, If f € L ,,, where 1 < p <o, y(p) S u<v+3/2

https://doi.org/10.4153/CJM-1980-079-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-079-4

1026 P. G. ROONEY
then for almost all x > 0,

(2.10)  (H,f)(x) = x~ @+ ;}{; .\~"*"'“’f )V (et (O

Proof. Since ¢, . < % ., from Theorem 2.1 and Lemma 2.1, for x > 0

fA twl‘/g(H,‘/')(‘l)d/ ::f g () (H, 1) dt :f Hogy o) Hd
{1 0 @

-f S (i f (W) a0t 1,
0 1]

and the result follows on differentiation.

If instead of taking ¢ = ¢,, in (2.3) we had taken ¢ = x.,., the
characteristic function of (0, x), we would obtain

(H,})(x) = ;}I; f Juxt) f(1)dt,

Julx) :f MLl

This formula seems less useful than (2.10), firsdy because it requires the

where

evaluation of two integrals, and secondly because it 1s less well posed for
using tables of Hankel transforms; for the integral appearing in (2.10)
can often be evaluated using, sav, [2; Chapter V111 by changing v 1o
v + 1 there and adjusting f.

We will now obtain an inverse for H, on 2 , , forp < 1.

TurorEM 2.3, [f [« 2., wiere 1 < p <, y(p) £ p < nuntdl,

v+ 3.2), then for almost all x > (),

(2.11) f(x) = 772 ;1\ .\.-””f )2 Ty () (L) i L
B 0

Proof.Sincev > —1, — (v + 5) <3 < y(p) £ wu, and hence by Lemma
2.1, 7, . o . But then by Theorem 2.1 and Lemma 2.1,

X f (O () (L F) (dt = f (O (L) ()t

il O

=f‘ H,r, (t)f(t)dt =f M
0O 0

and the result follows on differentiating.

COROLLARY 1. If 1 < p < L, y(p)y S pw < minll.v + 3 2) then on
Z oy H, 15 one-to-one.
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The reader will note that the right hand sides of (2.10) and (2.11) are
the same except that in (2.11) f is replaced by H,f, so that formally
H,~' = H,or H? = I. However, except on %, 2 ¢, this is purely formal,
forif f € Luy, 1 < p <o0,v(p) £p<v+3/2 then Hf ¢ £, and
thus for H,? to be defined we require that y(p) £ 1 — u < v + 3/2; but
since y(p) = %, with equality only if p =2, 1 —u =1 Z v(p), with
equality only if p = 2, and thus p = jand p =

So far we have not shown that H, is one-to-one on.%, , for vy (p) < pu <
v + 3/2, but only for v(p) < u < min(l, » + 3/2). The following
theorem covers the matter.

THEOREM 2.4. If v(p) S u < v + 3/2, then H, 1s one-to-one on 4 ,, .
Proof. Suppose f € ¥, ,and H,f = 0. Then from [5; Lemma 3.4],
Awu—7[ﬁ4—7.(v—u+‘r+3/2)/2]1V-u+7‘1[u—-vf =0,

where [, ;¢ is defined by [5; Definition 3.1]. Now M,_, is clearly one-to-
one, and from [3; Lemma 3.4], [,y (,_piy+3,2),2 1S One-to-one on & ,.
Hence

HypiyMoyf = 0.

But M, ,f€%,, and since vy < | and v < v —u + 7 + 3/2, by
Corollary 1, M, _,f = 0, and f = 0.

[5; Lemma 3.4] can be used in conjunction with Theorem 2.3 to
produce an inversion formula for H, on &, , for y(p) S u < v + 3.2
yielding

H,™ = 2”—7!”7*# (IJV—qu'y)_l (1#-"7.<V—M+7+3/'-’1/3)_1A1]7‘u~
Since, as can easily be shown,
(Iu,f)—l = "ur‘l(l—%) (%A[—ID)nA[2m+£—l)In—a,$+av
where n is an integer = « and (Df)(x) = f’(x), this gives H,™!
3. The even and odd Hilbert transformations. For our purpoces

here the even and odd Hilbert transformations, H, and H_ respectively,
will be defined initially on & 1,5 by

(31) H+ = _—f\;yc
and
(3.2) H. =F.F,

where &% , and . | are respectn ely the Fourier cosine and Fourier sine
transformatmns, that is . = H_y; and F, = Hy,;. Since ¥ . and
€ [Lrps), Hy © [Jl/“], since on F ;2.0 ,~/' = 97 = 1, it follows
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that on L2 .0
(3.3) H.H.=H_H, = —1I.

Also, using Theorem 2.1 twice, once with » = —3% and once with v = §, it
follows that if fand ¢ € £ 100

(3.4) f )m (H, ) (DeO)dt = — f( ,mf(t)(H_g)(t)dt.

