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A method to compute the minimumHorizontal Protection Level (HPL) using the test statistic
of normal distribution, which will exploit advances in computational power to meet the re-
quirement of Time to Alert (TTA), is proposed to improve service availability. To obtain
the minimum solution, two approximations used in traditional algorithms need exact solu-
tions: the distribution of the horizontal position error and the determination of the worst
case to ensure that the resulting HPL is able to accommodate all possible bias. This is vali-
dated with results such that the optimal solution is achieved with a pre-defined accuracy
and sufficient computational efficiency. Also, the new HPL is used to determine if current
approximated methods are conservative, where one of the methods does not meet the integrity
requirement with given test statistics, error model and integrity risk definition.

KEY WORDS

1. HPL. 2. RAIM. 3. GPS

Submitted: 7 March 2014. Accepted: 29 June 2015. First published online: 29 July 2015.

1. INTRODUCTION. The Global Positioning System (GPS) is being widely used
in safety critical air traffic services, e.g. civil aviation. To guarantee the safety of the
navigation solution for these applications, a hazard analysis is necessary, where the
required performances regarding accuracy, integrity, continuity and availability
are to be assessed (RTCA, 2006). The integrity for a Non-Precision Approach
(NPA) is of concern here, for which Receiver Autonomous Integrity Monitoring
(RAIM) is used to generate a Horizontal Protection Level (HPL) for users to be
aware of the level of safety.
There are two major issues when calculating the exact HPLwith given integrity risk.

First, the distribution of the horizontal position error is too complex to calculate the
probability of position error for real time applications. Second, the determination of
the worst case is also not straightforward if we are to accommodate all possible bias
values. Various methods were proposed to simplify the calculation, resulting in
approximated HPLs. Two approximated distributions of the horizontal position
error are used in the conventional method including the normal approximation
(Lee, 1995) and the chi-squared approximation (Ober, 1997). The former has the
disadvantage of underestimating the probability in some cases while the latter is an
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overestimate (Ober, 1997). Approximations are also made on the second issue to speed
up the process. Without a search for the worst case, specific formulae were given in the
conventional methods (Brown and Chin, 1998; Walter and Enge, 1995; Brenner 1996).
These approximations can speed up the HPL computation, but they are designed to be
conservative with higher protection level than the exact value. The exact HPL value
can achieve higher service availability, and therefore this is pursued by solving the
two major issues.
AMonte Carlo simulation is commonly used to calculate the probability of position

error, which is very time consuming. Two ways to calculate the exact position error
probability have been identified to be equivalent (Johnson and Kotz, 1970; Ober,
1997; Ober, 1998): 1) the integration of the distribution for 2D position error in a quad-
ratic form; 2) the integration of the bivariate normal distribution over a circle. Several
implementations are studied and compared in the first approach (Duchesne and
Lafaye de Micheaux, 2010) and the one in Imhof (1961) showing reliable results is
used here. A method was designed in the latter approach (DiDonato and Jarnagin,
1961) to speed up the calculation, which was first used in navigation integrity monitor-
ing by Milner and Ochieng (2010). These two implementations to calculate the prob-
ability can achieve a pre-defined accuracy, and they are both referred to as the “exact
distribution” in this paper.
For the second issue, an iterative search was designed in Milner and Ochieng (2011)

to search the worst case bias with the maximum integrity risk. But it is observed that
the iterative method is not able to control the accuracy of the results with uncertainty
caused by the number of steps, and is computationally heavy with two search loops.
Therefore, a new approach is proposed here to improve these two performance criteria
based on the method in Jiang andWang (2014) for the Vertical Protection Level (VPL)
computation. A new iterative method with one search loop is designed with results
showing that it has higher computational efficiency, but the accuracy of the results
is still uncertain. An optimisation method is then used to generate results within a
pre-defined accuracy, and also the computation is considerably faster than the other
methods.
The rest of the paper is organised as follows. The basic model and parameters that

are going to be used for calculation of HPL are defined in Section 2. All current
methods to calculate HPL are introduced in Section 3. The two issues in calculation
of the exact HPL are studied in Section 5 with numerical results in Section 6 and con-
clusions in Section 7.

