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Abstract
Experimental game theory studies the behavior of agents who face a stream of one-
shot games as a form of learning. Most literature focuses on a single recurring iden-
tical game. This paper embeds single-game learning in a broader perspective, where 
learning can take place across similar games. We posit that agents categorize games 
into a few classes and tend to play the same action within a class. The agent’s cat-
egories are generated by combining game features (payoffs) and individual motives. 
An individual categorization is experience-based, and may change over time. We 
demonstrate our approach by testing a robust (parameter-free) model over a large 
body of independent experimental evidence over 2 × 2 symmetric games. The model 
provides a very good fit across games, performing remarkably better than standard 
learning models.
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1  Introduction

Experimental game theory studies patterns of behavior for agents playing games. 
In particular, the dynamics and evolution of choices from players who face a 
stream of one-shot games is usually viewed as an instance of learning: agents 
refine their play as they gather more experience.

There are two major approaches to learning in games: reinforcement-based and 
belief-based (Feltovich, 2000). Reinforcement learning presumes that over time 
players tend to shift their play towards actions that have earned higher payoffs in 
the past (Roth & Erev, 1995; Erev & Roth, 1998). Belief-based models require a 
player to form beliefs about her opponents’ play and choose actions with higher 
expected payoffs (Boylan & El-Gamal, 1993). More recently, the two approaches 
have been blended by experience-weighted attraction learning and its later vari-
ants (Camerer & Ho, 1999; Ho et al., 2007).

A dominant research theme has been to develop tractable models that describe 
(and predict) aggregate and individual play over time. This program has enjoyed 
a qualified success. There are simple learning models that can track “some move-
ments in choice over time in specific game and choice contexts” (Camerer & Ho, 
1999). While much work has gone into the calibration of parametric models fit-
ting single experiments, no general theory has yet emerged.

A body of research fixates on the special case where agents face a stream 
of identical games played against different opponents. The comment by Craw-
ford (2002,  p.  11) still rings true: “almost all analyses of learning, theoretical 
or experimental, have concerned learning to play a single, fixed game, with past 
plays perfectly analogous to present ones, and past behavior taken to be directly 
representative of likely present behavior.”

This paper puts forth a novel approach, with the goal of contributing to the 
study of learning over similar games played against different opponents. The key 
idea is that agents (learn to) categorize games and choose the same action for 
all the games placed in the same category (Mengel, 2012). Categories are based 
on the individual experience: two agents may have different categorizations, and 
these may change over time.

We demonstrate our approach with a simple model that simultaneously 
describes (and predicts) aggregate play over a large set of independent experi-
ments from the literature, each based on a stream of identical 2 × 2 symmetric 
games. Our main theoretical concern is robustness and generality, rather than ex 
post calibration over a single experiment: therefore, we apply the same parameter-
free version of our model over all these independent experiments simultaneously.

We test our results against suitable variants of the three major learning algo-
rithms: experience weighted attraction, fictitious play, and reinforcement learn-
ing. The simulations based on our model match the experimental data on (overall 
and round-by-round) aggregate play and on the evolution of empirical behav-
ior remarkably better than the competitors. We conclude that our simple model 
outperforms the major learning algorithms across a large body of evidence over 
identical games.
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Having validated our approach over identical games, we test it against the (so far) 
scant experimental evidence over similar games. Our model describes the empirical 
evidence better than the strongest competitor. Moreover, it is the only one that can 
reproduce the rapid adjustments in play from an individual agent who reacts to dif-
ferent payoffs in a stream of similar games.

Related Literature. The literature on strategic interactions influenced by simi-
larities is quite diverse, but there are a few unifying themes. The first theme is 
that players have a coarse understanding of their environment, usually because of 
bounded rationality or cognitive constraints: they cannot discriminate some ele-
ments and bundle them into categories or analogy classes. The Analogy-based 
Expectation Equilibrium (Jehiel, 2005) and many of its variants (Jehiel, 2020) 
assume that players have a coarse understanding of their opponents’ moves, and thus 
rely on "averages" for each analogy class. Mullainathan et  al. (2008) and Hagen-
bach and Koessler (2020) study how a coarse understanding of the message space 
affects persuasion and cheap talk, respectively. Gibbons et al. (2021) analyze how a 
shared coarse understanding may facilitate or impede cooperation. Grimm and Men-
gel (2012) provides experimental evidence on how complexity and feedback affect 
whether agents’s coarse understanding lead them to bundle their beliefs about oppo-
nents’ moves or their own choice of actions across similar games.

A second theme is similarity-based reasoning, used to draw inferences and 
decide a course of action across different situations. The seminal contribution is 
case-based decision theory (Gilboa & Schmeidler, 1995, 2001). Steiner and Stew-
art (2008) demonstrates how similarity-based reasoning can spread “contagiously” a 
mode of play across increasingly different global games. Similarity-based reasoning 
is also invoked to explain experimental evidence on the emergence of “conventions” 
(Rankin et al., 2000; Van Huyck and Stahl 2018). These contributions are consistent 
with agents learning within the bounds of their coarse understanding or their simi-
larity judgments, but do not tackle the issue of learning categories or similarities for 
games.

This goal characterizes the third theme. Mengel (2012) applies evolutionary 
learning to analyze how agents’ categorizations over a set of games change and pos-
sibly stabilize. Heller and Winter (2016) recast such categorizations as part of the 
agents’ strategic options. These works assume a quite small set of competing cat-
egorizations. Recent works expand agents’ search over wider sets of categorizations: 
LiCalzi and Mühlenbernd (2019) study the evolution of binary interval partitions 
over a space of games that can be mapped to a one-dimensional interval; Daskalova 
and Vriend (2021) model the categorization of the player’s own actions in a one-shot 
game under reinforcement learning, and test its fit with the experimental evidence. 
Our paper advances a simple mechanism to generate (and adapt) individual prob-
ability distributions over alternative categorizations, validated by a competitive test 
over independent experimental evidence.

The fourth theme collects a few ambitious attempts to consider learning to reason 
across similar games. Samuelson (2001) uses finite automata to model how agents 
may select among their stock of models what works better across different games. 
Lensberg and Schenk-Hoppé (2021) recast this problem as the search for a solution 
concept, using genetic programming to sort out individual selections and develop 
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an aggregate solution concept. Haruvy and Stahl (2012) provide some experimen-
tal evidence that more sophisticated players tend to move from non-belief-based to 
belief-based rules of play.

2 � Categorization of similar games

Consider the payoff matrix for the row player in a symmetric 2 × 2 game:

We assume that the payoffs are positive and not all identical. The payoffs are 
arranged to favor the first row, in the sense that a > d (or, when a = d , the sum 
a + b ≥ c + d .) Actions are accordingly labeled H (high) and L (Low). Let G denote 
the set of symmetric games that fit these assumptions.