Taking ¢ to be the characteristic function of (0, x), where x > 0, by
clementary computations we obtain, for almost all x > 0

(3.5)  (H N (x) = - s, f(log |1 i dt;
and similarly

920 Yy ) == _L(_lf(o ¥ t—x
(36) D) = — oo | ) log |77 |d

Comparing (3.5) and (:3.6) with [6; Theorem 90], it is evident that H, is
the restriction to (0, o0 ) of the Hilbert transformation of even functions,
while H_ is the restriction to (0, o) of the Hilbert transformation of odd
functions; hence the names, even and odd Hilbert transformations.
The action of the Mellin transformation on Hy on %, is easily
computed from (2.3). This yields that if f € %", ,2.,, then for Re s = },

(3.7)  MH () = — tan = (M),
and
(3.8)  (MH_)(s) = cot = (Mf)(s).

It is known that /7, and /T can be extended to %, for 1 < p < w
and a range of w values depending on the operator in question; sec
[3: Corollary 8.1.2]. The properties of the operators on these spaces are
given by the following theorem.

TueoreM 3.1, Suppose 1 < p < . Then:

(@) Hy € [£u,) for =1 <u<1;if ~1<u<0or0<u<l, H,
maps L ., one-to-one onto itself; if —1 < p < 1, (3.5) holds; if f €¢ L, ,,
1<p 2 —1<pu<1, (3.7) holds with Re s = u.

(b)y H. € [Lu)for0 < p<2;if0<p<lorl<pu<?2 H_maps
Ly one-to-one onto itself; if 0 < u < 2, (3.6) holds; if f € Ly 1 < p
<2,0<u<2 (3.8) holds with Re s = u.

(DNIUffeEL Yyt e Ly 1 <p<o, =1 <u<1,(3.4) holds; on
g withl < p < 0,0 < u <1, 33)holds. OnY ,,, withl < p < o,
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(39) I]+ = 1111H~A4_1

or equivalently, on L, , with1 < p < 00,0 < p < 2
(310) H_ = 11’{_1H+Jl'11.

Proof. The functionm (s) = —tan ws/2isin the class & of |4; Definition
3.1] with a(m) = —1, 8(m) = 1. For (i) m is holomorphic in —1 < Re
s<1; (i) if =1 <oy =092<1, mis bounded in the strip ¢, £ Re
s = 09, as an elementary argument shows; and (iii) if —1 < ¢ < 1,

[m' (o + i) = 5 | sec* S (o 4+ it)| = O(t[™) as |t > .
Hence by [4; Theorem 1], and since (3.7) holds on £ 1,00, /1, = |2 4],
—~l<p<landiff€ Ly, 1<p <2 —1<pu<1 (3.7) holds with
Re s = u. 1/m(s) = —cot ws/2 = —tan w(l — s5)/2 = m(1 — s), and
hence 1/m ¢ .o witha(1/m) = 0, 8(1/m) = 2, and thus by [4; Theorem
1], H, maps ¢, , one-to-one onto itself if 0 < u < 1. But m(s — 2) =
m(s), and thus 1/m(s) = m(—1 — s), and hence also 1/m € o7 with
a(l/m) = —2,3(1/m) = 0, and thus, again by [4; Theorem 1], H, maps
&, pone-to-one onto itself if —1 < p < 0. (3.5) follows from (3.4) taking
as ¢ the characteristic function of (0, x), and thus once (3.4) is proved,
(a) is proved.

The proof of (b) is exactly similar. That (3.4) holds follows from the
fact that it holds for f and ¢ € %y,2.5, and that both sides of (3.4) repre-
sent bounded bilinear functionals on %, , X < 1_, .. (3.3) holds since it
holds on.% ;2.2 and both sides represent bounded operators on %', ,. (3.9)
and (3.10) follow on.%, » on taking Mellin transforms, and then on theis
respective &, , since both sides represent hounded operators on those
spaces.

4. The boundedness and range of %/,. We shall determine the
boundedness properties of %/, and find its range by showing that a
relation exists between %/, and H,. We shall also find an integral rep-
resentation for #',. We first need the following lemma.

LEMMA 4.1. If —1 < » < 3/2,

(41) (H—A{v—l/ﬂ'y,:r)(t) = _xv-Fltu_l(}fH—l(X[)
+ T+ 1)2/(xt))t/7), a.c.

Proof. Since v < 3/2, v — 5 < 1, and since v > —1, — (4 1) <
v + 3/2. Hence the intervals (— (v + %), 1) and (v — %, » -+ 3 2) inter
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sect. Let w be any point of their intersection. Since — (v +
rv, o 2., and thus

3) <u<l,
A‘[v—l/‘lrv,‘r € fz{ pu—r+1/2.p
Since v — i< u<v+3/2 0<u—v+3i<2
exists. Also, for p = 2, from (3.8), (1.10)
6.1(2)], wi

) and H_J‘[y,l/«ﬂ’,,J
(2.3), and [2; 6.2(18) and

2)], with Re s

p=v+3=wm

(MH_M,_1,0r,,)(5) = cot = (MM,—1,07,.,) (5)

= cot = Mr,,) (s + v —

o

) Ot - (.DEquv 'z)(V + v — ’b

=m,(s +v — %) cot -7%1 WMq,,.)B/2 —v —5)

V(s + v — 1) cot _7%-1 / 2—=3)

= 27 /2)7 (06 + 59/ (L= 39T = 1)) cot 5

2v—2~\:2(x/2)~5 .

cot = (I'(v + 45) /(T2 —
Hence, from (1.9),

25))) -

(H_M,_1por,,)(t)

. 1 Bi+iR f —s F
= 2"7%" lim T_f x Tk + 25) >
R ~ ™ )

™
d .
u—iR P(‘) -3 ) "
where the limit is in the topology of %

But, closing the contour to the
left, a long but straightforward residue calculus calculation yields that
pointwise a.c.