2. NAVIGATIONAL SYSTEM MODEL AND INTEGRITY RISK. The line-
arised model to relate GPS observations to the position is

E yð Þ ¼ Ax; D yð Þ ¼ Qy ¼ P�1 (1)

where y∈Rm×1 is the observation vector which is assumed to be Gaussian; x∈Rn×1 is
the unknown position vector including the three dimensional position error and clock
error; A∈Rm×n is the design matrix with rank n, which is derived by the elevation
angle as the transformation from the observation domain to the position domain;
Qy is the covariance matrix of the observations, which is modelled to account for
clock and ephemeris errors, troposphere delay, multipath and receiver noise.
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The least squares estimate of x is

x̂ ¼ x̂E x̂N x̂U x̂T½ �T ¼ Sy (2)

where x̂E, x̂N , x̂U are the east, north and up component estimation, and x̂T is the clock
estimation; S = (ATPA)−1ATP is the solution estimation matrix with each row as
S ¼ SE SN SU ST½ �T .
RAIM utilises redundancy in observations to do a consistency check. An alarm is

sent to the cockpit if an unacceptably large position error is detected to warn the
pilot that GPS should not be used for navigation. In the conventional RAIM
(Brown and Chin, 1998), a chi-squared test is used to detect the failure. A multiple hy-
pothesis structure is used to define the test statistic, which is of normal distribution

tsi ¼ eTi PQvPyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTi PQvPei

p (3)

where i = 1 · · ·m; ei∈Rm×1 is a zero vector with the ith element as one; Qv=Qy−A
(ATPA)−1AT. Under hypothesis Hi:E(tsi) = δi, δi is the non-centrality parameter. The
probability of false alarm Pfai and the probability of missed detection Pmdi are
defined as follows with Ti as the threshold,

Pfai ¼ P tsij j> TijH0f g (4)

Pmdi ¼ P tsij j< TijHif g (5)

Protection level is a statistical error bound to guarantee that the probability of the
position error exceeding a given bound is within the required integrity risk. If the com-
puted protection level is larger than the given alert limit, an alert within the required
TTA should be generated by the system. This is an adaptation to the definition in the
standards (ICAO, 2006; RTCA, 2006). The position error is the difference between
the estimated value and the real one. With an HPL of concern, the horizontal position
error ~xH ¼ ~xE ~xN½ �T is avector with the east position error and the north position error.
Also it has been shown that the test statistic and the position error are independent
(Ober, 1997). The allocated integrity risk under Hi is defined as (GEAS, 2008)

IRi ¼ P
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jj~xH jj2

q
>HPLijHi

� �
P tsij j< TijHif gPHi (6)

where integrity risk IRi is a function of the probability of the horizontal position error

PPE ¼ Pf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jj~xH jj2

q
>HPLjHig, the prior probability of Hi hypothesis PHi and Pmdi.

It should be noted that the integrity risk for each hypothesis is defined to accommodate
all possible bias size. In other words, Equation (6) is defined to bound theworst case bias
by the given integrity risk. The worst case bias is the one that generates the biggest in-
tegrity risk.With eachHPLi computed to protect theworst case bias under each hypoth-
esis, the final HPL is the maximum one among all hypotheses with i = 0, 1 · · ·m.
The risk for each hypothesis is set as (Brenner, 1996; Kelly, 1998) 1): Pfai= 3·33 ×

