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MULTIPLIER HERMITIAN STRUCTURES ON
KAHLER MANIFOLDS

TOSHIKI MABUCHI

Abstract. The main purpose of this paper is to make a systematic study of a
special type of conformally Kahler manifolds, called multiplier Hermitian mani-
folds, which we often encounter in the study of Hamiltonian holomorphic group
actions on Kéhler manifolds. In particular, we obtain a multiplier Hermitian
analogue of Myers’ Theorem on diameter bounds with an application (see [M5])
to the uniquness up to biholomorphisms of the “Ké&hler-Einstein metrics” in the
sense of [M1] on a given Fano manifold with nonvanishing Futaki character.

§1. Introduction

For a connected complete Kéhler manifold (M, wg) of complex dimen-
sion n, let I denote the set of all Kahler forms on M expressible as

(1.1) Wy = wo + V—190¢p

for some real-valued smooth function ¢ € C*°(M ) on M. In this paper, we
fix once for all a holomorphic vector field X # 0 on M, and M is assumed
to be compact except in Section 4 and in Theorem B below. Put

Kx ={wek;Lx w=0}

where Xp (= X + X denotes the real vector field on M associated to the
holomorphic vector field X. Let Hx denote the set of all Xg-invariant
functions ¢ in C°(M)g such that wy, is in Kx. Let Kx # 0, so that we
may assume without loss of generality that

wy € Kx.

In terms of a system (z!,22,...,2") of holomorphic local coordinates on M
above, we write each Kéhler form w in Kx as

w=+-1 Zgaﬁ—dza/\dzﬁ.
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Throughout this paper, we assume that X is Hamiltonian, i.e., to each w €
Kx, we can associate a function u,, € C°°(M)g such that X is expressible
as

c, . g
grad u, = Z @ 8 ﬁ 820"

Then u,, is an Xg-invariant function, and the image Ix of the function wuy,
on M is an interval in R. For an arbitrary nonconstant real-valued smooth
function

o:lx — R, s+ o0(s),

we define functions ¢ = &(s) and & = G(s) on Ix as the derivatives ¢ :=
(0/0s)o and & := (0?/0s%)o, respectively. We further define a function
h, € C°(M)r by

(1.2) Yo = o(uy),

which is obviously Xg-invariant. The function o is said to be strictly convex
or weakly conver, according as ¢ > 0 on Ix or ¢ > 0 on Ix. By abuse of
terminology, ¢ is said to be convez if either o is strictly convex or o satisfies
c6<0<6only.

Let G := Aut(M) be the identity component of the group of all holo-
morphic automorphisms of M. Let

@ : closure in G of the real one-parameter group {exp(tXg) ;t € R}.

Under the assumption of the compactness of M, we require the function u,,
to satisfy the equality [ y Uow™ = 0, and applying the theory of moment
maps to the action on M of the compact torus (), we obtain

IX = [aXaﬁX]v

where both ax := min;; u, and Sx := max,,u, are independent of the
choice of w in Kx. To each w € Ky, we associate the corresponding
Laplacian O, of the Kéhler manifold (M,w), and define an operator [,
on C*°(M)g by

& N, O ) _
Ba_ Y Ba w Y —
0, = Zg o azﬁ Z e o5~ et V=16(u,)X
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The natural connection, induced by w, on the holomorphic tangent bundle
TM of M is denoted by V. To each w in Ky, we associate a conformally
Kahler metric @ by

(1.4) @ :=wexp(—vy/n),

which is called a multiplier Hermitian metric (of type o). Here, a Hermi-
tian form and the corresponding Hermitian metric are used interchange-
ably. The Hermitian metric @ naturally induces a Hermitian connection
V: AY(TM) — AY(TM) such that

o,

n

V=V-

idTMv

where A9(T M) denotes the sheaf of germs of T'M-valued C* g-forms on M.
By abuse of terminology, the Ricci form of (@, V) is denoted by Ric?(w).
Then (see [L2], [K1], [Mat])

(1.5) Ric” (w) = v—10901og(&") = Ric(w) + v—100v,,,

where we set Ric(w) := v/—109log(w™). For each nonnegative real number
v, let ICEI(’) denote the set of all w € Kx such that

Ric? (w) > vw,

i.e., Ric’(w) — vw is a positive semi-definite (1,1)-form on M. Now for
» € Hx, we set Osc(p) := maxys ¢ — minys . Consider the set S7 of all w
in Kx such that

Ric?(w) = tw + (1 — t)wy for some ¢ € [0, 1].