BI+IR S
.)y-:’xz . 1 f ( ) F(V l )
R0 2w u1—1iR 2

r@— % ) t*-ds

(Ve (ot) + T+ 1) (2/xt) ™/ 7)
since 0 < yu; < 2, and this must equal (H_M,_1,57, ) (t)
THEOREM 4.1. If [v| < 1, then on Co, %, = H,M, 1 pH  M_(,_1 2
Proof. Suppose f € C.

Then M__10 f € Co €%, and hence
since —1 < v <1, by Theorem 3.1, HiM_(, 1) f € gp,g and thus
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Moy H M 19y f € Lyiyz2. Hence by Theorem 2.2, for almost all x > ()

(H Moo pHye M1y f) (x)

= D Ed; XL j‘o (xt)l’/2_/,4(1(xt)ty—l‘/z(HjLJI_(yq/z)f)(/)d[ /

= (—f— f (Moryory ) (&) (H My oy ) (£l
XJ g

= —y U (-;i—cf (H_M,—yjor,,) O M2 1()dd
)

0

from (3.4), provided M_,_1,0f € & yoand M,_ipr, . < Z 1, for some
p, —1 < p < 1. Butsince f ¢ Cy, M_(,_ip0,f € L, for any u; also, we
saw in the proof of Lemma 4.1 that there was a u;, with 0 < p; < 2, such
that M,_ypr, . © &L, o Letting p = 1 — p,

M_ormf € Lyoy Musypory o & 2y, and —1 < p < 1.

Hence by (4.1)

(H, M1 pH M1y f) (x) = x~ @2 jl;x"“ f Y (et
v 0

+ P+ 1)/ xt) ™ m)f()de.
Now from [1; 7.2.8(52) et seq.],

d , y

57 V@) =2"7,0),
whence

—d—x"“Y W) = MY (xt)

dx S P

and the differentiation may be taken under the integral sign since f « (.
Hence

(HM1pH M (1 f)(x) = j‘“ (x)'*Y, (xct) f(2)dt

= (% ,f)(x) a.c.,

and thus on C,,
@v = H,,ﬂ[y_u-zH_;.AI_(,,_l/g).

THEOREM 4.2. Suppose 1 < p < 0, y(p) = p < 3/2 — |p|. Then ¥,
can be extended to L, , us an element of | Ly py L 1-u.,) for any ¢ = p such
that ¢ = 1/u, and except when p = 3 — v, %, is one-lo-one and % (L . ,)
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= H,(Z,,). Further, on %, ,
(42) Y@y = Hyﬂ/[y41/2H+l"[_(y-1/z), an(l
(43) @, = "ﬂi[_(y_l/z)H-]‘f[y_l/gHy.

Also, if f€ L, 1 <p 22, v(p) £ uw<3/2— ||, then with Re
s=1—upu

4.4) M ,f)(s) = —m,(s) cotg s+ 1 =2)MHU = 5).

Proof. Since v (p) = 3, || < 1, and hence by Theorem 4.1, on Cy (4.2)
holds. But if 1 < p < o0, v(p) £ u < v + 3/2, the transformation on
the right of (4.2) is in (Y, L 1_4,] for any ¢ = p such that ¢ = 1/p.
For, M_(,_1,2 maps.-Z,, boundedly onto % .., 1,2,; from Theorem 3.1,
Hy maps £ yyv1yo, into itself if —1 < p+» — 3 < 1; that is if
—(v+3) < wp<3/2— v, and this is so since for |v] < 1,

—(+ ) <EEyp) S oand p<3/2— P £3/2 -,
M,_y;» maps & yv_1,2, boundedly onto 4, ,; and since
v(p) S w<3/2— v £3/2 4,

H,¢[%Ly,, Ly, forany ¢ 2 p such that ¢ = 1/p.

Thus we can extend %, to ¥, , by defining it by (4.2) and then
Y, c Ly L 1u ) forallg = psuch that ¢’ = 1/u. Also, since My,
are isometric isomorphisms, and H, maps - ., 1,2, One-to-one onto
itself except when u = % — v, and since from Corollary 1 to Theorem 2.3,

H, is one-to-one, then except when u =1 — », %, is one-to-one and

(/yV(g#,p) = HV<°gn,p)- )
From (2.3), (1.10) and (3.7),if f € &, ,wherel < p £ 2,y(p) £ u <
3/2 — |y, then with Res = 1 — 4
(MY f) (s) = (MH,Mor2H M1 f) (5)
= m,,(S) (9.RA11,,41/211+A1_(V._1/;z)f) (1 - ‘\‘)
= 7’11,,(5)(9)?H+11[_(u71/2}f) (v + % - 5)

= —m,(s) tang b4+ 3 =) (MM_i /) + 5 —5)

= —m,(s) cotg s+ L= (MHA —5),

and (4.4) holds.