10−7/m, IRi = 10−7, PHi = 10−4, and therefore the given value of IRi=PHi is 10
−3. Pfai

is the fault free alarm probability from the continuity risk as derived in Kelly
(1998). With the given Pfai, the non-centrality parameter in ~xH is decided by Pmdi

with Equations (4) and (5). Therefore, PPE is a function of HPL and Pmdi, and
IRi=PHi ¼ PPEβi is also a function of HPL and Pmdi.
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This study is aimed at providing a generalised algorithm to calculate HPL for all
kinds of navigation service types, since the derivation of the worst case bias is regard-
less of the service types. The requirement of the NPA is adopted, where HPL is critical.
Also, the multiple hypothesis structure is used here, which is also adopted in the design
for the next generation RAIM structure ARAIM (Pervan et al., 1998; ARAIM report,
2012). But the HPL presented here assumes a fixed PHi , as opposed to ARAIM, which
can accommodate different prior probabilities. However, it should be noted that the
proposed method can be used in a more generalised RAIM scenario.

3. CURRENT METHODS TO CALCULATE HPL. Current methods to calcu-
late HPL are based on approximations due to the complex calculation process to gain
the exact probability and the worst case bias. The external reliability method (Brown
and Chin, 1998) was expanded by a random part to bound the random error
(Angus, 2007). In this method, two approximated distributions are used to calculate

PPE. With the normal approximation,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jj~xH jj2

q
is approximated as a one degree

Taylor series (Lee, 1995)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇~x2E þ∇~x2N

q
þ ∇~xEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∇~x2E þ∇~x2N

q ~xE �∇~xEð Þ þ ∇~xNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇~x2E þ∇~x2N

q ~xN �∇~xNð Þ (7)

where ∇~xE and ∇~xN are the non-centrality parameters of ~xE and ~xN . The approxi-

mated variance is of a normal distribution N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇~x2E þ∇~x2N

q
; σ∇i

� �
with σ2∇i ¼

S2QHST
2 which is then projected onto the direction of the faulty observation i with

S2 ¼ SEeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEeið Þ2 þ ðSNeiÞ2

q SNeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEeið Þ2 þ ðSNeiÞ2

q
2
64

3
75 and QH as the covariance matrix

of ~xH.
With the normal approximation, HPLBC under Hi is (Angus, 2007)

HPLBC1i ¼ Hslope1iδi þ K 1� IRi

2PHi

� �
σ∇i (8)

where δi is derived by the given Pfai and Pmdi ¼ IRi=PHi ¼ 10−3; K() is the inverse of the
cumulative distribution function of a Gaussian random variable with zeromean and unit
variance. The slope parameter is defined as the project matrix from the ith observation
domain to the horizontal position error domain (Brown and Chin, 1998) with
SEN ¼ SE SN½ �T

Hslope1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTi S

T
ENSENei

eTi PQvPei

s
(9)

The second approximation is the chi-squared approximation, which is derived by the
following inequality (Ober, 1997)ffiffiffiffiffiffiffiffiffiffiffiffiffi

jj~xH jj2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
λm

~xTHQ
�1
H ~xH

s
(10)
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where ~xTHQ
�1
H ~xH is of chi-squared distribution with two degrees of freedom; λm is the

minimum Eigenvalue of Q�1
H . With Equation (10), it can be concluded that the chi-

squared approximation is always safe (Ober, 1997).
In a similar way,HPLBC under Hi with the chi-squared approximation is derived as

HPLBC2i ¼
ffiffiffiffiffiffi
1
λm

s
Hslope2iδi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 2; 1� IRi

PHi

� �s" #
(11)

where δi is derived by the given Pfai and Pmdi ¼ IRi=PHi ¼ 10−3; χ2 2; 1� IRi

PHi

� �
repre-

sents the value at probability 1� IRi

PHi

with the central chi-squared inverse cumulative dis-

tribution function and two degrees of freedom; The slope factor for each hypothesis is

Hslope2i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTi S

T
ENQ

�1
H SENei

eTi PQvPei

s
(12)

Another popular method is the weighted RAIM method (Walter and Enge, 1995)
designed for precision approach. The HPLWE is also tested here for NPA

HPLWEi ¼ Hslope1iTi þ K 1� IRi

2PHi

� �
σHRMS (13)

where σHRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2E þ σ2N

q
with σE and σN as the standard deviation of ~xE and ~xN

respectively, and Ti is derived with the given Pfai as K 1� Pfai

2

� �
.

