PYTHAGOREAN RATIOS IN ARITHMETIC PROGRESSION,
PART II. FOUR PYTHAGOREAN RATIOS
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(Received 23 June, 1992)

1. Introduction. As in [3] let {a, b} designate the Pythagorean ratio (a*> — b%)/2ab
between the sides of a rational right angled triangle. The principal result of [3] is that
{a, b} is the arithmetic mean of two Pythagorean ratios, and hence is the middle term of
a three term arithmetic progression, if and only if a/b is the geometric mean of two
Pythagorean ratios. Here in Part 1I we study sets of four Pythagorean ratios in arithmetic
progression. We show that sets of four in consecutive places in an arithmetic progression
are closely related to sets of four in the first, second, third and fifth places in a
progression; any one of the former sets determines two of the latter sets, and either one
of the latter sets determines the other and the former. We construct an infinite sequence
of sets of four ratios in consecutive places of arithmetic progressions, the last term of each
set being the first term of the next set. These sets are related to solutions of the
Diophantine equations r*=5p’q® + 4(p*—2q*). Computer searches, in addition to
exhibiting enough members of this sequence to enable us to identify it, also exhibited two
sets which do not belong to this sequence.

Asin [3], {a, b} will sometimes be written as {Z} in places were a and b are replaced

by more elaborate expressions.

2. An example. If we are to have four Pythagorean ratios in arithmetic progres-
sion, it is evident that, when these are expressed with a common denominator, this will be
a highly composite number. So we can choose a suitably composite number and list the
Pythagorean ratios which can share it as denominator. In this way we find, for the
denominator 420, that the possible numerators include the arithmetic progression 175,
513, 851, 1189, corresponding to the Pythagorean ratios {3,2}, {14, 5}, {30, 7}, {35, 6},
which is the simplest example. (This is similar to the search showing that the denominator
120 gives the simplest example of two Pythagorean ratios, {15, 4} and {10, 3}, whose sum
{20, 3} and difference {5, 4} are also Pythagorean ratios [2].) Computer searches finding
other examples are described in later Sections.

This arithmetic progression of four Pythagorean ratios includes two progressions of
three ratios, each of which, as found in [3], is one of a set of four such triads. These may
be set out as arrays thus, where three ratios in any row or column are in arithmetic
progression.

(3,2} {14,5} {30,7) (14,5} {30,7} {35,6)
(8,3} (3,8) {40, 7) {7, 40)
(4,1} {5,14) {4,35) (35,4} (7,30} {5,84)

In addition to the shared members in the top rows, forming the arithmetic progression of
four terms, there is also a shared member {35, 4}, appearing with opposite signs in the
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two arrays. As a consequence of this, we find two arithmetic progressions of five terms of
which four are Pythagorean ratios, namely {35, 4}, {40, 7}, {14, 5}, =, {1, 4} and {4, 35},
{3, 8}, {30,7}, *, {84,5}. We shall see in the next Section that the corresponding two
progressions are determined by any arithmetic progression of four Pythagorean ratios in
consecutive places.

3. Arithmetic progressions of five terms including four Pythagorean ratios. Any
arithmetic progression -of four Pythagorean ratios {a;, b;} in consecutive places includes
two triads, from which we can form arrays of four triads of Pythagorean ratios (Part I,
Section 8), namely:

{a), b} {as, by} {as, b3}
{a1a3+b1b3} {a,a3+b,b3}
bias;—a,b; ayb;—b,a;s
{a,a2+blb2} (ba a) {a2a3+b2b3}
b]az‘_albz >z a2b3— b2a3
{as, by} {as, bs} {as, bs}
{a2a4 + b2b4} {a2a4 + b2b4}
bza4 - a2b4 a2b4 - b2a4
a,as + b,b, asas+ bib,

{b31 03} }
bza3 - a2b3 a3b4 - b3a4

We see that the same element {a,a; + b, b3, a,b; — b,as} appears, with opposite signs, in
a lower corner of each of these arrays. Thus the column containing this element in each
array can be used to interpolate an arithmetic mean between two terms of the triad on the
bottom row of the other array. We therefore have the following two arithmetic
progressions of five terms of which the first, second, third and fifth are Pythagorean
ratios:

aza3+b2b3 ala3+b|b3 a3a4+b3b4
azb3_bza3 a1b3"b|a3 b3a4_a3b4
a»as + b2b3 a,a, + b2b4 aa,+ blbz
(an, ) { |
b2a3 - a2b3 bza4 - a2b4 a‘bz + blaz