If one pays attention only to a player’s best replies (and ignores inconsequential 
ties), there are four classes of games in G ; see Rapoport and Guyer (1966) for a more 
refined classification. Broadly speaking, the four classes can be distinguished as fol-
lows: the first and second class have a unique equilibrium (in dominant strategies), 
respectively at (L, L) and at (H, H); the third and fourth class have three equilibria, 
of which two are in pure strategies, respectively on the main and on the secondary 
diagonal. We find it easier, however, to identify the four classes by their most repre-
sentative game.

When c > a and d > b , L is the dominant strategy and the game is a Prison-
ers’ Dilemma (PD), where H and L correspond to cooperation and defection; we 
denote this first class by PD. When a > c and b > d , H is the dominant strategy: the 
most representative game is the Prisoners’ Delight (DE) where H is the cooperative 
choice; we denote this second class by DE. When a > c and d > b , we have a coor-
dination game with two equilibria in pure strategies at (H, H) and at (L, L): the most 
representative example is the Stag Hunt (SH) where H is the payoff dominant choice 
and L is the safe choice; we denote this third class by SH. When c > a and b > d , we 
have an anti-coordination game with two equilibria in pure strategies at (H, L) and at 
(L, H): the most representative example is the Chicken Game (CG); we denote this 
fourth class by CG. The following table summarizes the four classes.

We use these four sets of games as similarity classes: two games from the same 
class are similar (because they have the same best replies), but games from differ-
ent classes are dissimilar. For instance, PD usually typifies obstacles to cooperation 
while SH exemplifies issues of coordination.

A player facing a game from G has to decide whether to play H or L. We model 
this decision as if the player is sorting the games into two main categories: the 

H L

H

L

a b

c d

d > b d < b

a > c

a < c

SH DE

PD CG
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H-group and the L-group. If the player assigns a game to the H-group, he chooses H; 
otherwise, he chooses L.

We propose a model of (stochastic) categorization by which a game is attrib-
uted to either group. Our model has three distinctive elements: (1) the assignment 
depends both on the objective features of the game and on the subjective attitudes 
of the player; (2) the assignment rule is stochastic, so that a game may generally 
be assigned to either class with some (varying) probability; (3) the assignment may 
change over time, because the player reviews his attitudes in view of the past history 
of play.

The model sorts games from G into an H-group and a L-group. Within a similar-
ity class, this sorting may be viewed as a reduced form for the process of choosing 
to play different strategies in similar games. When the model is applied over games 
from different similarity classes, the model allows for some transfer of experience 
across distinct classes of similarity (Knez & Camerer, 2000).

Our work is inspired by an impressive meta-study of 96 laboratory experi-
ments concerned only with the PD class, where Mengel (2018) identifies three key 
descriptors for predicting behavior in PDs: temptation, risk and efficiency. These 
three features take values in [0, 1] and prove very useful to predict the dynamics of 
cooperation rates when agents face a stream of identical PD games. Mengel’s three 
descriptors suggest that actual players pay attention to three elements: the best reply 
when the opponent plays H, the best reply when she plays L, and the two payoffs a 
and d on the main diagonal.

Best replies are standard fare in game theory, whereas the importance of the com-
mon payoffs on the main diagonal is usually underplayed. A theoretical argument 
supporting the relevance of symmetric (non-equilibrium) outcomes in symmetric 
games, suggested by Rapoport (1966) and taken up by Davis (1977), has been popu-
larized under the name of superrationality by Hofstadter (1983).

We keep Mengel’s terminology but extend her definitions from the PD class to 
the larger set G . All the descriptors are positively or negatively signed, and normal-
ized either to [0, 1] or to [−1, 0] after dividing them by the greatest payoff in the 
game M = max{a, b, c, d} . We describe a game from G using three features:

Temptation: T =
c−a

M
is the normalized gain/loss when playing L (instead of H) against H;
Risk: R =

d−b

M
is the normalized gain/loss when playing L (instead of H) against L;
Efficiency: E =

a−d

M
is the normalized gain from coordinating on H versus L.
Note that E is always positive by construction, whereas T and R can take either 

positive or negative values. The following table summarizes their signs for the four 
similarity classes in G.

R > 0 R < 0

T < 0

T > 0

SH DE

PD CG
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The three features (T, R, E) are extrinsic: they describe characteristics of the game 
that are independent of context and agents’ experience. The sign of each feature is 
constant within a class; for instance, we have T > 0 and R > 0 in any game from PD, 
whereas T < 0 and R > 0 in any game from SH. We can use the three extrinsic fea-
tures (from now on, e-features) to locate any PD in a 3-dimensional PD-simplex, by 
mapping the vector (T, R, E) to the point

Under this mapping, two games from the same class with proportional e-features 
(T, R, E) correspond to the same point. Likewise, for each class C =PD, SH, CG, 
DE, we can associate a game from C to a point in the C-simplex. The four C-sim-
plices are formally similar, but the original T and R descriptors carry different signs 
for different classes of games.

Within each similarity class, higher proximity of the e-features (T, R, E) opera-
tionalizes higher similarity of the corresponding games. A categorization ascribes 
games to a preferred action (H or L). Figure 1 portrays three examples, where the 
boundary between two categories is typically a curve.

3 � Feature‑weighted categorized (FWC) play

An agent playing a one-shot game has to decide whether to choose H or L. Our goal 
is to describe the experimental results from others’ studies and predict the probabil-
ity of choice for either action (Erev and Roth 1998).

We model how an agent categorizes games and ascribes them to a preferred 
action. When an agent evaluates the strength of the arguments favoring H versus L, 
he weighs the e-features of the game by the strength of three individual motivations: 

( |T|
|T| + |R| + |E| ,

|R|
|T| + |R| + |E| ,

|E|
|T| + |R| + |E|

)

Fig. 1   The red and blue lines 
describe two typical catego-
rizations for the PD-simplex: 
the red agent cooperates when 
efficiency (E) is high; the blue 
agent ignores risk (R) and coop-
erates if efficiency is greater 
than temptation ( E > T  ). The 
green line gives a typical cat-
egorization for the SH-simplex: 
the agent plays safe when risk 
(R) is high H

L

H
L

LH

|R| |T |

E
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Fear:	� Avoid the lower payoff if the opponent plays L;
Greed:	� Attain the higher payoff if the opponent plays H;
Harmony:	� Coordinate on the best symmetric payoff (on the main diagonal).

 We denote the relative strength of each motivation by three weights f , g, h ≥ 0 , 
with f + g + h = 1 . The relative strengths (f, g, h) of the motivations are intrinsic 
features (from now on, i-features) of the agent, because they pertain to his indi-
vidual attitude and experience.