(4.2) holds by definition of %/,. For (4.3), we first note that the
transformation on its right is in [, ,, % 1_,.,] for the same parameter
ranges as for %,. For H, maps -¥,, boundedly into ¥_, , since
y(p) S u<3/2— 1|y £3/2+v; M,_1,, maps £, , boundedly onto
L pr—win.o; H- maps %35 1, boundedly into itself if 0 < 3/2 —
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(w+vr) <2 or —2 —r<p< 3/2 — », which we have seen is true;
and ]M-_(,,_l/g) maps 5/3/2_(“4_,,)4 onto gl_“yq. AlSO, if f € ,gl/z,z, from
(1.10), (1.3), (3.8) and (4.4)

- (?1)2‘1[-(1/—1/2)]{_J[V—I/ZHVJC) S) = — (ZD?H_A[,,_I/zH,,f) (S + % — V)

I

—cot S (s + 3 — ») (MMl f) (5 + 3 — )

—cotg (s + L — »)(MH,[)(s)

= —m.(s) cot 7 (s + 4 =) MN (L —5) = MD.f)(s),
and thus (4.4) holds on ¥, » », and hence on.¥, , since both sides of (4.4)
are in [y L 1w

As a corollary of this result we obtain some information about the
range of H,.

COROLLARY 1. Ifl <p<oo,y(p) £ u < 3/2 = |v], then, except when
w=13%—v H(ZL,,) is invariant under the operator M_c,_y 5 H_M,_, ».

Proof.
1111(:3/5'#.11) = {/'Z/V(ifyu.p> = (AU-—U—I/2)H—-41IV-1/21{V)(gu,zz)
= (41[._(.,_1/2)[‘[_41];'-1/2)(Hy(eg )A_Il))'

using (4.3).

Four comments seem to be in order about the results of Theorem 4.2
and Corollary 1. Firstly, the boundedness results seem to be maximal
with respect to the spaces £, ,, except in the case » = —3, when they
are not maximal. For it is easy to see that for %, to be bounded on %, ,,
m,(s) cot (s + % — »)/2 must be bounded on the line Re s = 1 — g,
and if » % —3, thisrequires 3 < u < 3/2 — |y, and easy examples show,
using the integral representation of %, to be derived below, that we must
have u = v(p). If v = —3,since Y_1,0(x) = J1p(x), % _1 o = Hypp =% |,
and &, is bounded for v(p) £ u < 2. Secondly, the exceptional value
of u for which

@v(gu.p) = HV(gu,p)

and for which the result of Corollary 1 fails, namely p = $ — », is only
possible if —3 < » < 0. For the condition y(p) £ 3 — v < 3/2 — |v] is
equivalentto —3 < » = § — y(p) and v (p) = %. Further,ifvr = 0,p = 2
since y(p) = % only if p = 2, and thus

@/0(?%711,:0) = Ho(gll.l))v p #= 2.
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Thirdly, since on %" y,5.0, H,* = I,
HV(£/1/2’2) = g/1/2‘2,

and thus % , (& 100) = Lo ] < 1.
Finally H,(-% ,,) has been characterized in [5], in terms of fractional

integrals independent of » and of .-# , acting on ., ,, and thus, except

when p =1 — », % (¥, ,) has the same characterization.

In order to obtain an integral representation for %,, we need an
analogue for %/, of Theorem 2.1.

THEOREM 4.3. If f € Z 'y, ¢ € Ly where 1 < p <0, 1< qg< w0,
P+ ¢t = 1, and max (y(p), v(q)) £ u < 3/2 — |v|, then

wn [T @ e = [ 0@ o ws.
Proof. This is practically the same as for Theorem 2.1.

THEOREM 4.4. If f € L, where 1 < p < 00, v(p) £ u < 3/2 — v,
then for almost all x > 0,

4.6) (#,))(x) = x_<”+1/2)(%x”+1/2f0m (et) (Ve (xt)

+ T+ 1)©2/xt)™/ 7)f(t)dt/t.
Proof. Since ¢, ¢ £, ,, from Theorem 4.3, for x > 0

f v ) (Dt = f : (0.) (O .f) (Ot

[T @050
But from (4.3), (2.8), and (4.1),
H g, ) (1) = — (M_(oyjyH_M,_1 2H,q, ;) ()
— (Mo pyH My a1y ) (1)
= a2 () (Vg (xt) + T + 1) (2/xt)*+1 /) /t,

and thus

f :t”“”(@ J)Odt = " f w ) (H ir(xt)

+ T+ 1)(2/xt)"/x) f()di/t,

and the result follows on differentiating.

5. The boundedness and range of 5#,. We shall determine the
boundedness properties of %, and find its range by showing that a
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relation exists between .#’, and H,,;. We shall also find an integral
representation for.#,. First we need the following lemma.

LeMma 5.1. Let

(B.1) L) = (PG +r+32)TGEE —v —3)))/
(PGG+rv+3TGEG—v+3)), v > =2

Then: (a) there is a transformation S, € [L,,] for 1 < p < 0, u > max

w+L —@+3/2) suchthat if f € Lppy 1 < p <2, 0> max (v + &,

— (v 4+ 3/2)), then for Re s = pu,

(5.2)  (MS.f)(s) = L(s)(MSf)(s).

