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EXISTENCE AND UNIQUENESS IN THE THEORY OF BENDING
OF ELASTIC PLATES
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1. Introduction

Kirchhoff’s kinematic hypothesis that leads to an approximate two-dimensional
theory of bending of elastic plates consists in assuming that the displacements have the
form [1]

ua=x3va(x1’ x2)’ a=1; 2,
(L.1)

U3 =v;(xy, Xx5).

In general, the Dirichlet and Neumann problems for the equilibrium equations
obtained on the basis of (1.1) cannot be solved by the boundary integral equation
method both inside and outside a bounded domain because the corresponding matrix of
fundamental solutions does not vanish at infinity [2]. However, as we show in this
paper, the method is still applicable if the asymptotic behaviour of the solution is
suitably restricted.

2. Notation and formulae

Let (x,,x,,x;) be the Cartesian coordinates of a generic point in R*. We consider a
homogeneous and isotropic plate occupying a region Q x [ —hy/2, hy/2], where hy=const
and Q is a domain in the (x,,x,)-plane, whose boundary dQ is a closed Lyapunov
curve.

Unless otherwise stipulated, throughout the paper Latin and Greek suffixes take the
values 1,2,3 and 1,2, respectively, the convention of summation over repeated indices is
adopted, and (...),,=d(...)/0x,.

Also, we denote by M* the transpose of a matrix M, and by H, and J, (k=0,1) the
averaging operators

Hw(x;)=(1/ho) [xlgw(xi)]i: :h—oﬁ/z,
ho/2 :
Jiow(x;) =(1/ho) _ hf 2 x’:f)w(xi) dx;.

Let t;; be the stresses, u; the displacements, f; the body forces, and 4 and p the elastic
coefficients of the material. If we set

Fo=—( fo+Hts), F3=—(Jof3+Hotss),
47

https://doi.org/10.1017/50013091500017399 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017399

48 CHRISTIAN CONSTANDA

then the linear equilibrium equations obtained by using (1.1) can be written in the form

L(8,)v(x) = F(x), (2.1)
where L(ax) = L(a/axla a/axz) = (Lij(ax)),
h2uA +h2(A+ )2 —p R A+ wé &, —ué,
L(il,fz)=( WA+ mwé&, RuA+ RO+ —p  —pe, ) 2.2)
[ ué, uA

¥ =(vy, 0,5, 03), F*=(F(,F,, F3), A=§,&,, and h2=h3/12.
In connection with the system (2.1) we consider the boundary stress operator T(8,)=
T(0/0x 1, 0/0x,) =(T{0,)), where

h2(A+2wn, & +h2unyé, R unyt, +h*in &, 0
T(¢;, éz)=( h2An &, +hun g, W uny &y +h*(A+2p)n,¢, 0 ) (2.3)
uny un; H(n &y +nyé,)

and n, are the components of the unit outward normal to Q.
In what follows we assume that 1 and p satisfy the inequalities

A+u>0, u>0,

which ensure that the system (2.1) is elliptic and that the internal energy of the plate
{measured on the unit of its middle plane) hyE(v, v), where
2E(vﬂ U) = hz[lva,avﬂ.ﬂ + ﬂ(_va.ﬂ + vﬂ,a)va,ﬂ] + #(03.1 + va)(v3,a + va)’ (24)
is positive.
From (2.1)«2.4) we easily obtain the Betti formula

‘f]v*Lv do + ‘j;ZE(v, v)do= | v*Tvds (2.5)

[7¢]

and the relations

j L3ivi d0'= j T_q,iv,- dS,
Q 0

(2.6)
jLai_xaLSi)vidaz I (Ti—x,T3)v; ds,
Q aQ
where v is a smooth (3 x 1)-matrix.
3. Fundamental solutions
The matrix of fundamental solutions for the system (2.1) is [2]
D(x, y)=B(0)t(x, y), (3.1)
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where

t(x,y)=t(r)=a[r*Inr+4h*Inr+4h2Kr/h)],
a=[8mhu2(h+20)]" ", (32)
r= lx‘Y| =[(xy —y1)> +(x,—y2)* 1'%,