The e-features of a game and the i-features of an agent interact in ordered 
pairs: risk with fear, temptation with greed, and efficiency with harmony. We 
model their pairwise complementarity using a simple product operator. Each of 
the three interactions generates an agent’s disposition towards playing H or L in 
[0, 1]:

dR = f ⋅ R is the disposition to avoid the lower payoff when the opponent plays L;
dT = g ⋅ T  is the disposition to achieve the higher payoff when the opponent plays 
H;
dE = h ⋅ E is the disposition to coordinate on the best symmetric payoff.

The disposition dE is positive by construction and attracts the agent towards play-
ing H (or restrain the agent from playing L). The dispositions dR and dT may instead 
be positive or negative. A positive disposition dR or dT attracts the agent towards 
playing L (or restrain the agent from playing H); a negative disposition dR or dT 
restrain the agent from playing L (or attracts the agent towards playing H). We 
denote the positive part of a number x by (x)+ = max(0, x) , the negative part by 
(x)− = max(0,−x) , and its absolute value by |x|.

The agent’s inclination to associate a game with the choice of L (or H) combines 
the signed effects of the three dispositions. This can be succinctly expressed by 
assuming that the probability Pi(H) that an agent i with i-features (f , g, h)i chooses H 
in a game G with e-features (T ,R,E)G correlates with a positive disposition towards 
efficiency and with negative dispositions towards temptation and risk:

Consequently, the probability that L is chosen (or, equivalently, H is not chosen) cor-
relates positively with positive dispositions towards temptation and risk

This formulation unifies the directions of influence for each class.
Given a fixed set (f,  g,  h) of i-features, this (stochastic) choice rule uses the 

i-features of a game to select an action. When Pi(H) = 1∕2 , an agent is equally 
likely to attribute action H or L to a game: the equation Pi(H) = 1∕2 defines an 
ideal boundary (IB) in the simplex that separates the region where H is more 
likely from the region where L is more likely. Under our assumptions, the ideal 

(1)Pi(H) =

dE + (dT )
−
+ (dR)

−

dE + |dT | + |dR|

Pi(L) = 1 − Pi(H) =

(dT )
+
+ (dR)

+

dE + |dT | + |dR|

Downloaded from https://www.cambridge.org/core. 22 Aug 2025 at 23:53:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1059

1 3

Feature‑weighted categorized play across symmetric games﻿	

boundary IB is linear. As we move away from IB, the probability max(Pi(H),Pi(L)) 
of the modal choice increases; see Fig. 2a.

The choice rule of the model allows for special cases, known in the literature. 
For example, an agent with no harmony motivation ( h = 0 ) has a zero disposition 
towards efficiency ( dE = 0 ) and therefore always defects in a PD; this behavior is 
frequently observed in laboratory experiments (Andreoni & Miller, 1993). More-
over, if this agent is equally motivated by fear and greed ( f = g = 0.5 ), she would 
choose the risk-dominant option in any SH. As a different example, an agent with 
no greed motivation ( g = 0 ) would be unable to distinguish PD from SH if the 
risk and efficiency features take the same values (Devetag & Warglien, 2008).

The choice rule (1) describes the probability that an agent facing a game G at 
a given period chooses H or L. However, the strengths of his motivations (and 
hence the agent’s i-features) change over time in accordance with his past experi-
ence. Therefore, the probabilities may be updated after each play.

Our update rule distinguishes three (qualitative) situations. Two are valid 
across all games, while the third applies to two classes of games: each update rule 
concerns one of three motivations. First, after a recent history of opponents play-
ing L, the agent becomes more concerned about avoiding the lower payoff against 
L: this increases the weight f for fear. Second, after a recent history of opponents 
playing H, the agent is more tempted to achieve the higher payoff against H: this 
increases the weight g for greed. Third, after the opponent’s last choice of H, 
the agent feels more motivated to contribute towards the efficient symmetric pro-
file (H, H) if this yields the best possible outcome (as it is for SH and DE): this 
increases the weight h for harmony.

We assume that the update rule is based on the last observed opponent’s action st
j
 . 

At time t, the current strengths (f , g, h)i for i are updated using the rule

P (H) = 1
2

higher P (H)

lower P (H)

|R| |T |

E

(a) The ideal boundary of the PD class

P
(H

)
=

0
.2

3

P
(H

)
=

0
.1

2

G
•

|R| |T |

E

(b) Moving the ideal boundary of the PD class

Fig. 2   (a) The blue line depicts the ideal boundary (IB) in the PD-class for weights 
(f , g, h) = (1∕3, 1∕3, 1∕3) , where P(H) =

1

2
 . (b) If the weights change to (0.5, 0.3, 0.2), the IB shifts from 

solid blue to dashed blue. The distance from a game to IB is inversely proportional to P(H): f.i., if G has 
payoffs a = 7, b = 0, c = 12, d = 4 , then P(H) ≈ 0.23 for the solid IB and P(H) ≈ 0.12 for the dashed IB
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and afterwards they are divided by (1 + �i) to renormalize their sum to 1. After an 
update, the IB shifts and changes the implicit categorization used by the agent; see 
Fig. 2b.

The update rule reacts to the opponent’s play by increasing the weight of the con-
cern for best replying to the last observed move. Moreover, when the opponent’s last 
move H can be plausibly interpreted as an attempt to coordinate on the highest pay-
offs, the update rule also increases the weight for harmony. The magnitude �i of the 
update represents the learning rate (or the reaction speed) of agent i. Because games 
closer to the IB are more informative, we let this rate decrease in the probability of 
the modal choice and set �i = 1 −max(Pi(H),Pi(L)).

4 � FWC play over the PD and SH classes

The largest number of experiments on learning in symmetric 2×2 games concerns 
games from the PD-class and from the SH-class. This section covers a comprehen-
sive examination of the FWC dynamics that focuses on these two game classes. We 
investigate (i) experiments of identical games, (ii) experiments of similar games that 
belong to the same game class, and (iii) an experiment that involves PD and SH 
games. In the subsequent section, we test our algorithm against the rather sparse 
empirical evidence of games from other classes, including chicken games and some 
3 × 3 games.

4.1 � Identical games

We test the descriptive and predictive power of FWC dynamics against laboratory 
evidence collected by others. We selected all the 26 PD treatments in Mengel (2018) 
and other 19 SH treatments from the experimental literature that fulfill three criteria: 
(a) the stage game has positive payoffs; (b) the stage game is played over multiple 
rounds; (c) players are paired using the random matching protocol. See Table SM.1 
for a full list of the selected games. (The prefix SM refers to items listed as Supple-
mentary Material in the Online Appendix, for which a link is provided at the end of 
the paper.)