S, maps £, , one-to-one onto itself if 1 < p <00, u > max (v + 1, —

(v +3/2)), 0 #= — (v +3). Also: (b) thereis a transformation T, € [ £ 4,

forl<p<oo,p<min( —v,v+5/2) such that if f € £, ,, 1 < p £ 2,

w<min G — v, v+ 5/2), then for Res = u

(5.3)  (MT,N)(s) = L1 — s)(MSf)(s).

T, maps £, , one-to-one onto itself if 1 < p < oo, uw<min (& — »,

v+ 5/2), wFEv+ 3/2 Further: (c) if f€ LYy g€ L1u,, where

1<p<oo,u>max (v + 5, — @ + 3/2)), then

60 [ speremi = [0 @owa.
In addition: (d) if v > —2,

t
(5.5) (Turypre) (t) = &0 f v 7'H, (xv)dv, a.e.

0

Proof. Clearly I, is holomorphic in a(l,) < Re s < 8(l,), where a(/,)
=max (v + %, — (v + 3/2)) and B(l,) = . Also, from [1; 1.18(6)], if
o > a(l,), then as |t] — ©

\L(c + 1t)| ~ (|t|ctrt3/mr2||e=r=t/D12)/

(Iti(a+v+l/2)/2|tl(a—v+l/2)/2) =1

uniformly in ¢; £ ¢ < 79, where a(l,) < 01 £ 02 < 8(1,). Hence in the
strip 1 £ Re s £ o3, |1,| is bounded. Further,

Lo +1t) = 3L(c + i) (Y G(o + v + 3/2 + 1))
+v¥G@ —v— % +1t))
—YG@+rv+3+it) — G —v+ 3 +11)),
where ¢ (z) = I'(z)/T(z). But from [1; 1.18(7)] as |z] — o in |arg z| <

T — 6,

Y(z) = logz — (22)7' + O([z]7?).
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Also, if « and ¢ are real as |{| — o0,

log (¢ + 1) = log il + log (1 — 1a/t) = log (it) — 1u/t + O(7?),
while (¢ + 1t)7' = —i/t + O(t7?), so that

Ve + i) = log it — i(a — )/t + O@™2).
Hence as i — %

e + i) = [he + 1) |=i((@ + v+ 1) + (¢ —» = 1)

= o 4 v) = (o =) 2+ 0] = 0(™?)

since |, (e + 1t)] = O(1). Thus [, € .27 ; see [4; Definition 3.1].

Ience by [4; Theorem 1], there is a transformation S, € [ £, ,] for
L <p<w, al,) <p<p() such that if f€Z,, 1<p =2,
a(ly) < p < p(,), then (5.2) holds.

To prove the remainder of (a), we notice that 1//, is holomorphic in
cither of the strips a; < Res < 8; or a2 < Re s < 8, where a; = max
=3 —+1)) B =90, a=minE -3 —@+3%), B=ai, and
calculations almost identical to those performed above for [, show that
1/1, € ./ with either a(1/1,) = a1, 8(1/1,) = B1or a(1/1,) = a3, B(1/1,)
= B.. Hence by [4; Theorem 1], S, maps &, , one-to-one onto itself for
1 < p <o, max{a(,), ay) < p < min(8(/,), 1) or max(a(l,), az) < n
< min(B({/,), B2). Putting the various values of the a’s and §’s into thesc
inequalitics we obtain that .S, maps £, , one-to-one onto itself for
l<p<ow,p>max(v+ 3%, —(w+3/2)),u®—0+3).

(hy follows from (a); for if k,(s) = [,(1 —s), then /, € ./ implics
k.o o/ with atk,) =1 --3(,), B(k,) = 1 — a(l,), etc., and all results
about S, are true for 17, with p replaced by 1 — p.

We first prove (¢) for p = 2. For then, from [6; Theorem 72],

S 1 p+ o
fﬂ (S.f) (W)g(x)dx = r_)—”;f WS, f) (s) (Mg) (I — s5)ds

p— leo

= 5 f j L() Q) (5) (M) (1 — s)ds

Kt don
= E%r; f“_im MAHESLA = (1 —$5)Mg) (1 — s)ds
=T @ - oa= [ i@

But both sides of (5.4) are bounded bilinear functionals on %, , X
Yy, and thus (5.4) is true if €L, ¢ €L uy, 1 < p <0,
p>max(v + 3, — (v + 3/2)).

To prove (5.5), we notice that since v > —2, — (v + 3/2) < 1, and
= (4 32) < v 4 572 Thus we can choose pu, — (v + 3/2) < pu < 1
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so that p < min(} — », v + 5/2) and then 7,;; , € F,, and 7o, , =
H,1¢v41.0, and Torppy, € Ly Hence from (2.3) and (5.3), if Re
S =M,

(YDET,nH,,) (S) = (ZUETvHHJQH-l,z) (5)
= /,,(1 - S)n7v+l(5)(WEqu+l,r) (1 - 5)

2T TGO+ 3/24+ TGG = v = )
v+5/2—5 TG+ 3/2=s)HTEB/2—v —5))

|
g2 i T G+ 5 + 1)) sinéf (3/2 — v —5)
v+ 5/2 —

TG —s+3/2)sing (3 —v—5)

xH A )
Ty +5/2—s
where we have used [1; 1.2(6)]. But then by (1.9)

(Ter-l ,z) (t)

m,(s) tam;7r (s+»+3),

M+ iR
= """ lim L f (tx) " "m,(s) tang- s+v+ Yds/(v+5/2 — ),
R p4

5
Row 2wt u—1i

where the limit is in the topology of L;,2 ... However, closing the contour
to the left, a long but straightforward residue calculus calculation yields
that pointwise a.e.