Let Z9 — J° be the analogue of Aubin’s functional as in Appendix 1. The
main purpose of this paper is to prove the following theorems (see Sections
3, 4 and 5):

THEOREM A. (a) If 6 <0 <6 on Ix, then for each v > 0, we have
positive real constants Cy, Cy, C1, CY, Cy independent of the choice of the
pair (wy, V) such that

C)

14

(1.6) Osc(p) < Cy(Z° — T7)(wo,wy) +
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for all wy, in ICEZ(') NS, where C(v) == Cy + Clv + CYe2/v,

(b) If o is strictly convez, then for each v > 0, there exist positive real
constants Cy, C1, C| independent of the choice of the pair (wy,,v) such that,
by setting C(v) := C1 + Clv, we have the inequality (1.6) for all wy, in ICEI(/).

THEOREM B. Letv >0 and w € ng?). Furthermore, let (X,0) be of
Hamiltonian type (cf. Definition 4.1), where o is weakly convex. Let p be
an arbitrary point in zero(X) or in M, according as (4.1.1) or (4.1.2) holds
(cf. Section 4). Put ¢ := supyey, |o(s)|. Then

dist(p,q) < 7{(2n — 1 +4¢)/v}?  for allq e M,

where dist,, (p,q) denotes the distance between p and q on the complete
Kdhler manifold (M,w). Hence, the diameter Diam(M,w) of the complete
Kahler manifold (M,w) satisfies

(.7 Diam(M,w) < 2°7{(2n — 1+ 4c)/v}'/?,

where § denotes 1 or 0, according as (4.1.1) or (4.1.2) holds. In particular,
if |Yw| is bounded from above on M, then M is compact and 7 (M) is
finite.

Let £% be the set of all w € Kx such that Ric? (w) = w. We also consider
the subgroup Z(X) of G consisting of all g € G such that Ad(¢g)X = X, and
let Z°(X) denote the identity component of Z(X). Then in Section 5, we
apply Theorems A and B (Theorem B will be implicitly used) to showing
that £ consists of a single Z°(X)-orbit! under the assumption of convexity
of o.

THEOREM C. Assume that o is convex. Then ES consists of a single
ZO(X)-orbit, whenever £% is nonempty.

This work is mainly motivated by the study of “K&hler-Einstein met-
rics” (cf. [M1]) which are closely related to the case where o(s) = —log(s+
C) (cf. [M5]). Parts of this work were done during my stay in International
Centre for Mathematical Sciences (ICMS), Edinburgh in 1997. I thank es-
pecially Professor Michael Singer who invited me to give lectures at ICMS
on various subjects of Kahler-Einstein metrics.

"For a similar result on Kihler-Ricci solitons, see [TZ1]. For “Kéhler-Einstein metrics”
in the sense of [M1], the arguments in Section 5 were given at the meeting in 1997 at
ICMS, though at that time a crucial gap in a priori C° estimates was pointed out by
G. Tian. Theorems A and B above solve this gap.

https://doi.org/10.1017/50027763000008540 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008540

MULTIPLIER HERMITIAN STRUCTURES 77

§2. Notation, convention and preliminaries

To each w € Kx as in the introduction, we associate a multiplier Her-
mitian metric @ in (1.4) and an operator [J,, in (1.3). For complex-valued
functions u, v € C*°(M)c on M, we put (cf. [L2], [K1], [Mat], [F1])

(,v) 5 = /M e — /M o,

In the arguments in [F1, p. 41], we replace the function F' by v. Then [,
is easily shown to be self-adjoint with respect to the above Hermitian inner
product as follows:

LEMMA 2.1.

((u, Ov), = — /M(au,av)wm — (Oow,v) 5, w,v € C®(M)c,
Proof. {(u,0,v)) is written as
/ u{Tv — (B, ). }o"
/{ Ov)e — u(0y, OV)ye ¥ Ju"
_ /M(au Bv)od
while (O, v)) is just
/ (Ot — (Bu, B ) }ois”
= [ (0w 0 ) — 000, e o
_ /M(au )

Hence Lemma 2.1 is immediate. []

To an arbitrary smooth path ¢ = {¢, ; a <t < b} in Hx, we associate
a one-parameter family of Kéhler forms w(t), a <t <b, in Kx by

(2.2) w(t) == wy, =wo +V—100¢;, a<t<b.
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Let ¢ denote the partial derivative dp;/0t of p; with respect to t. Next,
by the notation (1.4) in the introduction, we consider the Hermitian form
@(t) on M defined by

(2.3) @(t) := w(t) exp{ =t /n}-

LEMMA 24. (a) (9/01)@(6)" = (O f0) @ ()"
b) [, @" =V for allw € Kx, where Vy := [,, &f > 0.