The solution separation method was proposed by Brenner (1996) and applied in a
multiple hypothesis structure (Pervan et al., 1998), which is referred as the multiple
hypothesis solution separation (MHSS) method

HPLPBi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPLEi

2 þHPLNi
2

q
(14)

where the east HPL is defined as

HPLEi ¼ σssETi þ K 1� IRi

2PHi

� �
σ iE (15)

where σssE is the standard deviation of the east solution separation, which is equivalent

to the east slope parameter HslopeE ¼ SEeij j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTi PQvPei

q
(Blanch et al., 2010); σiE is

the standard deviation of the subset position error ~xiE, which is derived with the ith

observation removed in the estimator; the HPL for the north HPLNi can be derived
in a similar way with σssN as the standard deviation of the east solution separation

also equivalent to the north slope parameter HslopeN ¼ SNeij j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTi PQvPei

q
.

The method presented here to calculate HPL can be generalised for multiple faults
with the relevant reliability measures for multiple faults described in Knight et al.,
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(2010). With current approximated HPL computation methods introduced as above,
the exact HPL is pursued in the following sections, where the distribution offfiffiffiffiffiffiffiffiffiffiffiffiffi

jj~xH jj2
q

is analysed in Section 4 and the search for the worst case is studied in

Section 5.

4. THE PROBABILITY OF THE HORIZONTAL POSITION ERROR. Two
methods to calculate the exact probability PPE are studied: the Imhof approach
(Imhof, 1961) and the DJ approach (DiDonato and Jarnagin, 1961; Milner and
Ochieng, 2010). They are chosen in consideration of the ability to control error toler-
ance for high accuracy, which is set at 10−9 for both implementations.
The Imhof approach is introduced as follows. With the correlation between the east

and north error, jj~xH jj2 is not of a chi-squared distribution, but it is a sum of independ-
ent chi-squared variables (Ober, 1997),

jj~xH jj2 ¼ ~yTST
ENSEN~y ¼

X2

j¼1
λjjjqTj ~yjj2 (16)

where ~y ¼ y� Ax̂ is the observation error vector, which is the difference between the
real value and the estimated value; the Eigen-decomposition of the symmetric matrix
ST
ENSEN is DT∧ D with ∧ as the diagonal matrix, λj as the non-zero diagonal elements,

qj as the corresponding Eigen-vector, which form the columns of the orthogonal matrix
D. Therefore, jj~xH jj2 is a linear composition of independent chi-squared variables
jjqTj ~yjj2 with one degree of freedom and non-centrality parameter δj. The probability
of PPE can be computed with the Imhof method

P jj~xH jj2 >HPL2jHi

n o
¼ 0 � 5þ 1

π
∫
∞
0
sinθ uð Þ
uρ uð Þ du (17)

where θ(u) and ρ(u) are,

θ uð Þ ¼ 0�5
X2

j¼1
½tan�1 λju

� �þ δjλju 1þ λ2j u
2

	 
�1
� � 0�5HPL2u (18)

ρ uð Þ ¼
Y2

j¼1
1þ λ2j u

2
	 
1

4
exp

δjλ
2
j u

2

2þ 2λ2j u2

 !" #
(19)

With the given error tolerance EU, the upper bound of the upper limit of integral U
can be derived by,

EU ¼ πU
Y2

j¼1
λj

1
2exp

δjλ
2
j U

2

2þ 2λ2j U2

 !" #
(20)