. HtiR ) i
P lim f (tx)""m, (s) tang- (s4+v+Lds/(v+5/2 —5)

R:n u—iR
¢ 2
3,—~ 5/2
= PO T H, (k) d,
0

and thus this must be (7',7,4; ) (¢) a.e., and (5.5) holds.
THEOREM 5.1. If v > —2, then, on Co, 7, = H,,S,.

Proof. Suppose [ ¢ Cy. Then for all p > max(v + 3, — (v + 3/2)),
S.f €Ly Since v > —2, —(v + 3/2) < v+ 5/2, and thus u exists
such that

L<u<v+5/2 and p> max(v + %, — @ + 3/2)).

Hence H,..,S,f is defined, and by Theorem 2.2 and (5.4), for almost all
x>0

s = L7 s o

v d [
e LT s
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provided 7,41, € £ 1_4», which is so from Lemma 2.1 since § £ ¢ < v +
5/2 and hence — (v 4+ 3/2) <1 — u =% < 1. Thus, for almost all
x > 0, by (5.5),

© ~ t o
(Hy1S,f) (x) = x~ 02 g;x”“ f TP dt f v’ *H (xv)dv
0 0
:x““”’”if t"?f(t)dtf v"7*H, (tv)dv
dx 0 0

= f C ) HL @S0 = () (),

0
the differentiation under the integral sign being allowed since f € Cy, and

the result is proved.

THEOREM 5.2. Suppose 1 < p < oo, v+ 3 <u<v+35/2, u=v(p).
Then S, can be extended to ¥, , as an element of [ L s, L 1_4.4) for any
q = p such that ¢ = 1/, and except when u = — (v + %), 4, is one-to-one
and

1%)II($M,1)) = HH-l(g}hll)'

Further, if f € Lupy 1< p =2, v+3<p<v+5/2, uz=~v(), for
Res=1—~p

(5.6)  (MALf)(s) = m,(s) tan—:’} s+v+HOMMHA — ).

In addition, if v> —1, 1 < p <o, v+ 3<u<v—+3/2 u=v(p),

then

(5.7)  H, = HM_rmyH_M, 41,
and

(5.8) A, = =M, pH M 10 H,.

Proof. Since 3 = v(p) = u < v+ 5/2,v > —2, and thus by Theorem
5.1, on Cy, 5, = H,;1S,. But by Lemma 5.1, S, € [%,,] for u > max
v+ 3% —(@G+3/2)). Since max(v + 3, — (v +3/2)) = —(v + 3/2)
onlyif —2 <y < —l,andfor —2 <v < —1, —(v + 3/2) < % £ v(p)
< u, so that for the values of u under consideration in this theorem,
S, € [Zup), and S, maps £, , one-to-one onto itself except when
p=—@+ ). Also, since 7(17) Su<v+5/2, Hy € ["gu,ln gl-’l‘.(l]
for all ¢ = p such that ¢’ = 1/u. Hence H,41S, € [Lup L 1w for all
such g.

Thus we can extend#, to.%, ,for 1 < p < o0, v +3 < pu<v+ 5/2,
u = v(p), by defining it to be H,,,S,, and then S, € [, ,, £ 1_,.,] for
all ¢ = p such that ¢’ = 1/u. Also, since S, is one-to-one except when
v = — (v + 1), and by Theorem 2.4 H,,, is one-to-one,. %, is one-to-one
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except when u = — (v + ). Since also S,(%,,) = %,, except when
p=—0+3%),H,(Lsy) = H(Zy,) except when p = — (v + }).
From (2.3) and (5.2), if f € g,"p, 1<p=2,v+i<u<v+5/2
u = v(p), then for Res =1 — p,
(MAf)(s) = (MH,1S,f) (s) = mupr ($)L(1 — ) (Mf)A — ).

But we saw in the proof of Lemma 5.1 that

M,y ($)L (1 — s) = m,(s) tan;z7£ s+v+3),

and (5.6) follows.

For (5.7), note that if v > —1, H,M_y1H _Mup10 € (Lo Z 1)
for all ¢ > p such that ¢ = 1/u. For, M,,,,» maps.%,, boundedly onto
L u—v_1)2p; from Theorem 3.1, H_ maps % ,_,_1,2, boundedly into itself
since v+ 3 <u<v+3/2 and thus 0 <pu—» —3<1; M_ip1pn
maps % ,_,_1,2., boundedly onto %, ,; and H, maps.¥, , boundedly into
Ly since v(p) Su<v+3/2 Butif f€ L, 2 Su<v+3/2
then by (2.3), (3.8), and (1.10), if Re s = 1 — g,

MH M _ i1y H-_Moy12f)(s) = my(s) MM _y1H_Myp10f) (1 — 5)
= m,,(s) (ED}H-A[V.{_]/?‘]C) (% — vV — S)

= m(s)cot s (3 — v — YMMrap )G — v — 3)

= m(s) tan g (s + v + HEN A = 5) = QA 6),

so that on %, 2, (5.7) holds. But both sides of (5.7) are in [.£, ,, & 1_,.,]
if 1<p<oo, v+3<u<v+3/2, uz=y(p), and hence since
v(p) = %, (5.7) must hold on such &, ,. (5.8) follows similarly.