Proof. (a) Recall that ) is expressible as u,,, ++v/—1 X, (cf. [FM]).
On the other hand, by ¢, € Hx, we see that Xpp, = 0. Hence,

(2.5) Upy(py) = Uy — V™ 1 X ;.
Then we obtain the required equality as follows:
0 0
A — S o Yu(n) n
SO = (et}
p : 9 —Yu(t) n
= {D )Pt — U(uw(t))guw(t)}e w(t)
{Dw(t +v—1 &(Uw(t))X‘Pt}e_ww(t)w(t)n
= ( w(t)(/)t) )"

(b) In (a) above, we have (9/0t) [,,@t)" = [,,(O t)(pt) o) =
(O,¢:, 1) 5 = 0 and hence the function V : Kx — R defined by

V(w):= /MGJ", we Kx,

is constant along any smooth path in Kx. Since every w € Kx and wq
are joined by the smooth path twy + (1 —t)w, 0 <t < 1, in Kx, we now
conclude that V' is constant on Kx, as required. 0

By (u, Oou)y = — Jas (Ou, Ou),&™ < 0, all eigenvalues of —[,, are non-
negative real numbers. Let Ay = A1(@) > 0 be the first positive eigenvalue
of —[,,, and assume

K #0

for some v > 0. Then we have ¢;(M) > 0, and by the Kodaira vanishing
theorem, we see that 0 = h%'(M) = h%0(M). In particular, G := Aut®(M)
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is a linear algebraic group. The corresponding Lie algebra g is just the
space HY(M,O(TM)) of holomorphic vector fields on M. We now have a
C-linear isomorphism of vector spaces

(2.6) ¢’ =g, u— gradg u,

where g* denotes the space of all u € C°°(M)c, normalized by [, u&" =0,
such that the condition gradg p € g is satisfied. Recall that

Fact 2.7. (see for instance [M3]) For a real number v > 0, let w €
K. Then

(a) (@) > v.

(b) If \(©) = v, then {u € C®°(M)c ; Dou = =X\ (©)u} is a subspace

w

of g“.

Next, we consider the special case where the Kahler class of Kx is
27e1(M)g. In this case, to each w € Kx, we can associate a unique function
fo in C®°(M)g satisfying [,,(ef+ — 1)w™ = 0 and Ric(w) —w = /—=190f.,.
Put ¢, = [,,0"/ [, " = [,/ [y, wd's which is independent of the
choice of w in Kx. We now put

(2'8) fw = fw+¢w+10gcw :fw+0(uw)+10gcw~
LEMMA 2.9. (a) Ric%(w) —w = v/—199f,,.
(b) fM(ef“’ —1)@" =0 for allw € Kx.

Proof. (a) follows immediately from (1.5), (2.8) and Ric(w)—w = 99 f.,.
As to (b), in view of (b) of Lemma 2.4, we obtain

/ o — (/ efwew%n> fM@tZ _ (/ efwwn> " :/ o
M M e M Juwm M

as required. 0

§3. Proof of Theorem A

Let w € Kx. In the definition of & in (1.4), replacing o by 20, we

consider volume forms vol; and vol;, on M by setting

vol; == w"exp{—20(uy)} and voly, = wy exp{—20(uy,)}-
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Put V := [, vol; = [,,vol; . Replacing ¢ again by 20 in the definition of
O, in (1.3), we consider the operators D,, and D,,, acting on C*°(M)g by

(31) Dy :=0,+2vV-16(u,)X and Dy, =0y +2vV—-16(u, )X.

Note that a smooth function on M is Xg-invariant if and only if it is Q-
invariant. Hence, we can write w = wg + v/—100yp for some Q-invariant
function ¢ in Hx. Then we obtain

(3.2) —Oppp <n and —0Oyp > —n.

Now by (2.5), we have v/—1 X¢ = u,,, —u,. On the other hand, min , u,, =
min,, u,, = ax and max,; u,, = max,, u, = Bx. In particular,

3.3 Xo| = Xo| < < 20!
(3.3) max | Xp| = max | Xp| < max [u] + max |ug| < 2Cs,

where C3 := max{|ax]|,|Bx]|} is a positive constant independent of the
choice of wp and w in Kx. Put Cy := max,; [6(s)| > 0. Then (3.1) and
(3.2) above imply

(3.4) —D,p=—-0,p—2vV-16u,)Xp >k = —n—403Cy,
(3.5) — Doy =~ — 2V —=16(uyy) X < k' :=  n+4C30;.

Let Re D,, := (D,+D,)/2 and Re D, := (D, +D,,)/2 denote respectively
the real part of D, and D,,. Moreover, let G, (z,y) and G,,(x,y) be the

Green functions for the operators Re D, and Re D,,,, respectively. More
precisely,

W) = V! /M h(y) vola(y) + /M Gule, y){—(Re D) ()} (y) vl (1),
/ Go(z,y)vol,(y) =0,
M

hold for all € M and h € C*°(M )y, where equalities similar to the above
hold also for the Green function Gy, (z,y) in terms of volg, and Re D, .