K (&) is the modified Bessel function of order zero, and the entries of the matrix B(d,)=
(B;£0/0x,,0/0x,)) are

B () =1 p(A+2)A = p(2+ )AL — p*EZ,  (a not summed)

B;3(&) =h*u(A+2u)A% — 2 u(A+ 3p)A + 12,

(3.3)
B5(8)=B,1(8) = —p&, &o[R*(A+ WA + 4],
B,3(8) = — B3(§) =p?¢(R*A-1).
We also consider the matrix P(x, y) =(P;(x, y)), where
Pi(x, ) =(T(0,)D(y, x)) (3.4)

We denote Q by Q,, and set Q,,=R*\{Q,, U dQ}. As in the classical theory (see, for
example, [3]), we can derive the relations

a'L Til0:)Dyj(x, y) ds, = P(¥)dy5
(3.5
aj‘; xank(ax)ij(x9 Y) dsx = ya¢(y)53j’

where

- 1, yEQin,
¢(y)={ —1/2, yedQ,

0, yEQ,,
and ¢;; are the Kronecker delta, and the Somigliana formula

v(x) = aj;) [D(x, y) T(8,)u(y) — P(x, y)u(y)] ds,
(3.6)
- I D(x’ y)l‘(ay)v(y) dsy’ X€ Qin’
Q

where v is a smooth (3 x 1)-matrix.
Let o/ be the set of (3 x 1)-matrices v in Q. having an asymptotic expansion of the

C
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form

1 . .
v4(r, ) =;[oc0 sin 8+ 2a, cos 8 —a, sin 30+ (a, — ;) cos 3]
1 . .
+r_2 (2B, +7,)sin20+y,c0820—2p, sin40+2f, cos 40]
1 . . 1
+r—3[2p1 sin 36+ 2m, cos 30+ 3(p, — p,) sin 58+ 3(n, — ) cos 5]+ 0 =)
1
vy(r, 0) = " [20t, sin 6+ oy cos 0+ (a; — ;) sin 30 + ot cos 367
1 . .
+r_2 [(2B;+7v,)sin20 —y, cos 204+ 2, sin48 + 2, cos 40]

1
+r_3 [27,sin 360 —2p, cos 30+ 3(n, —7,) sin 56 + 3(p, — p,) cos 507 + 0<ri4>,
va(r, 0) = —(oty + o) Inr—[ay + o, + 0ty sin 20 + (o0, —at,) cos 26]

+%[(ﬁl +7y,)sin 0+ (B,+7y,)cos 80— B, sin 30+B2 cos 3¢]

1 1
+r—2[o’1 sin 2040, cos 20 +(p, — p,) sin 40 +(n, — ;) cos 46] + 0(;'_3)’

where ag, «,, B, Vv Py T, G,=const, and &/’ the set of matrices v'=v+ C, where ve &/
and

C*=(cy1,¢5,—C1X1 —C3X,), ¢, c,=const. 3.7

Remark. In view of (1.1), the matrix (3.7) represents a rigid displacement, and it is
obvious that for ve &/’ the internal energy density (2.6) remains finite as r— co.

4. Elastic potentials
We define the single layer potential

V(J€)=a£2 D(x, y)z(y) ds,
and the double layer potential

W(X)=6IQ P(x, y)z(y) ds,,
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where the (3 x 1)-matrix z is an unknown density. Proceeding as in [4], we can prove
the following assertions:

Theorem 1. L(3,)V(x)=0, L(3)W(x)=0, x ¢ Q.

Theorem 2. (i) If z(x) is continuous on 8, then V(x) is continuous in R?.