After mapping each game to its three e-features (T,  R,  E), Fig.  3 shows the 
26 PD games (left panel) and the 19 SH games (right panel) projected on the 
(T, R, E)-simplex.

(2)(f �, g�, h�)i =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
f + �i, g, h

�
i
if the last opponent’s choice is (Lt

j
)

�
f , g + �i, h

�
i
if the last opponent’s choice is (Ht

j
)

�
f , g, h + �i

�
i
if the last opponent’s choice is (Ht

j
) and

(H,H) gives the highest possible payoff
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We evaluate the performance of the FWC model by means of a comparative 
test against three major learning algorithms: experience weighted attraction 
(EWA), fictitious play (FP), and reinforcement learning (RL). As a benchmark, 
we also simulate the outcome for two fixed strategies: the coin flip (CF) that in 
every round plays each action with equal probability, and the Nash equilibrium 
(NE) that plays L in any game from the PD class and the equilibrium in mixed 
strategies in any game from the SH class.

We implemented plain-vanilla (parameter-free) versions for each learning 
algorithm where agents’ choices are stochastic, making no attempt to calibrate a 
model to the empirical evidence and trying our best to avoid biases. For instance, 
each agent was initialized with the same equal weights (f = g = h = 1∕3) in FWC. 
A full description of the three algorithms (FP, RL, EWA) can be found in Appen-
dix A.1. (The prefix A refers to items in the Online Appendix, for which the link 
is provided at the end of the paper.)

We ran computer simulations matching the original experimental settings: in 
particular, we replicated payoffs, number of participants, and number of repeti-
tions. For each algorithm, we computed the overall mean squared error (MSE) 
between simulated data and experimental data, defined by

where n is the number of experiments, Ek is the overall average rate of H-play 
(H-rate, for short) for the game in the k-th experiment, and Sk is the overall aver-
age H-rate for the same game after 1000 simulations (Selten, 1998; Feltovich, 2000; 
Chmura et al., 2012).

Figure 4 summarizes the results concerning Q1. (The actual values are listed 
as Table 1.) The two rightmost columns in each panel correspond to the CF and 
NE benchmarks and can be used to gauge the improvement brought by the models 

Q1 =
1

n

n∑
k=1

(
Ek − Sk

)2

|R| |T |

E

••
••••

••

••

••

••

••••
•• •••• •

•

•

•

•

••

•

•

•

•

•

•

•

PD games
|R| |T |

E

••

••
••

••

••

••
••

••••
••

••

•••

•
•

•

•

••

SH games

Fig. 3   We test 26 PD games (left panel) and 19 SH games (right panel) for overall average rates of 
H-play. Additionally, we test 12 of the PD games and 12 of the SH games (red rings) for round-by-round 
average rates of H-play. Experimental evidence for these 45 games is collected from 16 different studies. 
See Table SM.1 for a full list of games and sources
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in the four leftmost columns (FWC, EWA, FP, RL). Panel 4a shows the Q1 values 
over 26 PD games, Panel 4b shows the Q1 values over 19 SH games: FWC out-
performs the other models for both classes, scoring slightly better than the second 
best algorithm (EWA). Panel 4(c) shows the Q1 values over the whole set of 45 
games.

This first batch of results concerns the overall rates of H-play, averaged across agents 
and over all rounds of play. The time average, however, may disguise the dynamics of 
behavior. For instance, if the H-rate in the experiment decreases linearly from 1 to 0 
and the simulated H-rate increases linearly from 0 to 1, the dynamics would diverge 
but the MSE as measured by Q1 would be nil. A more exacting measure of distance 
between experimental data and simulated data is the round-by-round mean squared 
error Q2 , defined by

Q2 =
1

n

n∑
k=1

(
1

Tk

Tk∑
t=1

(
Et
k
− St

k

)2)

Table 1   Values of the mean 
square distances Q

1
 and Q

2
 for 

FWC, EWA, FP, RL, CF and 
NE.

Each data point is based on 1000 simulation runs. These data are 
used to obtain Figs. 4,  6

FWC EWA FP RL CF NE

Q
1
 (26 PD) 0.029 0.033 0.031 0.044 0.088 0.073

Q
1
 (19 SH) 0.043 0.048 0.081 0.074 0.087 0.238

Q
1
 (all 45) 0.035 0.04 0.052 0.057 0.087 0.143

Q
2
 (12 PD) 0.021 0.026 0.028 0.04 0.102 0.063

Q
2
 (12 SH) 0.023 0.077 0.099 0.116 0.117 0.249

Q
2
 (all 24) 0.022 0.055 0.063 0.078 0.11 0.156

Q1

0

0.02

0.04

0.06

0.08

0.1

FWC EWA FP RL CF NE

(a) 26 PD games

Q1

0

0.02

0.04

0.06

0.08

0.1
0.24

FWC EWA FP RL CF NE

(b) 19 SH games

Q1

0

0.02

0.04

0.06

0.08

0.1
0.14

FWC EWA FP RL CF NE

(c) all 45 PD+SH games

Fig. 4   Comparative evaluation between experimental results and simulated data over six algorithms, 
using the mean square deviation Q

1
 for the overall average rate of H-play. The six algorithms are: feature 

weighted categorization (FWC), experience weighted attraction (EWA), fictitious play (FP), reinforce-
ment learning (RL), coin flip (CF), and Nash equilibrium (NE). The three panels show the values for Q

1
 

computed over: (a) 26 PD games, (b) 19 SH games, and (c) all 45 games together (black dots in Fig. 3). 
When the value is off scale, we add a number on top of the bar
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where n is the number of experiments considered, Et
k
 and St

k
 are respectively the 

average H-rate in the t-th round of the k-th game from the experiment and from 1000 
simulations, and Tk is the number of experimental rounds for the k-th game.

We ran a second comparative test using Q2 over a smaller dataset, because the 
round-by-round H-rates are available only for 12 PD games and 12 SH games 
from our original selection of 45. These games are marked with red rings in 
Fig. 3. Table SM.2 provides the full list of values for the round-by-round average 
cooperation rates in each experiment we tested. Figure 5 provides an exemplary 
selection of the round-by-round average H-rates from three experiments. The evi-
dence from 24 experiments is depicted in Fig. SM.1 (12 PD games) and Figure 
SM.2 (12 SH games).