Proof of Theorem A. Assuming w € ICEZ(’), let & > 0 on Ix. We further
assume that one of the following holds:

(a) 6 <0on Iy and w € §7;

(b) or o is strictly convex.
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For the Q-action on M, take the averages G, (z,y), Gu,(z,y) of the func-
tions Gy, (x,y), Gu,(z,y) respectively, i.e.,

Gu(z,y) /G (¢-=,y)dulq) /G z,q - y) du(q),

Gl (7,) : /Gwoq ,y) dp(q) /Gwoxq y) du(q),

where du = du(q) denotes the Haar measure for the compact group @ of
total volume 1. Let K, K, be the positive real numbers defined by

—K, = inf G,(z,y) and — K., = inf Go(z,y),
Ty Ty

where the infimums are taken over all (z,y) € M x M such that x # y. By
writing w = wp + v/—19d¢p for some Q-invarant function ¢ € C*°(M)y as
above, we first of all see the equality (Re Dy, )(¢) = Dy,¢. Then by (3.5),
we obtain

(3.6)
v [ vl [ {Gn0) + Koy Ho(Re Do) (1) vl (1)
<yt /M pvoly, +k"VEK,,.
On the other hand, by (Re D,,)(¢) = Dy and (3.4), we also obtain
(3.7)
o) =V [ olyt [ {Gulo) + KoH-(Re D))} 1) ol (v

> v—l/ pvoly —k'V K.
M
Now by (3.6) and (3.7), we see that (cf. (A.1.1) in Appendix 1)
(3.8) Osc(p) < V_l/ p(voly, —voly) + (K" Ky, + k' K,)V
M

SV (wo,w) + (K Koy + K Ko)V,

where by [M3], there exist positive real constants C’, C” and C5 independent
of the choice of v > 0 and w, such that

(3.9) K, < v HC' + C"e2/Y)
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under the assumption (a) above, while under the assumption (b) above, we
also have (3.9) with C” = 0. Now by Lemma A.1.5 and Proposition A.1 in
Appendix 1, we have

T (wo,w) < (m+2)(T% — T*)(wo,w) < (m +2)e(Z7 = T7)(wo,w),

where m := n — 1 + by, by the notation in Lemma A.1.6 in Appendix 1,
and we put ¢ := maxser, |o(s)| = max{|ax|,|Bx|} as in the introduction.
Hence in view of (3.8) and (3.9), by setting C(v) := Cy 4+ Clv + CYe2/¥,
we obtain

Osel) < Co(T” — %) (wonw) + 2

v

where Cy == kK'C'V, C] := k"K,,V, C := K'C"V and Cj := V1 (m + 2)e¢
are positive real constants depending neither on the choice of w nor on
v > 0, as required. 0

84. Proof of Theorem B

In this section, M is not necessarily compact, and we fix a nonconstant
real-valued function o : Ix — R which is weakly convex, i.e., & > 0 on [x.
Let zero(X) be the set of all points on M at which the nonzero holomorphic
vector field X = gradg U, vanishes.

DEFINITION 4.1. Under the above assumption of weak convexity of
o, we say that (X, o) is of Hamiltonian type, if one of the following two
conditions is satisfied:

(4.1.1) zero(X) # 0;
(4.1.2) G(s)=0 forall sely.

Remark 4.2. If M is compact, then the assumption /Cg?) # () in The-
orem A implies that ¢;(M) > 0, and in particular G is a linear algebraic
group. Hence, in this case (4.1.1) automatically holds.

Proof of Theorem B. The proof is divided into the following three steps:

Step 1. In this step, we apply the arguments in [Mil] to the Kéhler
manifold (M,w). Let ¢ : [0,¢] — M be an arclength-parametrized geodesic
with ((0) = p. Put {(¢) = ¢, and consider the set Q(M;p,q) of all smooth
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paths v : [0,4] — M such that v(0) = p and y(¢) = ¢q. Recall that the
energy functional E : Q(M;p,q) — R is defined by

¥
E(y) == / I (@/00)|2dt, ~ € Q(M:p.g).

Then ¢ is a critical point of the functional E. Let P, = Py(t), k =
1,2,...,2n, be parallel vector fields along ¢ which are orthonormal every-
where along ¢. Consider the complex structure J : TMyp — T My of the
complex manifold M, where T'My denotes the real tangent bundle of M.
Then by VJ = 0, we may assume that P; = (,(9/0t) and P, = JP;. Put
Py (t) = sin(nt /0) P(t). Let Hess¢ E denote the Hessian of E at ¢. Then by
setting n := 2n — 1, we obtain

2n l &2
1 .
(4.3.1) 5 g (HessCE)(Pk,Pk)—/O sin%wt/f){%—Sw(Pl,Pl)}dt,
k=2

where S, denotes the Ricci tensor of the Kahler metric w, and is related to
the Ricci form Ric(w) by S, (P1, P1) = Ric(w)(Pr, JPy).