With the east and north being de-correlated (Milner and Ochieng, 2010), the DJ ap-
proach is applied, where a rectangular bound is defined to replace the cross area
between an ellipse and a circular area to reduce the computational load (DiDonato
and Jarnagin, 1961). The centre position of the circular area is the absolute value of
the bias position after rotation of the correlation system. The given error tolerance
is used to adjust the rectangular bound. The probability obtained by the integration
of the cross area between the ellipse with the bivariate normal distribution and a
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circle is used as a reference which is referred as to the Bivariate Normal. Both methods
and the two approximated ones (chi-squared, normal) are comparedwith the reference
in Figure 1 with a single epoch example of seven visible satellites and a 12 m outlier on
the first observation.
As shown in Figure 1, the probabilities based on the Imhof and DJ approaches with

10−9 error tolerance are almost the same as the Bivariate Normal one. The chi-squared
approximation is conservative with larger PPE, while the normal approximation is not.
Similar conclusions can be found in Ober (1997). Using a standard Intel Core 2 Duo
Processor E8400, the computational time per SV to calculate the PPE with different
approaches is shown in Table 1.
Therefore, the DJ approach should be used as it has higher accuracy and computa-

tional efficiency. It should also be noted that the Imhof approach is more general and
can be used for higher dimensional cases.

5. THE APPROACHES TO CALCULATE THE HPL. The aim is to obtain the
exact HPL solution to accommodate all possible bias, which is the HPL solution cor-
responding to the worst case bias with Equation (6). Besides the computation of the
exact probability of PPE, the second issue arises when searching for the worst case in
a boundary. The maximum HPL within a fixed interval is the corresponding solution.
There is a one-to-one relationship between the non-centrality parameter and Pmdi. The
boundary was designed to be in the bias domain from 0 to theMinimal Detectable Bias
(MDB) in Milner and Ochieng (2010), here the Pmdi domain is used with the boundary
as IRi=PHi ∼ 1. With the lower boundary IRi=PHi given as 10−3 by Equation (6), the
new criterion is expressed as

max fHPL Pmdið Þ; subject to 10�3 < Pmdi < 1 (21)

Figure 1. PPE as a function of HPL with different distributions.
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where fHPL(Pmdi) stands for the HPL as a function of Pmdi, which is expressed by the

non-linear equation Pf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jj~xH jj2

q
>HPLjHigPmdi ¼ 10�3 with given integrity risk. To

obtain the best solution, the iterative method in Milner and Ochieng (2010) is intro-
duced first, followed by an improved iterative method, and finally an optimisation
method is proposed, which are all compared in terms of accuracy and efficiency.
With a closed boundary, it is guaranteed that there is always an extreme value. The

mechanism is shown in Figure 2, with the decrease of Pmdi within the range, the non-
centrality parameter is increased from δa to δc. The corresponding HPL increases from
HPLa to HPLb and then decreases to HPLc. Therefore, a search is needed to obtain
the worst case.
To search the worst bias in the Pmdi range, it is necessary to define the worst case

first. As shown in Figure 3, the worst integrity risk happens when Pmdi is 15·01%,
which is the same for the worst HPL in Figure 4. The worst case happens at the
same Pmdi point because the input HPL is 5·197 m in Figure 3, corresponding to the
worst HPL in Figure 4, and vice versa. Still, it is illustrated that there are two ways
to define the worst case: the maximum integrity risk with given HPL and the
maximum HPL with given integrity risk.

5.1. The Original Iterative Method. A procedure is defined in Milner and
Ochieng (2011) with the maximum integrity risk as the worst case to calculate the
ideal VPL, which can be applied to HPL as well, and referred to as the Iterative A
method. There are two iterative search loops over the inner loops covering the bias

Table 1. The average computational time of PPE per SV.

Exact Distributions Approximated Distributions

per SV Bivariate Normal Imhof DJ Chi-squared Normal

Time (ms) 100 85 0·5 0·79 0·35

Figure 2. Illustration of the search method.
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range and the outer one as the input HPL range. For each inner loop, there is a worst
bias point that has the maximum integrity risk with the given input HPL. For all the
input HPL values in the outer loop, the one that generates the maximum integrity risk

Figure 3. Pmd and Integrity Risk.