EXP FWC EWA FP RL

Game 02: (7, 0, 12, 4)

1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%

Game 03: (100, 0, 80, 80)

1 2 3 4 5 6 7 8 9
0%

20%

40%

60%

80%

100%

Game 04: (55, 25, 35, 35)

1 2 3 4 5 6 7 8 9
0%

20%

40%

60%

80%

100%

Fig. 5   Round-by-round average H-rates over three identical games: Game 02 (left) is PD, Game 03 
(center) is SH and participants learn to play L, Game 04 (right) is SH and participants learn to play H. 
We depict the experimental results (solid black line) and the simulated H-rates averaged over 1000 simu-
lation runs for FWC (red line), EWA (blue line), FP (orange line) and RL (green line)

Q2

0

0.03

0.06

0.09

0.12

0.15

FWC EWA FP RL CF NE

(a) 12 PD games

Q2

0

0.03

0.06

0.09

0.12

0.15
0.25

FWC EWA FP RL CF NE

(b) 12 SH games

Q2

0

0.03

0.06

0.09

0.12

0.15

FWC EWA FP RL CF NE

(c) all 24 PD+SH games

Fig. 6   Comparative evaluation of the mean squared deviation between experimental results and simu-
lated data using Q

2
 for the round-by-round average rate of H-play, over the same six algorithms of Fig. 4. 

The three panels show the values for Q
2
 computer over: (a) 12 PD games, (b) 12 SH games, and (c) all 

24 games together (red rings in Fig. 3). When the value is off scale, we add a number on top of the bar
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Figure  6 summarizes the results for Q2 , confirming the Q1 measures; see 
Table  1 for the actual values. Panel  Fig.  6a shows the Q2 values over 12 PD 
games: FWC performs clearly better than the other algorithms. Panel  6b shows 
the Q2 values over 12 SH games: the FWC algorithm clearly outperforms all other 
algorithms, delivering a Q2 less than 30% of the second best (EWA). Panel Fig. 6c 
shows the Q2 values over the whole set of 24 games.

Finally, we compare the ability of FWC and the other four learning algorithms to 
match two stylized facts concerning the evolution of the H-rate in a PD or in a SH, 
respectively; see Flache and Macy (2006) for an insightful discussion. The initial 
H-rate for both PD and SH is positive. But in a PD this rate decreases over time as if 
the players move towards the only equilibrium. In a SH, instead, this rate approaches 
one or zero as if the players coordinate on one of the two equilibria in pure strate-
gies. We summarize these stylized facts with the following two propositions, num-
bered for later reference. 

(�1)	� The H-rate in a PD declines over time.
(�2)	� The H-rate in a SH approaches zero or one over time.

We use the following consistent approach to evaluate the ability of the algorithms 
to match the content of each proposition. We choose an appropriate measure of fit-
ness. We let v0 ≥ 0 be the higher fitness value achieved by either of the two bench-
marks (NE or CF) and we let v1 be the fitness value corresponding to a perfect match 
with the empirical data. Given the fitness value v� achieved by an algorithm � , we 
assess it by its (relative) rate of improvement:

Conventionally, we say that an algorithm is consistent with a proposition Ai if its 
percentage rate of improvement is at least 0.5: that is, if it yields data that improve 
over the best benchmark by at least 50% . In the next section, we use the same 
approach to test three other propositions summarizing the experimental evidence 
over similar games.

Concerning A 1 and A 2 , we evaluate the fitness using 1 − Q2 . For example, v0 is 
the higher value for 1 − Q2 achieved by either benchmark (NE or CF) and v1 = 1 
is the value for 1 − Q2 corresponding to a perfect match with the empirical data 
( Q2 = 0 ). Specifically, the test for A 1 (and, respectively, for A 2 ) considers the 12 PD 
(SH) experiments for which the round-by-round average H-rates are available; see 
Table SM.2.

The first two rows in Fig. 7 summarize our results for A 1 and A 2 , respectively. 
Each column shows graphically the percentage rate of improvement for the four 
algorithms: feature-weighted categorized play (FWC), experience weighted attrac-
tion (EWA), fictitious play (FP), and reinforcement learning (RL). We find that 
FWC, EWA and FP are consistent with A 1 (first row); but only FWC is consistent 
with A 2 (second row).

v� − v0

v1 − v0
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Overall, these comparative evaluations over a reasonably rich dataset of experi-
ments strongly suggest that FWC is an effective approach to describe or predict the 
average H-rates for games in the PD or SH class, in a setting where agents face the 
same identical game. We view this positive outcome of our tests in a single-game 
setting as a necessary check of soundness. From a theoretical viewpoint, we believe 
that the real strength of FWC (compared with other models in the literature) lies in 
its ability to model the richer and more interesting case where agents face a stream 
of similar games. The next section tests the performance of FWC in describing 
learning over similar games, using experimental evidence independently collected 
by others; see Table SM.3 for the full list.

4.2 � Similar games

The experimental evidence over participants playing a stream of similar one-shot 
games is sparse, and we look forward to more research in this area. We use only data 
available in the literature and we apply the same methodology used for A1 and A2 , 
comparing the performance of the four learning algorithms with respect to three dis-
tinct propositions concerning play over similar games in a multi-game environment.

Schmidt et  al. (2001) report an experiment where participants played 6 differ-
ent PD games in a sequence of 24 rounds. The solid black line in Fig.  8 depicts 
the round-by-round H-rate observed over 4 experimental sessions with 8 partici-
pants each; see SQ1 of Table SM.4. Its jagged shape makes it apparent that a sizable 

A5

A4

A3

A2

A1

FWC EWA FP RL

-0.33

-1.08

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 7   Visual summary for five propositions (rows) across four algorithms (columns). Each bar depicts 
the relative rate of improvement of an algorithm over the best benchmark (either CF or NE) in match-
ing the empirical evidence for a proposition. An algorithm is consistent with a proposition if its rate of 
improvement is above 0.5 (green), and is not otherwise (red). See Table 3 for the actual values
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number of participants make rapid adjustments to their play according to the payoffs 
of the game they face. We summarize this effect in the following proposition. 

(�3)	� The H-rate may switch rapidly across similar games.

The FWC algorithm is sensitive to the e-features of the current game and thus 
can yield rapid adjustments. The solid red line in Fig. 8 depicts the round-by-round 
H-rate generated by FWC for the same sequence of games as in Schmidt et  al. 
(2001). Comparing it against the black solid line shows that the H-rate moves in the 
same direction, with jumps of similar magnitude. None of the other three learning 
algorithms can deliver rapid adjustments.

We test for A3 following the same approach described above, using correlations 
over changes in H-rates (see Appendix A.2 for details about the definition and 
Table 2 for the correlation data). As shown in the third row of Figure 7, the test con-
firms that only FWC is consistent with A3.

Rankin et al. (2000) report an experiment where six groups of eight participants 
played a sequence of 75 similar stag hunt (SH) games under random pairwise match-
ing. In each of the games, the payoff matrix for the row player is the following:

with 0 < x < 1 . These games differ only in the value of x: they can be viewed as ele-
ments of a one-dimensional space of SH games, fully ordered by x. Note that each 
game has T = E.