(i) If z(x) is Hélder continuous on 0Q, then W(x) tends to finite limits as x—Xx,€0Q
both from Q,, and from Q.,, these limits being

1
Win(xo) = — 5 2(x0) + a{) P(xo, y)z(y) ds,,

1
We(xo0) =5 2(%o) + afn P(xo, y)2(y) ds,.

(iii) If z(x) is Hélder continuous on 0Q, then T(0,)V(x) tends to finite limits as
XX €0Q both from Q,, and from Q.,, these limits being

(TV)ulxo)= 520500+ [ T(0.)D(x0 D20 s,

4.1)
1
(TV)exlx0) = — EZ(>€o)+a£2 T(0,)D(x0, y)2(y) ds,.

Also, we have [2]
Theorem 3. If z(x) is continuous on 0Q, then
(i) Wew,
(i) Ve if and only if

aj(; zyds= a'[w (zg—x423) ds=0. (4.2)

5. Boundary value problems

Let A(x), B(x), R(x), and S(x) be (3 x 1)-matrices prescribed on Q. For the
homogeneous system (2.1), that is,

L{0,)v(x) =0, (1)

we consider the following Dirichlet and Neumann problems:

(I) Find » satisfying (5.1) in Q,, and

o(x)=A(x), xedQ. (52)
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(II) Find v satisfying (5.1) in Q,, and
T(d,)v(x)=B(x), xedQ. : (5.3)
(IIT) Find ve o’ satisfying (5.1) in Q,, and
v(x)=R(x), xed. (5.4)
(IV) Find ve s satisfying (5.1) in Q,, and

T(0)v(x)=S(x), xedQ. (5.5)

Theorem 4. (i) The interior Dirichlet problem (1) has a unique solution for any Hdlder
continuous matrix A(x). This solution can be expressed as a double layer potential.

(i) The exterior Neumann problem (IV) has a unique solution for any Holder
continuous matrix S(x) if and only if

| Syds= [ (S,—x,S3)ds=0. (5.6)
& s
The solution can be expressed as a single layer potential.

Proof. First, suppose that ves is a solution of (IV). Let K, be a circle whose
radius R is sufficiently large so that (Qu 0Q) <= K. Applying (2.6) to v in ., N Kg, we
arrive at the equalities

I S3 dS= I T3,-v,~ds= - j L3,~v,-d0'+ J. T3ivids= I T:;,-vids,
on an . K oK 2K

, Qe Kp R R

I(Sa—xas3) ds= I (T — x, T3)v;ds
E7e) F7e)

Q"ﬁ R R

=— j (Loi—x4L3)v;do + j (T~ x,Ts)v; ds.
K ok

Since T,v;=0(1/R?) and T;;v;=O0(1/R3) for ve.s/ [2], the relations (5.6) are obtained
immediately by letting R— co. '
Suppose now that (5.6) hold. Seeking the solutions of (I) and (IV) in the form of W
and V, respectively, we interpret (5.2) and (5.5) as
Wi(x)=A(x), x€0dQ,

(TV)e(x)=8(x), x€0Q,
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integral equation
- %z(x) + a'L P(x,y)z(y) ds, = A(x), x€dQ (Dir)
(in the case of (I)), and
- %z(x) + a{) T(3)D(x, y)z(y) ds, = S(x), x€0Q (N

(in the case of (IV)).

In view of (3.4), (D;,) and (N.,) are mutually adjoint, and using (3.1)«3.4) it is not
difficult to show that their index [5] is zero, whxch implies that Fredholm’s theorems are
applicable to these equations.

Multiplying (N.,); and the combination (N.),—x, X (N.,); by ds,, integrating over
0Q, and taking (3.5) into account, we obtain

ajr.z zyds=— a’L S, ds, ajs‘) (zg—~X,23)ds= — a‘L (S,—x,S5) ds. 5.7

Suppose the existence of a non-trivial solution z°(x) to the homogeneous equation
(N?), that is,

1
- EZ"(x) + | T(3)D(x, y)z°(y) ds, =0, xedQ.
aQ
Then, by Theorem 2(iii), the single layer .potential
Vo= [ D(x,y)z°(y) ds,
satisfies
1
(TVO)ex(x)=— 52°(X) + | T(0)D(x,y)z%y) ds, =0, x€dQ,
é0
and from (5.7) we find that
[ 28ds= [ (22—x,2Y ds=
9] aa