Figure 4. Pmd and HPL.
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closest to the given integrity risk is the desired value. The process is described as
follows: in the outer loop, an upper value U is chosen to decide the range 0 <HPL
<U with HPLk as the value at step k. The Pmdi range 10−3 <Pmdi <1 is used in the
inner loop with Pmdij as the value at step j. In each step j, the integrity risk

P
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jj~xH jj2

q
>HPLkjHi

� �
Pmdij is calculated and the maximum value in the inner

loop is chosen. The HPLk that generates the maximum integrity risk which is the
closest to 10−3 is the final result. Therefore, the accuracy of the results and computa-
tional time is dependent on the number of steps in two loops.

5.2. The New Iterative Method. The iterative method is designed to derive
each HPL value corresponding to each Pmdij with the non-linear equation and the
maximum one is the final result with the worst case bias. The procedure is as follows:

1) The Pmdi range is divided by the number of steps N with Pmdij as the value at
step j.

2) The HPLj corresponding to each Pmdij are derived by equation

P
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jj~xH jj2

q
>HPLj jHi

� �
Pmdij ¼ 10�3, where an optimisation tool to solve

non-linear equations is used.
3) The maximum HPLj is therefore the desired result.

In this way, the outer loop is removed, and both the accuracy of the results and com-
putational time is dependent on the number of steps in a single search loop. This
method is referred to as the Iterative B method.

5.3. The Optimisation Method. To gain a HPL value with higher accuracy and
computational efficiency, an optimisation algorithm is used to find the maximum
value within a fixed interval. The MATLAB implementation fminbnd is used to find
the single local minima with a continuous function of one variable, which is based
on golden section search and parabolic interpolation (Forsythe et al., 1976). The cri-
terion is then adapted to be used in this optimisation tool, where Pmdi is treated as
the unknown parameter that needs to be solved and HPL is expressed by the

unknown Pmdi with P
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jj~xH jj2

q
>HPLjHi

� �
Pmdi ¼ 10�3. The maximisation

problem is adapted as a minimisation problem by subtracting the HPL function
from a large number (e.g. 100-HPL). The optimisation tool is used to find the Pmdi

value that has the maximum HPL value. The termination tolerance, which is the
norm of the difference of two consecutive solution vectors during the iterative opti-
misation process, is set as 10−8 to guarantee the accuracy of the final results. The
initial value is set according to experiment data to speed up the solving process.
The procedure of this method is described as below:

1) The function to compute PPE is implemented with the DJ approach as f1. The
input parameters include QH, HPL and the non-central parameter in ~xE and
~xN as HslopeE � δi, HslopeN � δi. The output is PPE.

2) The function to compute HPL is implemented as follows:
a. Define an initial value x0 and a search range Pmdi∈ [10−3, 1 ].

b. Define other input parameters: Ti, IRi=PHi , Pfai and the Eigenvalues of QH.
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c. A function f2 is defined to compute the equation f1�IRi�
Pmdi

PHi

¼ 0 with fsolve,

where Pmdi is the input variable and HPL is the output variable. The initial

value x0 and the termination tolerance are defined beforehand.

d. 100−HPL as a function of variable Pmdi from f2 is then used in fminbnd as
the function to be minimised within a fixed interval of Pmdi∈ [10−3, 1].

e. The solution from fminbnd is the worst case Pmdi, and the corresponding
HPL is the final solution, which is derived with the equation in f2.

Although in theory there will always be a solution, the convergence of the optimisation
algorithm depends on the proper choice of the initial value and the termination toler-
ance. Besides, to avoid discontinuity, the new iterative method is used in practice when-
ever there is no extreme value found in the optimisation algorithm.