As a corollary of this result, we obtain further information about the
range of H,.

COROLLARY 1. If 1 < p <0, v+ 3 < pu<v+3/2 p=~v(p), then
H,(ZL,,) is invariant under the operator M, i H,  M_ (i1

Proof. Since v + 3/2 > ~v(p) =2 3, v > —1. Also p % — (v + %), since
if it were, —(v+3)~v(@p) =% and » £ —1. But then, using
[(5; Theorem 1] and (5.8),

HV<$MJJ) = Hv+l($n,p) = %v(gu,p)
= (Mup1pH M _ 19 H,) (L4 )
= (Mv+1/2H+]W—(V+1/2))(Hv("(/u,p))'

Three comments may be made here. Firstly, the boundedness results
again appear to be maximal with respect to the spaces L, ,, for the same
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reasons as for %,. Secondly, the exceptional value of u for which
H,(Ly,) # Hyp(Lyy), namely p = — (v + 1), can only occur for
—=3/2<vE —1since 3 2 v(p) Eu<<v+3/2; i v=—1, p=2
Tl]irdly,%v(gl/Q"l) = yl/zyg, -2 <v < 0, 14 ;é —1.

In order to develop an integral representation for .#,, we need an
analogue of Theorem 2.1.

THEOREM 5.3. If f € Lo e Lupn 1 <p <o, 1 <yg<oo, 1/p+
1/g=Z 1, v+ 3 <u<v+5/2and p > max(y(p), v(q)), then

| nwemas - [ i 00 was,
Proof. This is practically the same as that for Theorem 2.1.
THEOREM 5.4, If f € Xy, wherel < p <o, v+ 5 <u<v+5 2,
w = y(p), then for almost all x > 0,
(5.10) (A f)(x) = x TP (—f; PR ﬁ w () PH, (et (At )t v > —1
and

vA1/2 d A(v—l/l)f 1/2
. , (xt) " (H,—1(xt)

— @)/ 4+ DO, =2 < v <L

Proof. If v> —1, —(v +3) <3 2 v(p) = pu, and by Lemma 2.
¢ve © &y . Hence from Theorem .').3, x>0

(11 () x) = —

f nyt"*‘”(%f) (t)dt = f fqy,l-o)(ffyf) (t)dt = f :n(.%qy,x) @)f @)t

Now also ¢,., € -Z ., and hence from (5.6), with Res = | —

A g) (5) = mu(s) tan o (s + v + 5 Wig..) (1 — )

v43/2—s
WT‘— n,(s) tdn” (s+v+3).
Hence from (1.9)
(g0 (1)
) 1 1—ut+iR
=" lim = (xt) " "m, (s) tan 5 (s + v+ Dds/ (v + 3/2

R0 Z T l—p—iR

where the limit is in the topology of %, ». But, closing the contour to the
left, by a residue calculus calculation similar to that mentioned in the
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proof of Lemma 5.1(d), pointwise a.e.

) 1 1—u+ iR -
T lim 7——.f (1) "my(s) tan 5 (s +» + $)ds/(v + 3/2 — )
1—pu—1iR &

R 2m

= (xt)" "H, 1 (xt) /1,

and (5.10) follows.
(5.11) follows in a similar manner, using ¢_, ,, since ¢_, , € L, , if
v < 1.

6. Inverses. In this section we shall investigate to what extent %/,
and ., are inverse to each other. We note firstly that in order that
A2, or % A, be defined on ¥, ,, it is necessary that up = 4, p = 2 and
—1 < » <0. For, in order that %, be defined on ¥, ,, we need vy (p) <
p < 3/2 — ||, and thus since y(p) 2 %, |v| <1, and u = L. But #,

maps £, , into £, and thus for #.%, to be defined we need
1=2v@) =1 —wpwandv+3<1—pu<v+ 5/2 Thussince p = % and
l—w=2%, uw=1% v(p) =3 and since then v + % <%, and || < 1,
v < 0. However, if —1 < v < 0, then on¥ 5.9, %, and 5, are inverses,
as the following theorem shows.

THEOREM 6.1. If —1 < » < 0, then on L 1,24
HY, =W H, =1
Proof. Since —1 <» <0, § <3/2+» =3/2— |y|, and hence from
(4.2),
':/yy = Hy.k]l[yAl/zH+A1['<y_l/2).
Also, since —1 <» < 0,v 4+ 3§ <} <»+ 3,2, and hence from (5.8),
<%y = _41[y+1/‘lH+41[.‘(y+1/2)Hy-

Note that M, ;2H ;M _(,_i,2 maps -£ 1,2 onto itself, as shown in the
proof of Theorem 4.1, and hence, since on %12, H,2 = I, using (1.5),
(3.10), and (3.3),

AW, = — Myss pH o My HH My pH o My )
=M pH My Moy o HL M a2y
Moo H M AH MM 1o,
= =My pH H M i1y = Mo pM_iy1p0 = 1,

and similarly, using (4.3) and (5.7), % %, = I.