H L

H

L

1 0

x x

EXP FWC EWA FP RL

update steps
2 4 6 8 10 12 14 16 18 20 22 24

0%

10%

20%

30%

40%

50%
co
op

er
at
io
n
ra
te

Fig. 8   Dynamics of the H-rates over different PD games. Experimental data (solid black line) exhibit 
rapid adjustments. Only FWC (solid red line) matches this pattern
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Each experimental session exhibits a similar pattern. Players initially play H 
more often in games with low x-values ( x < 0.5 ) than in games with high x-values 
( x > 0.5 ). Over time, this difference disappears; in the last rounds, participants tend 
to play H for (almost) every game as if they had developed a convention to play 
H throughout. (Participants occasionally seem to learn the opposite convention and 
focus on L; see Van Huyck and Stahl (2018)).

The first column in Fig.  9 depicts the variation in H-rates for low-x and high-
x games between the initial ten rounds and the final ten rounds, averaged over all 
experimental runs; see SQ2 in Table SM.4. We summarize this effect in the follow-
ing proposition. 

(�4)	� Play over distant (but similar) games is initially different but converges to a 
convention.

The four columns in Fig. 9 after the first show the data generated by 1000 simula-
tions for the same experimental setup. Each column represents one of the four learn-
ing algorithms. Only FWC matches both the initial gap in H-rates and the conver-
gence to the H-convention. EWA delivers the H-convention, but fails to exhibit an 
initial gap.

We test for A4 , using the average mean square distance for the ratio of the differ-
ences in average H-rates; see Appendix A.2 for details and Table 2 for the perfor-
mance values. As shown in the fourth row of Fig. 7, the test confirms that both FWC 
and EWA are consistent with A4.

4.3 � Dissimilar games

Finally, we consider a situation where agents first encounter identical (or simi-
lar) games from the same class, and immediately after play identical (or similar) 

H
-r
at
e

x<0.5

x>0.5

0%

20%

40%

60%

80%

100%

EXP FWC EWA FP RL

Fig. 9   Change in H-rates from the first 10 to the last 10 rounds for low-x SH games (x<0.5, red lines) 
and high-x SH games (x>0.5, blue lines) averaged over all experimental sessions and over 1000 simula-
tions for each algorithm
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games from a different class. This setup has been used to explore the possibility 
of precedent transfer, by which the mode of play developed over the first class 
may affect the mode of play adopted over the second class. For example, after 
playing coordination games and developing a convention that focuses on the 
payoff-dominant outcomes, agents facing PD games exhibit much higher H-rates 
(Knez & Camerer, 2000; Rusch & Luetge, 2016). When some transfer occurs, the 
literature has often labelled it as a spillover effect (Ahn et al., 2001; Peysakhovich 
& Rand, 2016).

The most detailed experimental study that is currently available and fits our 
setup is Duffy and Fehr (2018). They consider indefinite play of identical PD or 
SH games under the random matching protocol and report H-rates over four treat-
ments, each involving one PD game and one SH game. The payoffs for all games 
involved are constant, except for the “temptation” payoff denoted as c in this 
paper. In a nutshell, they report little evidence of transfer precedent: in particular, 
they find no evidence for efficient play in SH to carry over to PD, and only two 
instances where inefficient play transfers from PD to SH.

This evidence is generally in contrast with the related literature on learning 
spillovers and on precedents as selection devices; see the review in Duffy and 
Fehr (2018,  Section  2). Commenting on this discrepancy, the conclusions in 
Duffy and Fehr (2018) hypothesize that “One possible explanation for the lack 
of precedent transfer in our experiment is that our experimental design […] may 
have triggered an experimenter demand effect wherein subjects felt compelled to 
respond to the change by playing differently.” The occurrence of an experimenter 

Table 2   Performance of FWC, EWA, FP, RL, CF and NE for the experiments across similar games.

We use the fitness measures defined in A.2. Each datapoint is based on 1,000 simulation runs

measure FWC EWA FP RL CF NE

PD sequence r 0.727 0.233 0.017 −0.11 0 0
SH sequence Q

4
0.329 0.332 0.971 0.475 0.721 0.756

SH-PD sequence (no reset) Q
2

0.143 0.231 0.244 0.152 0.09 0.158
SH-PD sequence (reset) Q

2
0.029 0.078 0.145 0.086 0.09 0.158

Table 3   Values of the relative 
scores for propositions A

1
 to A

5
 

over the four algorithms FWC, 
EWA, FP, and RL.

The lowest benchmark (either CF or NE) is marked by 0. Scores 
above the benchmark level of 0.5 are in boldface. Each data point is 
based on 1,000 simulation runs. These data are used to obtain Fig. 7

FWC EWA FP RL CF NE

A
1

0.667 0.492 0.556 0.365 – 0
A

2
0.803 0.342 0.154 0.009 0 –

A
3

0.727 0.233 0.017 −0.11 – 0
A

4
0.542 0.54 −0.347 0.341 0 –

A
5

0.673 0.132 −0.611 0.045 0 –
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demand effect would (at least, partially) mark a break when a different game is 
introduced.

While more research is needed to settle this issue, we put at use the detailed 
dataset in Duffy and Fehr (2018) and compare their experimental outcomes 
against the simulated outcomes from our four learning algorithms. We consider 
two extreme cases: if there is no break when a new game is introduced, the algo-
rithms continue using the values from the last iterations; if there is a break, we 
reset these values to the initial condition. The outcomes with and without reset 
for the first sequence in Duffy and Fehr (2018) are displayed in Fig. 10. (Analo-
gous displays for all the four sequences are in Fig. SM.3.)

The two panels report the simulated outcomes for round-by-round average H-rates: 

on the left, when algorithms are never reset; on the right, when algorithms are reset 
upon introducing a game from a different class. The experimental data, depicted with a 
solid black line, are the same in both panels: the H rates over different classes are mark-
edly different, and show no spillover effect. We summarize this effect in the following 
proposition. 

(�5)	� The setup in Duffy and Fehr (2018) inhibits precedent transfer.

Figure 11 collects Q2 values for the round-by-round average H-rates of the all four 
algorithms, with and without reset (see Table 2 for exact values). The experimental out-
comes cover a total of 418 rounds, from four treatments spread over about 100 rounds 
each. The simulated data for each algorithm are based on 1000 runs for either condition 
(no reset and with reset). Comparing simulated outcomes with experimental outcomes, 
all four algorithms perform better with reset. FWC performs best in either setting.