6. NUMERICAL RESULTS. Comparing the new iterative method with the ori-
ginal one, the result would be close to the theoretical value if the steps were close to
infinite. However, the number of steps cannot afford to be too big with the requirement
of TTA in RAIM – the integrity information would not be transmitted to users in time.
Normally, TTA should be within a few seconds, for example the TTA requirement for
the LPV-200 service is 6·2 seconds. With a smaller number of steps, it is observed that
the accuracy of the results is not necessarily better when using more steps. The reason
lies in the uncertainty of the location of the worst case and the step size. An example is
given in Figure 5 with various steps: 5, 10, 20 and 30. The worst case under each steps
are marked with a rectangular box. It can be seen that the HPL using 20 steps is closer
to the correct HPL than using 30 steps. With all the uncertainties, it is concluded that
the iterative methods are not only too time consuming, but also lack sufficient
accuracy.

Figure 5. The uncertainty in iterative methods with the number of steps.
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Results from two iterative methods with different steps for Pmdi range are compared
in Table 2, where the HPL is ranged between 0∼50 m with 50,000 steps to achieve the
accuracy of 0·001 m in the Iterative A method. The result from the optimisation
method (7·3384 m) is used as the reference point.
In Table 2 with the Iterative B method, the result with 40 steps is closer to the ref-

erence value than with 50 steps. Therefore, it is concluded that the accuracy of
the results is not necessarily getting better with larger steps, which is consistent with
the analysis in Figure 5. But with an extremely large number of steps (10,000), the
value is the same as the reference value. Also, with the number of steps larger than
100, the result stays relatively stable at the accuracy of 10−4. With an additional
search loop in the Iterative A method, the HPL precision is constrained by the outer
number of steps with 0·001 m accuracy. Yet, this accuracy is not reliable since it is
still susceptible to the uncertainty caused by the search in the βi range with the
example of the results using 40 and 50 steps in Table 2. Therefore, it is concluded
that introducing another search loop in the Iterative A method does not enable the
control of the accuracy of the results.
The Iterative Bmethod with 150 steps and 10 steps are compared with the optimisa-

tion method in Figure 6 using data of the GPS observations captured on the UNSW

Table 2. Different HPL values in one epoch with various steps.

Steps 10 30 40 50 100 200 10000

Iterative A (m) 7·241 7·337 7·338 7·332 7·338 7·338 7·338
Iterative B (m) 7·2407 7·3368 7·3377 7·3319 7·3382 7·3383 7·3384

Figure 6. The iterative methods and the optimisation approach for the new HPL.
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campus within 24 hours. It is assumed that the error is of standard normal distribution
without correlation.
It is shown in Figure 6 that the results from the iterative method with 150 steps are

very close to the results from the optimisation method. However, the results from the
iterative method with 10 steps are smaller than the optimisation method at the scale of
0·1 m. Therefore the accuracy of the results from the iterative method is lower and the
conservativeness is not guaranteed, depending on the number of search steps, while the
optimisation method is more reliable.
Using an Intel Core 2 Duo Processor E8400, the average computational time per

epoch is shown in Table 3. For both iterative methods, the total number of search
step is 100 in the Pmdi range. HPL is ranged between 0∼50 m with 500 steps with
0·1 m accuracy.
With 100 search steps, the results from the Iterative B and optimisation methods are

similar, but it is shown in Table 3 that the optimisation method is faster with less than
half of the time used per SV than the Iterative B method. The Iterative A method con-
sumes around 20 s per epoch, while the optimisation method is more promising for use
in real time applications. Also, an approach to limit the search region was designed in

Table 3. The average computational time of HPL in one epoch.

per SV 7SV 8SV 9SV 10SV

Iterative A(s) 2·60 19·2 20·4 23·2 25·4
Iterative B (s) 1·30 4·86 9·44 13·8 17·8
Optimisation (s) 0·56 2·31 3·93 5·98 7·66