By Theorem 3(ii), ¥°e .«#. Since, according to Theorems 1 and 2(iii), we also have
L@V (x)=0, x€Q,
(TV9)(x)=0, xedQ,

the uniqueness theorem for (IV) [2] implies that V%(x)=0, xeQ,,. Theorem 2(i) now
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yields V9(x)=0, xedQ, and since L(3,)V%x)=0, xeQ,,, from the uniqueness theorem

mn’

for (I) we conclude that V°(x)=0, x € R% Finally, from (4.1) we obtain

2%x) =(TV)iu(x) = (TV)ex(x) =0, x€3Q.
This shows that (N2) has only the trivial solution. Hence, so does the homogeneous
equation (DY), which means that both (D,) and (N.) are uniquely solvable. To
complete the proof we only need to check that in the case of (IV) the solution V belongs

to «/. But this is established immediately, since the relations (4.2) hold for the density
z{x) of V by virtue of (5.6) and (5.7).

Theorem 5. The interior Neumann problem (I1) is solvable for any Holder continuous
matrix B(x) if and only if

a“;x B, ds=a£l(Ba—xaB3) ds=0. (5.8)

The solution can be expressed as a single layer potential and is unique up to a rigid
displacement (3.7).

Proof. We seek the solution in the form of V and interpret (5.3) as
(TV)in(x)=B(x), xe0Q.

By Theorem 2(iii), this means that z(x) must satisfy the integral equation
1
FAX)+ | T(0)D(x, y)z(y) ds,= B(x), xe€dQ, (Nin)
é

for which we can again verify that the index is zero.
It is easy to check that a matrix C of the form (3.7) satisfies

uax)c(x) = 0’ X € Qim
T(0,)C(x)=0, xe€dQ.
Therefore, by (3.6), we have the representation

C(x)= — a";z P(x,y)C(y)ds,, xeQ

Since the right-hand side above is a double layer potential, letting x—x,edQ and
making use of Theorem 2(ii) we obtain

1
7 Cxo)+ | Plxo, )C(y) ds, =0, (59)
a0
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which means that C is a solution of the adjoint homogeneous equation. Clearly, v,
where

v =(1,0, —x,), v@*=(0,1, —x,), v?®*=(0,0,1),

are linearly independent solutions of the latter, so the homogeneous equation (N2) has
at least three linearly independent solutions u®. Just as in [4], we can prove that {u®}
is a complete system of such solutions for (N{,), hence, so is {v?} for (5.9). This implies
that (N,,) is solvable if and only if

{ v9*Bds=0,
i

which is equivalent to (5.8).
The last part of the statement of the theorem is obvious.

Remark. Taking into account (1.1) and the averaging procedure employed to derive
the simplified two-dimensional bending equations, it can be shown that in the case of
both Neumann problems (II) and (IV) the conditions (5.6) and (5.8) imply that the total
force and moment across dQ must be zero.

Theorem 6. The exterior Dirichlet problem (1II) has a unique solution for any Holder
continuous matrix R(Xx).

Proof. We assume that the systems of functions {y®} and {v”} mentioned in the
proof of Theorem 5 have been bi-orthonormalized (by means of a procedure similar to
that used in [4]) and seek the solution of (III) in the form W+ Cp%), where W is a
double layer potential of unknown density z and

Ci= [ p"*Rds. (5.10)
prY
Then Theorem 2(ii) yields
1 .
3 z2(x)+ [ P(x,y)z(y)ds,=R(x) - CyI(x), x€Q. (D.,)
P

In view of (3.4), this equation is adjoint to (N;,), hence its index is zero. From the
definition of the C; in (5.10) we see that

[ ¥ R—-C)ds=0,
i

which implies that (D,,) is solvable. Also, by Theorem 3(i), We &/, and since Cy® is a
rigid displacement of the form (3.7), it follows that W+ Cy¥ e o', as required.
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