EXP FWC EWA FP RL

update steps

PD SH PD

10 20 30 40 50 60 70 80 90 100

20%

40%

60%

80%

100%

H
-r
at
e

(a) no reset

EXP FWC EWA FP RL

update steps

PD SH PD

10 20 30 40 50 60 70 80 90 100

20%

40%

60%

80%

100%

H
-r
at
e

(b) with reset

Fig. 10   Round-by-round average H-rates over the first sequence of PD and SH games from Duffy and 
Fehr (2018). We depict the experimental results (solid black line) and the simulated H-rates averaged 
over 1000 simulation runs for FWC (red line), EWA (blue line), FP (orange line) and RL (green line). On 
the left, algorithms are never reset; on the right, they are reset upon introducing a different game
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We test for A5 assuming reset and using 1 − Q2 ; see Appendix A.2 for details. As 
shown in the fifth row of Fig. 7, the test confirms that only FWC is consistent with A5.

5 � FWC play over other game classes

We distinguish four main classes of similar games: PD (Prisoners’ Dilemma), SH 
(Stag Hunt), CG (Chicken Games), and DE (Prisoners’ Delight). The previous sec-
tion offers a qualitative comparison between FWC and three other learning algo-
rithms over PD and SH. This is based on the extensive empirical evidence collected 
in Mengel (2018) for PD, and assembled by us for SH.

This section adds three contributions: 1) an exploratory study based on the evi-
dence over CG, where FWC performs better than the competing algorithms; 2) a 
short argument about the generic equivalence of all algorithms over DE; and 3) 
some practical suggestions for extending FWC to 3 × 3 games, tested against a lim-
ited dataset. This latter extension is meant as a preliminary exercise: the complexity 
of categorizing 3 × 3 games is higher than 2 × 2 games, and not fully understood yet; 
see Selten et  al. (2003) for an early inquiry into different strategic considerations 
arising in connection with 3 × 3 games.

5.1 � Chicken games

We sifted the literature and collected five experimental studies that examine a total 
of six chicken games using the random matching protocol. Detailed information on 
the six games and relative sources is in Table SM.5. The studies provided us with 
independent data on the round-by-round average H-rates for three games and on the 
block-by-block average H-rates for other three games, where a block consists of a 
consecutive subset of rounds. The actual data are in Table SM.6.

Clearly, the dynamics of the H-rates is more jagged when data are averaged 
round-by-round than block-by-block. For instance, the left panel of Fig. 12 displays 

Fig. 11   Comparative evaluation 
of the mean squared deviation 
between experimental results 
and simulated data using Q

2
 

for the round-by-round average 
rate of H-play, without and 
with reset. The panel shows the 
values for Q

2
 computed over 418 

datapoints from four treatments

FWC EWA FP RL

0.05

0.1

0.15

0.2

0.25

m
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no reset reset
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round-by-round average H-rates for a CG, while the right panel displays block-by-
block average H rates (with block size 10) for another CG. (Analogous displays for 
all six experiments can be found in Fig. SM.4.) In both games, the equilibrium in 
mixed strategies prescribes playing H with probability 0.6.

The experimental data gravitate close to the equilibrium in mixed strategies. The 
performance of the algorithms is affected by the initial conditions and by the num-
ber of participants. We make no attempt to calibrate parameters, but all the algo-
rithms match the experimental data quite well. FWC and FP appear to track better 
how the gyrations of the H-rates affect the averages. To check this, we define the 
block-by-block mean squared error Q3 by analogy with the round-by-round mean 
squared error Q2 ; then we compute Q2 for those treatments where round-by-round 
average H-rates are available and Q3 for those where only block-by-block average 
H-rates are available, and add them up. Overall, we use 76 experimental datapoints 
over six different chicken games. A visual summary of the results is in Fig. 13; the 
actual data are given in Table 4. FWC performs best, followed by FP (Table 5).

KEYS: EXP FWC EWA FP RL

Game 50: (160, 80, 200, 20)

2 4 6 8 10 12 14 16 18 20

30%

40%

50%

60%

70%

80%

Game 49: (7, 3, 9, 0)

1-10 11-20 21-30 31-40

30%

40%

50%

60%

70%

80%

Fig. 12   Round-by-round (left panel) and block-by-block (right panel) average H-rates over two CG 
games. We depict the experimental results (solid black line) and the simulated H-rates averaged over 
1000 simulation runs for FWC (red line), EWA (blue line), FP (orange line) and RL (green line)

Table 4   Values of the mean square distances Q
2
 for FWC, EWA, FP, RL, CF and NE and the experimen-

tal results of the CG and 3 × 3 games. Each datapoint is based on 1,000 simulation runs

FWC EWA FP RL CF NE

Q
2
 (6 CG games) 0.0056 0.0148 0.0087 0.0147 0.0144 0.0069

Q
2
 (4 3 × 3 games) 0.058 0.068 0.05 0.09 0.137 0.122
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5.2 � Prisoners’ delight

Prisoners’ Delight collects games where H is the dominant strategy. When both 
players choose H, they achieve the payoff a, which is either the first-best (if a > b ) or 
the second-best (if a < b ). It easily follows that the only Nash equilibrium is (H, H). 
Moreover, both FWC and FP predict that only H is played, under any initial condi-
tion; instead, EWA and RL predict that the average rate of play for H is increasing 
over time. All algorithms make similar predictions and, in fact, it is widely believed 
that most subjects would choose to play H even in a random matching protocol.

5.3 � A foray beyond 2 × 2 games

This paper focuses on symmetric 2 × 2 games. The graceful suggestion from one 
referee prompted us to explore how FWC might extend to other games. We focus on 
symmetric 3 × 3 games, where A = [aij] is the payoff matrix for the row player when 
he plays si and the opponent plays sj . We maintain the assumptions that the pay-
offs are positive, not all identical, and that the payoffs along the main diagonal are 

Table 5   Resulting values of 
the sample tests with softmax 
versions of FWC, EWA, FP, RL, 
CF and NE on the 24 PD+SH 
games.

The upper part shows the minimum, maximum and median of Q
2
 

estimations, the lower part the minimum, maximum and median of 
corresponding optimal softmax parameter �∗ , each value based on 
100 sample experiments per learning rule

FWC EWA FP RL

Q
2
 (min) 0.0084 0.0293 0.0296 0.0448

Q
2
 (max) 0.0342 0.0819 0.1037 0.1192

Q
2
 (median) 0.0258 0.0498 0.0615 0.073

�∗ (min) 4.8 0.02 0.02 0.01
�∗ (max) 6.25 0.1 0.5 1.95
�∗ (median) 5.35 0.05 0.05 0.975

Fig. 13   Comparative evalua-
tion of the mean squared error 
between experimental results 
and simulated data (1000 runs 
per data point) adding Q

2
 for the 

round-by-round and Q
3
 for the 

block-by-block average H-rates, 
based on 76 data points from six 
treatments

0

.005

.01
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arranged in decreasing order: a11 ≥ a22 ≥ a33 . Actions s1, s2, s3 may be accordingly 
labeled H (high), M (medium), L (low).