Figure 7. The new HPL and other approximated HPLs.
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Milner (2009) as well as Milner and Ochieng (2010) to improve the computational ef-
ficiency. But since the two loops impose a considerable computational burden, such
improvement is less obvious than the Iterative B method in this test.
All existing approximated algorithms to calculate HPL are examined by comparing

with the new optimisation value in Figure 7.
As shown in Figure 7, the two HPLBCs are conservative, while HPLWE has values

higher than the new HPL. Although the normal approximation distribution is not safe
compared with the exact distribution as shown in Figure 1, the HPLBC2 based on it is
still conservative.
To quantify the performance improvement with the new HPL, the simulation for

worldwide availability distribution is set up as follows. The almanac data for the stand-
ard 24 satellite GPS constellation and the 27 satellite Galileo constellation was used
respectively to determine the geometry at each location with a 5 × 5 degree grid on
the world map at 50 m altitude. The error model is adopted from GEAS (2008) for
ARAIM, and a bias term was added to gain more conservative results. The values for
the nominal bias and the maximum bias were 0·1 m and 0·75 m separately. The User
Range Error and User Range Accuracy were 0·25 m and 0·5 m. The risk definition is
the multiple hypothesis requirements as defined in Section 2. Results of HPL at each lo-
cation are computed every 10 min over the 24 hour duration. The mask angle of GPS is
set to be 5°. The availability was determined by comparing each HPL value with the
alert limit (40 m) for each location. The percentage of having over 99% availability
over this time is shown worldwide. The simulation software is based on the
MATLAB Algorithm Availability Simulation Tool provided by Stanford University.

Figure 8. 99% Availability with HPLBC1, 24 GPS.
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Figure 9. 99% Availability with HPLBC2, 24 GPS.

Figure 10. 99% Availability with HPLPB, 24 GPS.
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It is shown in the Figures 8–11 and Tables 4 and 5 that the performance is improved
with 99% availability worldwide, especially when the alert limit is tighter in Table 5
(HAL set to be an arbitrary 35 m). Although HPLPB showed a lower value than
HPLBC1 in Figure 7, the service availability is higher than HPLBC1 with 24 GPS
and lower with 27 Galileo. From this example we can conclude that there is no definite
conclusion comparing the size of HPLPB and HPLBC1, which is dependent on the
geometry between satellites and users.

7. CONCLUDING REMARKS. It has been shown that the new approach to cal-
culate HPL has high accuracy and computational efficiency, and therefore service

Figure 11. 99% Availability with new HPL, 24 GPS.

Table 4. 99% 40 m HAL Availability with Different Algorithms.

RAIM Algorithms HPLBC1 HPLBC2 HPLPB New HPL

24 GPS 91·52% 89·17% 91·26% 100%
27 Galileo 100% 100% 100% 100%

Table 5. 99% 35 m HAL Availability with Different Algorithms.

RAIM Algorithms HPLBC1 HPLBC2 HPLPB New HPL

24 GPS 74·99% 56·88% 83·90% 92·19%
27 Galileo 89·78% 79·06% 89·06% 95·56%
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availability can be improved in RAIM and potentially in other Global Navigation
Satellite System (GNSS) aviation operational applications. Also, the computation of
the new iterative method is faster than the old method. With the exact HPL value vali-
dated, the conservativeness of current HPLs are analysed. It is proved that the chi-
squared distribution is a safe choice to approximate the exact distribution of horizontal
position error, while the normal approximation is not. The results have shown that
HPLBC and HPLPB are conservative, while HPLWE does not meet the theoretical in-
tegrity requirement. With the optimisation method given in the MATLAB toolbox,
further efforts can be made to customize an optimisation method for this specific
problem to maximise the computational efficiency. Although there is no outage of dis-
continuity with the optimisation method in this paper, the proposed method should be
further investigated to make sure that 100% convergence can be guaranteed. For the
same purpose, the idea proposed by Milner (2009) to limit the search region may be
incorporated in the current proposed method for further study.
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