Conversely, we can see similarly that this whole configuration is determined by the
elements {ay, B}, {as, B2}, {as, B3}, *, {as, Bs} in a progression of five terms. This
progression also includes two triads, which also determine arrays of four triads with a
further common member:

{ay, B1} {2, B2} {as, B3}

(ot ) (o o)
Pt BERTAPS T bt
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{a1, B1} {as, B3} {as, Bs}
(s an) e e
a’|:3 + ;13; 230’:5 + .33;5
{ﬁla’s_ “1/33} (B, @a) {0’3/35—/330’5}

We sece that these arrays are equivalent to the two determined by the four Pythagorean
ratios in consecutive places in an arithmetic progression, and we can similarly pick out
from them the progression

{a’za’:s'*‘ﬁzﬁs} {0'10’3+ﬁ1ﬂ3}
af3— Bra; a3 Bia;
of consecutive terms, and the other progression
a as+ B1Bs @ az+ B3 a0, + B4,
{al’ ﬂl} *
Bias— aBs Bias— a,Bs Bia, ~ o\,

of five terms including four Pythagorean ratios.

{as, B3) {‘1’3‘1’5 + ﬁsﬁs}

Bias — a5

4. Searches for solutions. The initial search by hand examined as denominators
numbers, such as 120 and 840, which are products of a power of 2 by other small primes.
This exhibited the example of Section 2.

In view of the relationship (Part I) between arithmetic progressions of three
Pythagorean ratios and pairs of Pythagorean ratios whose products and quotients are
squares, we took examples of the latter from an extensive tabulation [1] of solutions of

ol + B7
2a,8; .
Examples for which both o?a?,, + B?B%,, and a?B?., + Bla?,, are squares had been
identified in this tabulation. From these, we calculated the corresponding arrays of triads
of Pythagorean ratios in arithmetic progression, and checked their entries for overlap.
This search produced two examples to add to that of Section 2, so we had the examples
3,2} {14,5} {30,7} {35,6},
{35, 6} {48, 11} {165, 56} {176, 105},
{728, 51} {85, 11} {440, 273} {2341, 420}.
The repetition of {35, 6} was noted, but at that stage we could not regard it as being more
than coincidence.
A further search used a method based on the analysis of the next Section, and this
produced two further examples:
{1395, 476} {4104, 2635} {459, 665} {1736, 4845},
{176, 105} {30, 259} {112,2035} {111, 3080}.
The repetition of {176, 105} was noted, and this led us to the discovery of an infinite

sequence of tetrads of Pythagorean ratios in arithmetic progression, the last member of
each tetrad being the first member of the next tetrad.

{aior, B H i1, Biar} =
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5. An equivalent system of Diophantine equations. If we express four Pythagorean
ratios in arithmetic progression with a common denominator, their numerators are in
arithmetic progression, and we have a solution of a system of Diophantine equations
which may be written as

a®*+ (b —3m’c)’ =m*(f - g)’,
a’*+ (b — m*c)* = m*(d - e)?,
a*+ (b + m*c)* =m?*(d + e)?,

a’+ (b +3m*c)?=m*(f +g)*

It is easily seen that if the right hand squares have a common factor m?, this has to appear
on the left hand sides in the position shown. We do not exclude m = 1, but we have found
no example of it.

This system is equivalent to

a’>+ b% + c?m* = m*(d? + &%),
a’+b*+9c’m* = m*(f* + g%,
bc=de, 3bc =fg.
The first two of these may be replaced by
8c*m*=f2+g*—d*—e?,
8(a* + b%) = m*(9(d* + %) — (f* + g%)).
To satisfy the other two, we set
d=ad, e=By, f=ay, g=389,

from which we obtain

bc = afyd,

8c’m’ = a(y* - 6%) — F(y* - 987),
and
(8ac)* = 64(a* + b*)c* — 64b*c?