The class of 3 × 3 games is more complex. There is no comprehensive study that 
pinpoints a small subset of key descriptors, as Mengel (2018) does for PD games. 
And it is very likely that different people may pay attention to different features, or 
that they may use different categorizations. This section argues that a minimalist 
port of our model for 2 × 2 games to the class of 3 × 3 games is possible and that its 
extension to n × n games is straightforward. We do not claim that our port is best, or 
that a successful extension may not require more parameters.

Our plain-vanilla extension of FWC to symmetric 3 × 3 games is the follow-
ing. Let si = r(sj) be the best-reply function for the row player; in case of ties, we 
assume that the best-reply function selects the pure strategy in the “higher” row. Let 
M = maxi,j aij be the highest payoff of the game. For each of the three columns of A, 
we compute the temptation value as:

The temptation Ti may be positive or negative. When Ti is negative, the best reply 
is r(si) = si and greed provides a motivation to stay with si . When Ti is positive, the 
best reply is r(si) ≠ si and greed provides a motivation to move away from si towards 
r(si) so as to attain the highest payoff if the opponent plays i. (Note how in 2 × 2 
games a negative temptation about L is equivalent to a positive risk about L.) Along 
the three temptation values, we compute one efficiency value defined as

Efficiency is always positive by construction, because coordination on the best pay-
off provides a motivation to play s1.1

Any symmetric 3 × 3 game maps to four extrinsic features (T1, T2, T3,E) . The 
agent’s motivations are intrinsic features, whose relative strength is described by 
four weights (g1, g2, g3, h) . The product of the corresponding extrinsic and intrin-
sic features determines four dispositions dTi = gi ⋅ Ti (for i = 1, 2, 3 ) and dE = h ⋅ E . 
Then the probability that s1 (or H) is chosen is

where the indicator function 1(si = r(ss)) takes value 1 if and only if si is the best 
reply to sj . Comparing the formula for P(s1) in a 3 × 3 game against the formula (1) 
for P(H) in a 2 × 2 game, one discerns the common elements: the denominator col-
lects the absolute values for all the dispositions; the numerator uses the positive or 

Ti =

(
maxj≠i aij

)
− aii

M

E =

a11 − a22

M

P(s1) =
dE + (dT1)

−
+ (dT2)

+
1(s1 = r(s2)) + (dT3)

+
1(s1 = r(s3))

dE + |dT1 | + |dT2 | + |dT3 |

1  One may consider other efficiency indicators, but we opted for keeping our extension as simple as pos-
sible.
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negative parts of the same dispositions so as to make them active when the disposi-
tion favors the strategy. In plain words, the probability of choosing s1 is increasing in 
the disposition to efficiency, and in the dispositions to the temptations for which s1 is 
the best-reply.

By analogy, ignoring the efficiency motive, the probability that s2 (or M) is 
chosen is

and P(s3) is analogously defined.
The update rule is based on the last observed opponent’s action, similarly as 

above. At time t, the current strengths (g1, g2, g3, h)i for a player i are updated 
using the rule

and afterwards they are divided by (1 + �i) to renormalize their sum to 1. The learn-
ing rate for agent i is set as �i = 1 −maxk Pi(sk).

This plain-vanilla extension of FWC is meant only as a proof-of-concept. We 
could not amass enough experimental evidence to subject it to a full compara-
tive analysis, and we do not claim that it would pass muster. As a first explora-
tory step, we looked at the data from Cooper et al. (1990) about 4 identical 3 × 3 
symmetric coordination games, based on a random matching protocol with an 

P(s2) =
(dT1)

+
1(s2 = r(s1)) + (dT2)

−
+ (dT3)

+
1(s2 = r(s3))

dE + |dT1 | + |dT2 | + |dT3 |

(g�
1
, g�

2
, g�

3
, h�)i =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
g1 + �i, g2, g3, h

�
i
if the last opponent’s choice is (s1)

�
g1, g2 + �i, g3, h

�
i
if the last opponent’s choice is (s2)

�
g1, g2, g3 + �i, h

�
i
if the last opponent’s choice is (s3)

�
g1, g2, g3, h + �i

�
i
if the last opponent’s choice is (s1) and

(s1, s1) gives the highest possible payoff

Fig. 14   Comparative evaluation 
of the round-by-round mean 
squared error between experi-
mental results and simulated 
data (1000 runs per data point), 
based on 88 datapoints from 
four treatments of 22 rounds 
each
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additional restriction. See Table SM.7 for detailed information on the games and 
Table SM.8 for the round-by-round data. Figure 14 summarizes the mean squared 
error Q2 for the round-by-round average H-, M-, and L-rates against simulated 
data. Encouragingly, FWC’s performance is second to FP’s.

6 � Concluding remarks

The main goal of this paper is to advance a category-based approach to the study of 
learning across similar games played against different opponents. We implemented 
plain-vanilla versions for ours and three major competing algorithms, comparing 
their performances against experimental data from others’ studies.

The available evidence supports the efficacy of a category-based approach to 
describe and predict aggregate play. On the other hand, because we did not try to 
calibrate the specific models to the empirical evidence, there remains a lingering 
question about the robustness of our comparisons.2

Section A.3 in the appendix offers three independent checks that corroborate the 
soundness of our results. Specifically: (a) we replace the self-adjusting learning rate 
� = 1 −max(Pi(H),Pi(L)) in FWC with a fixed learning rate � in (0, 1); (b) we make 
the update rule for FWC depend on a longer memory than the last period; (c) we 
implement a one-parameter softmax version for each of the four learning algorithms 
and, after calibrating the parameter on half of the experimental evidence, we test the 
optimized model on the second half.

To conclude, we suggest a novel approach where agents learn to categorize 
games and tend to play the same action for games placed in the same category. We 
demonstrate its potential by implementing a robust (parameter-free) model. When 
tested over a large body of independent evidence for identical games, our model fits 
the empirical data better than the current major competitors. Similarly, it provides a 
superior match for the independent evidence over similar games.

We emphasize that the major concern of the paper is to argue that a sound mod-
eling framework for learning over similar games is within reach. Future experimen-
tal studies may expand on this perspective and provide more data about how agents’ 
behave when facing a stream of similar games.

Online Appendix  The online appendix, including Supplementary Material, is available at https://​doi.​org/​
10.​1007/​s10683-​021-​09742-7.
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