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We refer the reader to Hanna Neumann [7] for notation and other
undefined terms. Let %A(n), B(n) and €(x) denote the varieties of groups
defined by the laws (zy)" = 2"y, [z, y]" = 1 and [z, y*] = 1 respectively,
where # is an integer. A (xn)-groups were termed ‘“‘n-abelian’” by R. Baer (1]
and have been a subject matter of investigation by various authors (see
[3], [6], [6] and the references therein). Recently KaluZnin [5] has shown
that A(n) =AvB,vB,_, (n+#0,1), thus clarifying the relationship
between % (n) and the familiar varieties. From the elementary inequalities

(1) An) = A —n) < By, I =C(n(n—1)) SUB, .,y (1£0, 1)
it is easily deduced that
(2) An) = B(n(n—1))

(see for instance [5]). If G =C,, WrC,, then clearly G e B(m) but
G ¢ C(m*) for any m* 5 0 and hence G ¢ A(m*) for any m* = 0,1. Thus
B(m) £ C(m*) and B(m) £ A(m*). It is also easy to see that in general
C(n(n—1)) £ A(n) (see for instance [6] § 5.1) and we are led to ask

QUuESTION 1: Does there exist for each positive integer m, an integer
f(m) such that €(m) < A(f(m))?

If m is such that B, , (the unrestricted Burnside group of exponent
m on 2 generators) is finite, then for a group G = <z, ¥)> in €(m) one has
G/Z(G) finite and by a well-known theorem of Schur [8] (page 26) G’ is
finite, say, of exponent m*. Now for a suitable » in G’ we have that
(xy)™™ = (xmy™u)™" = x™™ y™*; hence €(m) < A(mm*). In particular
Question 1 has affirmative answers for m = 2, 3, 4 and 6. However not
relying on the solution of the Burnside problem we are able to prove

TuroreM 1. (i) €(2) < A(4), (i) €(3) < A(9), (i)-C(4) = A(32).
33
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ProoF: We note that the laws [z, y*] =1 and (zy)" = (yzx)" are
equivalent.

(i) The law [z, ¥*] = 1 implies [z, y, z] == 1 and so also [z, y]?= 1.
Thus (zy)* = ((y)*[=, y])* = ((y2)%[2, ¥])* = (ya?y)* = (4%2%)* = 2y,

(i) (zy)® = ({zy)*=, ¥])°[y, 21° = ((y=)*[z, y])3(y, =]° =
((yy) (2y)) [y, 21° = ((22y) (y2y))®[y, 2] = (@*y°[x, y])*y, 2]* = 2°9".

(iii) (zy?)'® = ((@y?)*[=, 921)% 0% 2]t = ((4P2)*[=, ¥2]) (02, 2] =
((P2)’zy?) 4y, =] = (2Pyt(y?)?) [P, 2]t = (a*9flw, ¥2])%[9?, 2]t = x'y™.
Replace # by 7! and y by 2y to get (yxy)'® = x~18(xy)32. Thus

(xy)az — xls(y(:vy))m — xls(xyz)m — xazysz'

It follows from (2) that a torsion-free (n)-group is abelian (since a
torsion-free B(n)-group is abelian). Here we ask

QUESTION 2: Is every torsion-free €(n)-group abelian?

This question is not new and in fact there is an outstanding conjecture
that this question has an affirmative answer. Obviously Question 2 has
positive answer for those integers for which Question 1 has positive answer.
Further, since by Schur’s Theorem a torsion-free centre-by-finite group is
abelian, it follows that a torsion-free locally soluble €(#)-group is abelian.
Without any such assumption we are able to prove

THEOREM 2. A torsion-free € (n)-group is abelian for n = 23}
(A=0,1=0,1).