=8c2m*(9(d” + %) — (f* + g%)) — 64b*c?,
which reduces to
(8ac)’ = — (a® = B*)(a* = 9B*)(¥* — 8))(y* — 96%)

on substituting for d, e, f, g, bc and 8c*m>.
To search for solutions of this system, we seek integers such that

—(a? = B*)(a* - 9°)(v* - 8°)(v* - 96
2(a’(y* - 8%) - B(y* - 96%)

are both squares. We can assume (a, ) =(y, 6) =1. Our computer search for square
values of

and

—(? = B7) (o - 9B*)(v* - 8%)(v* - 96?)
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is based on listing, for a suitable range of «, f8, the values of (a* — B%)(a* — 9B%) = kI?,
where k is square free. Two tables of |k| are kept, according to the sign of k, and the
corresponding values of «, B are listed with k. Whenever entries occur for the same value
of k in both tables, we check whether a?(y* — 6%) — B*(y* — 98 is twice a square. We
took a, 8 <2000 and retained only |k| < 10°.

We found the following five solutions:

a B y o

1 2 31 11
19 3 83 79
59 71 79 53
75 37 11 389

35 13 1151 1217,

corresponding to the five tetrads of Pythagorean ratios in arithmetic progression listed in
Section 4.

6. An infinite family of solutions. It has been noted that three of the five tetrads of
Pythagorean ratios found are linked by having shared end members. They have other
features distinguishing them from the other two, such as that @+ b?, which is always
divisible by m?, is divisible by m? in these three solutions but not in the other two. We
therefore looked for a family relationship between them. The rest of this paper is devoted
to the study of this family.

Each of the solutions listed in Section 5 appeared twice in the search, since if o, 8, v,
6 is a solution, then so is 38, a, 38, v, except for the last solution, whose second
appearance was not within our range of search. It was due to reappear as

39, 35=175, 3651 ="7*+2-5, 1151=7"-2-5%
The first two solutions can be expressed similarly as
12, 2, 33=22%+1, 31=22%-1,

19, 3, 83=3"+2, 79=3%-2.
We therefore set out to generalize these by setting y = p* +2¢*, 6 = p* — 2¢*, B=pq. We
now have
y2— 8% =8piq*,
y?=96%=—8(p* - q*)(p* - 4q"),
giving

be = af(p* +24")(p* - 2¢%),
’m?® = a’p*q* + B (p* - q*)(p* — 44%),
a’c®=(a® - )&’ = 9B%p*q*(p* — ¢*)(p* - 49").
With § = pq and setting ¢ = 8, we obtain
b=a(p*+2¢*)(p*—29%,
m? = a’p*q’ + (p* — ¢*)(p* — 49",
a*= (o’ - p’q*)(&® -9’ )P°q*(p* — 4°)(p* — 44°).
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To satisfy this last equation, we put
o’ =5p°q* +4e(p* —2q%), with g=+1,
giving
o’ — p’q® =4(ep® - ¢°)(p* + 2eq%),
o —9p’q* = 4(ep® + ¢*)(p* — 2¢4°).

We thus have

a=4pq(p* - q*)(p* - 49"
and

m®=p®+4q" + 4ep’q*(p* - 2¢%)

=(2p’q* + e(p* —2¢%))%,

)
m=2p*q* + e(p* — 2q%).
Thus from any solution of
r*=5p*q* + 4e(p* — 2¢")

we obtain a solution of

a’+ (b £ cm*?=m?(d te),

a’+ (b £3cm?? =m*(f £ g)?,

with

a=4pq(p* - q*)(p*~4q%),

b=r(p®+24")(p* - 2¢%,

c=pq,
m=2p*q*+ e(p* - 2¢*),
d=r(p*-2q",

e=pq(p*+2q°),
f=r(p*+29%),
g=3pq(p*-2¢%.

7. The Diophantine equations r°>=5p%q*+4(p*—2¢*). Our attention is thus
drawn to the study of integer solutions of the two equations

r*=5p’q> +4(p* - 24",
r*=5p’q* — 4(p* - 2¢%).