Step 2. Fix an arbitrary 7 € [0,¢]. In a small open neighbourhood of

¢(7) in M, we choose a system z = (z',22,...,2") of holomorphic local

coordinates centered at ((7) such that
Pi(t) =8/dx' and JP (1) = 0/dy,

where we write each 2% as a sum z® 4+ /—1y® of the real part and the
imaginary part, and the vector fields 0/0x®, 0/0y“ are taken in terms of
the coordinates system (z',..., 2", y',... y"). Since

882" = (8/9z° —V—10/3y)/2 and 8/d:° = (8/9z" +v—18/0y")/2,

we observe that the coordinates system z = (2!, 22,...,2") can be chosen

in such a way that g 5 in the local expression of w (cf. Section 1) satisfies

(4.3.2) 05(C(7)) = 305 and  dg,5(C(r)) = 0.

Let exp; () : (TMR)C(T) — M denotes the exponential map at the point ((7)
of the Kdhler manifold (M,w), and put £(s) := eXpC(T)(sJPl), —e<s<e¢,
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with a sufficiently small positive real number . Then in a neighbourhood

of ¢(7),

(4.3.3)

{Pl(t) = (.(8/0t) = 8/0x + O([t — 7|?),
£.(0/0s) = 0/dy* + O(|s|?),

where O(w) denotes a function which is bounded by some constant times w.
Now by our assumption, X = gradg u,, is a holomorphic vector field on M.
Hence by the equality 0X = 0 and (4.3.2), we obtain (9/92")?(uw)¢(r) = 0
at the point {(7), and hence

(3.4 {<8/8$1>2<%>|<<T> = (0/00" (1) )
(9*/0x0y") (us,) Ic(r) — 0.

We now define a C* map F' : [—¢,¢] x [0,{] — M by sending each (s,t) €
[—&,e] x [0,£] to F(s,t) := expey(sJP1) € M. Put @ := F*u, and Y =
F*1,, which are functions on [—¢,¢] x [0,£]. Then by (1.2), we have 1) =
o(u). Next by (4.3.3),

(4.3.5) {<8/<‘%><ﬂ>so = ¢*{(9/02")(un)} + O(It — 7/?),

(0/0s)(@) ;1= = £{(0/0y" ) (uw)} + O],

in a neighbourhood of (s,t) = (0,7). In view of (4.3.3), we differentiate
the first line of (4.3.5) with respect to ¢ at ¢ = 7, while we differentiate the
second line of (4.3.5) with respect to s at s = 0. Then, since 7 € [0,] is
arbitrary, the first line of (4.3.4) yields

(4.3.6) (9/0)2 (1) = (9/95)*(@),

when restricted to {0} x [0,¢]. Recall that V is the natural Hermitian
connection associated to the Kédhler metric w (see Section 1). Since Py =
J P is parallel along the geodesic ¢, and since £ is a geodesic, we obtain

(Vori0/05) (s )=(0.0) = (Vo,0:0/05) (s 5y=(0.7) = O

where the pullback F*V is denoted also by V for simplicity. By combining
this with (4.3.2) and F.0/0s|(s »=(,r) = 0/8y", we obtain

F.(0/0s) = 3/8y1 + O(|s|2 + |t — 7]2) for ]8]2 + |t — 7'|2 <1
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in a small neighbourhood of ((7) = F(0,7) in the image of F. Hence,
together with the first line of (4.3.3), the second line of (4.3.4) implies

(4.3.7) (9%/0tds)(a) = 0,

when restricted to {0} x [0, ¢]. For the time being, until the end of Step 2,
we assume that (4.1.1) above holds. Then by p = ((0) € Zero(X), the
function wu,, on M has a critical value at p. In particular, (0a/9s)(0,0) = 0.
On the other hand, (4.3.7) shows that 0u/0s is constant along {0} x [0, £].
Therefore,

(4.3.8) (0u/0s)(0,t) =0 for all t € [0,4], if (4.1.1) holds.

Step 3. Let o be as in Definition 4.1, so that either (4.1.1) or (4.1.2)
holds. Consider the function v, = o(u,). In view of (4.3.3), we see for all
T € [0,¢] the following:

(4.3.9) 2V =1 (00%u) (Pr, J P1) ¢y
= 2V/=1(904.)(G(9/01),.(0/05)) 1)
= {(8/092")*(yu) + (3/3111)2(%)}‘4(7)

0% 024
= 5p (0,7) + 552 (0,7).

Consider the vector fields Z; := (P, —v/—1JP;)/2 and Z; := (P, ++/—1
JPy)/2 along the geodesic ¢. Since (2/v/—1)6(Z1,7Z1) equals 0(Py, JP)
along the geodesic for every 2-form @ on M, and since Ric(w)++/—1 00, =
Ric?(w) > vw, it now follows that

Ric(w)(Py, JP;) +/—1(00v,)(Py, JP;) = Ric® (w)(Py, JPy)
> wvw(P, JP) = 2v/vV-1)w(Z1, Z1) = v.