Proor: Let G be a torsion-free group in €(2*3!). We prove by reverse
induction on j € {&, - - -, 0} that G € €(2’3"). For § = % the result is given.
Assume G e@(2¢+13") (0 <7 < k). We show that [z, 4*¥] =1 for all
z,yeG. Put z = %, so that by induction hypothesis, [, 22] = 1. Thus
[#, 2]7! = [, z]*. But this implies that [z, 2?3 = [z, 2]?""'3" = [z, 2]72""'%.
Hence [r, 2]¥*"*3 = 1. Since G is torsion-free, [z,2] =1 and Ge€(2'3}).
Thus G e €(273") for allje {&, - - -, 0}, and G e €(1) = A or €(3) depending
on whether / = 0 or / = 1. In both cases G is abelian by Theorem 1.

REMARK 1. If G € %(n), then for any z, y € G,
(@ iyizy) = @iy (ey)" = (v2) (@)™
Thus by KaluZnin’s Theorem 3 we have
(3) A(n) A B(n) = An) A€n) = Av B,.

REMARK 2. It seems worthwhile to remark that if G is a torsion-free
Engel group in €(xn), (n # 0) then for any two elements z, y in G, either
[, y] = 1 or there exists an integer » = 1 such that [z, ry] # 1 but
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[z, (r+1)y] = 1. In the latter case, 1 = [, (r—1)y, y"] = [z, ry]" = [2, ry]
gives a contradiction. Thus in €(n) torsion-free Engel groups are abelian.

REMARK 3. In [3] Durbin considered the problem of characterizing those
sequences {n, -, n,} of integers for which it is true that AL_, A(n,) = A.
If B denotes the class of all groups of finite exponent, then he proves that
B A (Aboy Alm)) < A if and only if ((’;) -, (%)) = 1 where (3) =
$m,(n,+1). He shows further that the hypothesis of finite exponent can be
replaced by ‘‘periodicity” in the special case {n, n+2}. We complete the
discussion on Durbin’s problem by proving,

12
TuEOREM 3. A U(n,) = A if and only if ((’;1) s (’;')) = 1.
k=1 -
Proor: The “only if”” part of the theorem follows from Durbin’s proof.,
For the rest of the proof we first notice from (1), that

t i
/\ QI("‘k) = /\ [EBnk(nk—l): @]
k=1 k=1
t
é [k/\l %nk(nk—l) 4 @] = [%2) G] é 922‘

But groups in R, satisfy the law (zy)" = 2"y*[y, 2]?) for every integer #.
Thus Aj_; A(n) = U, as was required.

REMARK 4. In our initial proof of Theorem 3 we made use of the follow-
ing lemma which seems to be of independent interest (c.f. [7] page 39 and [2].

t t
LEmMA. R (A B,,) = A R.B,.
k=1 k=1

Proor: For positive integers ¢, m, n let Ge N, B, A N,B,. Then

(27, s @] = @], - al,] = 1 for all z,€G. 1f d = (m,n), both
(21, - -, 28,) ™™ and  [af, - -, 204 ]" lie in (G4, Where

Gi= <2t xeGy. Thus (G%).e1y = (G (3. On the other hand
G* = G™G" is nilpotent since G™,G"eN,. Thus (G%),.y =1 and
GeN,B,. This proves N,(B, B, = N, B,, AN, B, and the lemma
follows.

REMARK 5. In the concluding section of his paper [3], Durbin raised
the following number theoretic question: Does there exist, for each positive
integer ¢, a set {u;,---, n,} of integers satisfying ((’;1) RN (Z‘)) =1
such that no proper subset satisfies this property? We give an affirmative
answer to this question by giving a process of constructing such integers.
This construction is due to T, J. Dickson whose co-operation is gratefully
acknowledged.
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For ¢t = 2, the set {2, 3} will do. For £ > 2 we first choose a set p,,
Pe, -+, p, of primes as follows: choose p, = 2, p, = 3 and for 3 <7 < ¢,
choose p, to be of the form /;p,p, -« p,_1-+1 for some integer /, = 3. This is
possible by Dirichlet’s Theorem (see for instance [4] page 13). Thus
pi=1(p,;) forj=1,--- i—1. Let p; = [],.,p; and define »n, = 2p;+1.
It is now routine to show that the set {n,, - - -, #,} has therequired properties.
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