For the purpose of this study we set x =p/q, y =r/q*, and examine the rational points on
the plane quartic curves

r,: y?=4x*+5x* -8,
I y?=—4x"*+5x"7+8.
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We can pass from I, to T; by setting x = ix’, y = iy’. We may thus consider the curve
I: Y?=5X*+5Xx%*-8

over Q(i). T, is the real part of I'; I; is associated with the imaginary part of I' (those
points whose coordinates are pure imaginary), denoted iT,.

The study of this curve is standard. From two rational points (over Q(i)) we deduce a
third from the intersection with I of the parabola Y =2X?*+ AX + u passing through the
first two points. We thus obtain

_YIXZ_X|Y2_2(X1X2+2)

X hd - )
T2AXI-X) VX, t+ XY,
X, Y, - X,Y,

We have to change the sign of X to obtain the addition formula for the Abelian group of
rational points of I" with the point at infinity as the zero element.

By identifying the two points on the curve and using the tangent parabola, we obtain
the duplication formula

2+ Xy

2— x¢
Xy '

X3

X, Y,=2X3+
We can assing a “‘parity” to points on I', so that points on I', are “‘even” and points on (T,
are “‘odd”’; the sum of two odd points or two even points is even, while the sum of an odd
point and an even point is odd.

The point (i, 3i) of il", is not a torsion point, and it generates an infinite sequence of
points which are alternatively on iI', and I',. Thus we obtain a sequence of points (x,,, y,)
alternately on I, and I,. It seemed likely, and Professor R. K. Guy (private
communication) has kindly proved for us, that the curves I', and I; are of rank 1, so this
generates all the rational points on these curves. (We add parenthetically that the rank of
I' over Q(i) is at least 2, since the point (2i, 6) is an independent non-torsion point, but it
does not generate points on I', or I';.)

8. Recurrence relations. The foregoing analysis has shown the existence of an
infinite sequence of solutions of the equations r* = 5p°q* + 4(p* — 2¢*). Putting ¢, = (—1)"
and n,=2—¢, (s0 ny,, =1, ny,,+; =3), we can obtain the following recurrence relations
for solutions of

ra="5pngn+4e.(pn—2q7)

by adding or subtracting the points (i, 3i) and (—1, 1), where (—1, 1) = (i, 3i) + (i, 3i):

MuPuet P+t = P — 26,45, Niln-1Gn+1 =G0+ €, P2,
Pu-2Pus2 =P+ 28,45, Gun-2Gn+2= 0~ €D

200 Pn-1Gnet =10+ 300qns 200Gy Prst = Tn = 3Puln,
2Pp—2qn+2=PrGn * I, 2G4-2Pn+2= PnGn — Tu»
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with initial values q,=0, py=p,=p>=4g,=¢g>=1. (The recurrence relations involving
only subscripts n, n +2 allow us to generate solutions of either one of the equations
r*=5p’q* £ 4(p* — 2q*) separately, should these be needed.) The first few solutions are
listed below.

n Pn qn Iy

0 1 0 2
1 1 1 3
2 1 1 1
3 -1 2 12
4 3 1 -19
5 -7 5 -39
6 11 -8 ~254
7 1 37 —3873
8 83 -57 14741
9 391 274 —94812

10 1217 455 3156697

It will be seen that the recurrence relations attach signs to the numbers involved.
Although these are not relevant to the equations r2 =5p2q2 + 4(pi — 2q.), in which only
even powers appear, they are necessary for some of the formulae in the next Section.

9. Numerical solutions in the infinite family. We can now retrace our steps and
exhibit members of the infinite family of tetrads of Pythagorean ratios in arithmetic
progression. We have

an = 4p,qn(Pn — a2) (P — 443)/ 3,
b, =r.(pn+2q3)(pn— 29713,

Cu = P>
m, = (2piqa+ €.(pn —2q))/ 1.,
dy=1.(P%—2q0) N,
en=Pudu(Pn+2q2) N,
fi=r(pa+297) M,