By plugging the expression (4.3.9) of 2v/—1(00%,,)(P1, JP;) ¢(r) nto the
inequality just above, we see that the following inequality Lolds for all
T € [0, /]:

_ 1 0% 1 924
RlC(Ld)(Pl,JPl)K(T) Z vV — 5@( ,7') — 5 832 (0,7’).
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By this together with (4.3.1), we obtain

2n
1 P
Bl > (Hess¢ E)(Py, By)
k=2
L &2 1 82¢ 1 aQw
- 9 nme 1
_/0 sin (Wt/ﬁ){—p v+ — 5 o2 0,t) + 7 5s2 }

If (4.1.1) holds, then by (4.3.6) and (4.3.8), we see from ¢) = o(@) th

0%y I PPN DA N
B2 (1) = {‘WW +o(@)(5;) }M - {‘W o7 }M

024 O\ 2 0%
< Loy 07U (O _ 9% 04
> {O'(U) o2 +U(U)( ot ) }(0715) 12 ( ’ )7
where the inequality just above follows from the weak convexity of ¢. On

the other hand, if (4.1.2) holds, then again by (4.3.6)

0% %4 %4 0%
5oz (0,1) = ()82(075) ()W(Ot) 92

In both cases, we obtain

0,1).

2 ~
n TL7T2 2,¢

1 A Y '
Eg(HeSSCE)(PIﬁPk) §/0 51n2(7rt/€){€—2 — v+ S (0, t)}d

Let R.H.S. denote the right-hand side of this inequality. Then by taking
integral by parts over and over again, we see that

RS, = / Z{ (”Tf — ) sin®(mt €) - 7%(0,& sin(?mﬁ/f)} dt
OZ a2
:/0 {(% —y) sin?(t/0) + 2 q,z)(o ) cos(27rt/€)}

2 0,52
< 2mc —1—/ (_mr —1/) sin?(7t/0) dt = 7(71_{—40)% - E—V
0

-/ 02 20 2
Therefore, if £ > w{ (7 + 4¢)/v}'/?, then R.H.S. < 0, and hence
2n
Z(Hessc E)(P,,B,) <0,
k=2

which shows that ¢ : [0,¢] — M is not an arclength-minimizing geodesic.
Thus, we obtain dist_(p, q) < 7{(f-+4c)/v}'/? for every ¢ € M, as required.
[
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§5. Proof of Theorem C

Fix 0 < o < 1. Let Hgéo(‘) denote the set of all X-invariant function
¢ € C%*(M)g such that [,, @] = 0 and that w,, is positive definite on
M. Put

(5.1.1) Alp) =02/, ¢ €HY:

For each 0 < k € Z, we consider the space Cfgao(M )r of all Xp-invariant
functions ¢ in C**(M)g such that Jas p@d = 0. Define T : Hgfo(() xR —
CXG (M) by setting (cf. [BM], [S1])

-1
(5.12) T(p.t) = Alp) - {%0 [ et fw())w(?} exp(—to+ F.),

for all (p,t) € ’H%}OE) x R, where Vj is as in (b) of Lemma 2.4. Let T' be the
set of all t € [0, 1) for which the generalized Aubin’s equation

(5.1.3) T(o,t) =0

admits a solution ¢ = ¢, in H?&%. Note that ¢ automatically belongs to
Hx. For such a solution ¢;, we set w(t) := wy,, = wo + v/—109¢; as in
(A.2.2) in Appendix 2. Then

(5.1.4) Ric? (w(t)) = wo + tvV/—100¢; = tw(t) + (1 — t)wo,

where @(t) is as in (2.3). In particular, w(t) sits in ICEEI) for some t' which
exceeds t. Suppose that I'(g, t) = 0 for some ((ﬁ,f) € H%}OE) x [0,1). Then
the Fréchet derivative D,I : O35 (M)g — COX%(M)g of T at (¢, ) with
respect to the factor ¢ is given by

(5.1.5) {Dgor|(<p,t):(¢,£)}("7) = A(@)(ﬂf: +8)(n - Cn,¢), ne C;%(M)Ra

where C, , = Vot [y nwy and O = ﬂﬁ%‘ By (5.1.4) and Fact 2.7,  is
less than the first positive eigenvalue of —[s. Hence, DI, ) is invertible.
Then by the implicit function theorem, we obtain

THEOREM 5.1. If ($,1) € Hg&% x [0,1) satisfies T'(¢,1) = 0, then
there exist 0 < € < 1 and a smooth one-parameter family of functions
{pr;t—e<t<tte}in 'H%é% satisfying p; = ¢ such that p = @, is the
unique solution of (5.1.3) for each t under the condition ||¢ — || 2. < €.
In particular, T is an open subset of [0,1).
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Let 0 <a <b<1, andlet ¢, a <t <b, be asmooth one-parameter
family of functions in Hgéo(‘) such that, for all a < t < b, we have

(5.2.1) L(p,t) = 0.