I

However we can also consider #, in the product.#,% , to be given by
(5.10),and %, in the product %, #, to be given by (4.6), and doing this
we obtain a considerable extension of the results of Theorem 6.1, as the
following two theorems show.
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THEOREM 6.2, If f ¢ £, ,, where 1 < p < 0, y(p) £ u < min(g — v,
v + 3/2), then for almost ull x > 0,

©.1)  flx) = ¢ %x”“ﬂ f :O () HL 41 (st) (2, f) ()d2 1.

Proof. Since v(p) = 3, 3 < min(3 — », v + 3/2), and it follows that

—1 < v <0, so that y(p) £ u < 3/24 v =3/2— |y, and thus from
Theorem 4.2, % ,f exists and isin % ,_, ,. Hence M, 1% of € L 1o
Since —1 < v <0,

—(v+3) <F=y@) sp<minG—rv+3/2) 21,

and hence, from Lemma 2.1, r,, ¢ %, ,, and thus M_q i, -
L\ jriurrp; note also that —1 < & + u + » < 1, since for —1 < » < 0,

—(v+372) < —S<u<t—y,
and that
1= G4+n+v)=5%—pn—nw

Hence from Theorem 3.1 and (3.4),

(6.2) f:” (H M1yt (O (Mo 0% f) (Dt

= —fo (M_qryoyro,e) () (H-M o1 p % f) (£)dl.

But from [2; 15.3(15)], remembering that H, is the restriction to (0, « )
of the Hilbert transformation of even functions,

(H+JIA(,,+1/2)YV'_L-) (f) = “‘;’CH'V—“(H—‘)HV‘F](X?t).
Also, from (4.3),
W}’ = _J[—(V—l/'Z)HfJ[vfl/‘2[va

so that, using (1.5), (3.9), and (3.3),

Ho Moy p of = —H_Moor o M—iyr py H-M o o H o f
—H MH_M_ M, H,f
= —H_H MoipHof = Mop1pHLS,

i

and substituting in (6.2), using (2.7), it follows that

(6.3) KT f ’ (xt)"H, 1 (o) (Z, f) ()dt )t

=yt f 0°° )T ppa () (HL ) (O /1,
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and the result follows from Theorem 2.3, since, as noted, y(p) < u < »
4+ 3/2,and p < 1.

THEOREM 6.3. If f € F,,, wherel < p < o0, v + % < p<min(l,r +
3/2), u = v(p), then for ulmost all x > 0,

(64:) f(x) — x—(H—I/‘Z) (_;i; xv«!—l/?f' (xt)l/‘l(},w—l(xl)

(

+ D+ 1)2/x) /7)) (. f) (t)dt /1.

Proof. Note that since v+ 4 < 1 and v +3/2 2 y(p) 2 3, —1 <
< i By Theorem 5.2, #,f¢c % ,, and hence M__ 1.7 ,f
€ L1 94vnyp Clearly —(v +13) <1 £ y(p) £u <1, and hence by
Lemma 2.1 7,, ¢ %,,, and hence M,_i7, . € L1 24uv,. Further,
—1<i+v—u<l,sincer — 3 <v-+3 <p<vr+ 3/2 Hence from
Theorem 3.1 and (3.4)

(6.5) f}m (H-M,—1prs,) (1) (Moo 70, f) (£)dt

[t

= _f“m (M o—1jory,2) () (Hy M o1y 70, f) (£)dt.

(H-M,_ypor, ) (t) is given in Lemma 4.1. Also, since v > —1 and
v+ 5 < uw<v+3/2 from (5.8),

%&vf = ‘lwv+l/‘2H+J[—(r+l/2)vay
so that using (1.5), (3.8), and (3.3),

HyM_ o Hof = —H M )Mo pH M Hof
= —MM_H MHM_ ol f=—MHHM ( nH,f
= J[_(y_.l/Q)Hny

and substituting in (6.3), using (2.7), and multiplying both sides by —1,
we obtain

6.6) x"tH? f( N ) P (Vosr(xt) + T + 1) (2/xt) /7)) (V)dt )t

=yt f . (et)** T, 41 (xt) (H, f) (£)dL /1,
and the result now follows from Theorem 2.3.

Inverses for %/, and S, for other ranges of the parameters involved
can also be determined. For %/,, it follows from (4.2) that

Y, = =M, pH M_1pH ™,

and H,~ ' can be determined using the remarks at the end of Section 2.
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For J,, it follows that since ., = H,.,S,, A, = S, 'H,.,v"\ H, 1!
can be determined using the remarks at the end of Section 2, while it is
easy to see that

Syl = (U2 1201 2) T 012, 1 2) g2
where J, 5.4 is given in [3; (1.3)], and (J,5.,) 7" can be determined in
much the same way as (I, )™ in Section 2.
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