80 =3puqu(P—242)/ M,

with g, =(—1)" and 7, =2 — ¢,, giving solutions of the system

a’+ (b £ cm*?=m*d te)?,
a®+ (b £ 3ecm*?* =m?(f £ g)>

Here the common factor 7,,, =3 when # is odd, has been taken out. When n is a multiple
of 3, g, and r, are both even, and we can remove a common factor 2 from a, b, ¢, d, e, f,
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g. The first few non-trivial solutions are:
n= 3 4 5 6
a=420 73920 2735040 3234868560
b =682 124583 18209971 18700752159

c= 1 3 35 44
m= 13 97 433 21937
d= 62 1501 42595 819023
e= 11 249 14963 1004652
f= 66 1577 47643 2899791
g= 31 711 40285 851268

The Pythagorean ratios in arithmetic progression are the ratios (b + kcm?)/a with
k=-3, —1, 1, 3. Their generators may be expressed as

{pn_zqn_zpmqm} {pn_zqnqpnqm}
pn——lqn-lpnqn ’ qn—2pn—lqnpn+2 ’

{qn—anqn+1pn+2} { PndnPn+19n+1 }
Pn-29nPn+19n+2 ’ Prn-19n-1Pn+29n+2 ’

It will be seen that the last pair of generators has the same form as the first pair, with the
subscripts advanced by 1 and the generators interchanged, corresponding to a change of
sign of the ratio. Taking this sign into account, we see that the last term of each
progression can be used as the first term of the next progression, as we had found
empirically. The first few tetrads are:

(3,2} {14, 5) {30, 7} (35, 6},

{35, 6} {48, 11} {165, 56} {176, 105},
{176, 105} {30, 259} {112, 2035} {111, 3080},
{111, 3080} {4648, 9405) (33781, 1368} {165585, 3256},

(165585, 3256) (795865, 15344} {5890178, 111435}  {9427792, 175047}.

Among observations that may be made, we remark that the generators of the shared
ratios {35, 6}, {176, 105}, {111, 3080}, {165585, 3256}, . . . have the property

352+ 6°=13-97,
176% + 105% = 97-433,
1112 + 3080% = 433-21937,
1655852 + 3256° = 21937-1250353,

.
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where the factors on the right are the values of m in the two progressions sharing this
ratio (and the initial ratio {3, 2} has 3° + 2% = 13, the value of m for the first progression).
This can be proved generally valid for this family of progressions, and it was one of the
empirical observations which led us to its discovery.

Each progression of four ratios contains two progressions of three ratios, each of
which is one of an array of four such triads. These have the following generators:

{pn—an—an+lqn+l} {pn—an—lprlqn+2} {qn—prtqn+lprl+2}

pn—lqn—lpnqn qn—2pn—1qnpn+2 pn—anpn+an+2

{ Pr—2PaPnsi } {2q,._zqiq,.+.}
2q, -2 qn+1 Pr-2PnPn+1

{q,,-zqn-lp?,} {q,._zp,._lqnpm} { paq. }
pn—2pn—lq;21 pn—an—lpnqn+2 pn—an—an+2qn+2

{pn—zq:t—lpnqn+2} {qn—anqn+1pn+2} { pnqnpn+lqn+l }
qn—2pn-—lqnpn+2 pn—anpn+lqn+2 pn—]qn—lpn+2qn+2

{2qn—lq'2an+2} {pn—lprzrpn+2}

Pu-1PaPn+2 20,1970 +2

{pn—an—an+2qn+2} {pn—2qnpn+lqn+2} {piqn+lqn+2}
piqi pn—2pnqn+1pn+2 qglpn+lpn+2

We thus have the following pairs of arithmetic progressions in which four of the five
terms are Pythagorean ratios:

{ pid. } {p,._lpipm} {qn_zpn_lqnpm} . {qn_zqn_.pi}
pn——2qn—2pn+2qn+2 2qn—lqiqn+2 pn—an—Ipnqn+2 pn—2pn—lqr21 ’

{pn—an—2pn+2qn+2} {pn—Zpipn+l} {pn—anpn+lqn+2} {piqn+lqn+2}
piq% 2qn—2qﬁqn+l qn—2pnqn+lpn+2 qlzlpn+lpn+2

In view of the recurrence relations for the p,, g,, these expressions are not unique, but
they are the simplest we have found. Among alternative expressions for the other
quantities involved, we note that
2
a, =4 H pn+iqn+ia

i==2

which may be halved when # is a multiple of 3.
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