Then each ¢, automatically belongs to H x. By setting w(t) := w,, as in the
above, we obtain (5.1.4). We further put ¢, := @/}w(t) and ft = ~w(t), where
on the right-hand sides, we use the notation in the introduction and (2.8).
Since Ric?(w(t)) = w(t) + v/—19df;, and since w(t) = wy + v/—1 DDy, the
identity (5.1.4) implies

(5.2.2) fi=—01—t)p +Cy,

where C} is a real constant depending on ¢. By (5.1.1) and (a) of Lemma 2.4,
we have 0A(p:)/0t = {Dw(t)gbt}A(got). By differentiating (5.2.1) with re-
spect to t, we obtain

(5.2.3) Do @ + 1 + 00 = Co,

for some real constant C; depending on ¢. By (A.1.1) in Appendix 1 and
by (b) of Proposition A.2 in Appendix 2, we see from (5.2.2) and (5.2.3)
the following:

d NF A, ~ 1\ 3 a ~ g\
@O = [ 0Fn0p030)" ==(1=0) [ Bond0).05(0)
d ~ LY ~n
= (1= )@ =T enw) = (1= [ e{B@)o0

=-(1-1) /M{mw(t)"bt + o H{ O e Jo(8)" <0,

where in the last inequality, we apply (a) of Fact 2.7 to w(t) € /Cg?. Thus,
for any 0 < a < b <1, we obtain

THEOREM 5.2.  Along any smooth one-parameter family ¢,, a < t <
b, of solutions in Hx of (5.2.1), the corresponding w(t) := wy, = wo +
V—=100p; satisfies

d

e wlt)) = (1 - t)%(l" — T wew(®) <0, a<t<b
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Given an element 6 € £, we consider the set Ty of all 7 € [0,1] such
that there exists a smooth one-parameter family of solutions

(5.3.1) o €HYY TSt

of (5.2.1) satisfying w,, = 6. Put 7 := inf Ty. Later in Theorem 5.6, we
see that a slight perturbation of wq allows us to assume 7o, < 1. Under this
assumption, we obtain

LEMMA 5.3.2. Suppose that o is convex. Then we have the following:
(a) Too = 0.
(b) If o is furthermore strictly convex, then 0 belongs to Ty,.

Proof. Take a sequence S := {Tj};?‘;l of points in the open interval
(Too, 1] such that 7; converges to 7o, as j — oo. Let

2, .
SOTJGHX%” j:1,2,...7

be the corresponding solutions of (5.2.1) at ¢ = 7;. For simplicity, ©r, is

denoted by ¢;, and we put w) = wo+ \/—_185%. In view of Theorem 5.1,
the proof is reduced to showing that some subsequence of § is convergent
in C%%(M)g assuming that either 7., is positive or o is strictly convex. By
Theorem 5.2,

(5.3.3) (77 — j")(wo,w(j)) <(C3, forallj=1,2,...,

where C3 := (I% — J)(wp, #). Since w) belongs to K;j), and since 7; < 1
for all j, the combination of (1.6) and (5.3.3) implies
|7j Osc ;| < 7,Co(Z7 — T (wo, wW) + C(75)

< CngTj + C(Tj) = CngTj +Ci + CiTj + Ci’eCQ/Tj

< CoC3 + Cy + Cf + Cye®/m,
where if o is strictly convex, we can set C{ = 0 by Theorem A. Note
that the constant Cy, C1, C, C7{, Cy, Cs are independent of the choice of
J, and that |7; Oscypj|, j = 1,2,..., are bounded from above by CoC3 +
Oy + Cf + CeC2/™ or CyC3 + Cy + O} according as T, is positive or o is

strictly convex. Hence, in both of these cases, we have a positive constant
Cy independent of j such that

I7j0illcoary < Ca,
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since we have ¢;(p;) = 0 at some point p; € M in view of the identity
Jas pi@t = 0. Moreover, for all j,

ng = A(@j) GXP{T/Jw(j) - wwo }w(?
1 r ~ 1 - £ "
= <70 /Mexp(_TjSOj + fwo)wo) xp{=Tjpj + fuo + V) = Yuo o'

where |¢ |, 7 =1,2,..., on M are bounded from above by

C = Inax |ol(S)|.
J e [o(s)]

Therefore, we have a positive constant C'5 independent of j such that
5]l co(ary < Cs,  for all j.

Then by standard arguments for complex Monge-Ampere equations (see
for instance [M4]), S is uniformly bounded in C*%(M)g for all 0 < k € Z,
and consequently some subsequence of S is convergent in C*%(M)g, as
required. {

Remark 5.3.4. In (b) of Lemma 5.3.2, even if ¢ is not strictly convex,
we obtain 0 € Ty just by the convexity of . This can be seen as follows:
For each r € R, we put

or(s):=0(s) —rlog(s —ax +1), s¢€lx,

where ax and Ix are as in the introduction. If r is positive, then &,(s) > 0
for all s € I'x, and o, is strictly convex. In the arguments above, replacing
o by o, we put m@ = 0, (uy) and ol = wexp(—wg}/n) for all w € Kx.
For each ¢ € H%;%, we put

@GE)r _ whexp(—))

@ wgexp(—ul)
1

O ~[rl\n

= /M e(@y )"

where V. := fM(JJ([)T})”. Put ﬁ[f} = f%+¢£§] —|—log{fM(JJ([)ﬂ)”/ [y wit} for
all w € Kx. Let us define a mapping T : Hgé?(‘) x R2 — Cg*(M)g by

@[T] n
D(p, t,7) == ( E’n) {AW(@)

)

1 Pt ~[r\n -1 r £lr
- (3 /M exp(—tol + FED@)")  exp(—tel + f&)}v

All(p) =

9
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where (@, t,r) € H%éoa x R2. Suppose that f((f),f, 0) = 0 for some (,1) €
H3% % [0,1). Then T'(p,7) = 0, and the Fréchet derivative DI : O (M)g
— Cg(’% (M)g of T with respect to ¢ is written as

(5.3.5) D¢F|(w7t7r):(¢7570

) = Dol =)

which is invertible. Hence, in a neighbourhood U of (£,0) in R2, the solution
¢ of T'(p,t,r) =0 at (t,r) = (,0) extends uniquely to

A 2,
@t,r € CX%(M)Ra (t,T) € U7
depending on (¢, r) continuously and satisfying f(@t,r, t,r) =0forall (t,7) €

U with (‘55,0 = ¢. As in Theorem 5.6 proved later, a slight perturbation of

wo (see (5.5.3)) allows us to assume that, for a sufficiently small § > 0, a
smooth two-parameter family of functions

(5.3.6) Pir € OX5 (Mg, (t,r) €[1=6,1] x [0,4],

exists satisfying 6 = wg + \/—_18&0170 and f‘(gom,t,r) = 0 for all (t,7) €
[1—9,1] x[0,6]. Then by Lemma 5.3.2 and Theorem 5.1, we see that (5.3.6)
uniquely extends to a continuous family, denoted by the same notation, of
functions

(5.3.7) Prr € CXO(M)g,  (0,0) # (t,7) € [0,1] x [0, 4],

satisfying f‘(gow,t,r) =0 for all (0,0) # (t,r) € [0,1] x [0,4]. On the other
hand, by Appendix 4, there exists a unique element ~, of H%}% such that

Ric7" (w, ) = wy.

Then for each 7 € [0,6], the equation I'(¢,0,7) = 0in ¢ € ’H%}OE) has a
unique solution ¢ = +,. In view of (5.3.7) above, this implies

or =" 0<r<o.

By (5.3.5) applied to (¢, ) = (7p,0), letting d be smaller if necessary, we see
from the inverse function theorem that the solution ¢ = ~, of the equation
L(p,0,r) =0in ¢ € ’H?&OE) for 0 < r < § uniquely extends to a continuous
family of functions ’

(5.3.8) @, € CYE (MR,  (t,7) €10,0] x [0,0],
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satisfying ¢, = v, for 0 < r < § and f(gogm,t,r) = 0 for all (¢,r) €
[0,0] x [0,6]. Comparing (5.3.7) and (5.3.8), we obtain ¢,, = ¢}, for all
(0,0) # (t,7) € [0,0] x [0,0]. In particular, ¢, (= 4 ,) converges to v,
(= #p) in C* as t tends to 0. Thus, 0 € T,.

By combining Lemma 5.3.2 and Remark 5.3.4, we obtain

THEOREM 5.3. If 0 is convez, then by a slight perturbation of wgy as in
(5.5.3), we have the situation that 0 belongs to Tp.

Take an arbitrary Z°(X)-orbit O in €%, which is a connected compo-
nent of £5 by Proposition A.5 in Appendix 5. Define a nonnegative C'*°
function ¢ : O — R by

(5.4.1) L(0) == (I° — T%)(wo,0), 6 € O.

For £% := {\ € Hx ; A(\) = exp(=A+fo)}, we have a natural identification
E% ~ E5 by sending each A € £5 to wy € €. Then the preimage, denoted
by O, of O under the identification £ ~ £% is written as

(5.4.2) O ={\e C>*(M)g; A(\) = exp(—\ + fo) and wy € O}.

Moreover, we put O! := {\ € 'H?&% ;:T(\,1) =0 and wy € O}. Then OT,
O and O are identified by

- 1 _
(5.43) OF~0~0, Nowy— A+ log{—/ exp(—A + fwo)djon}.
Vo Jm

THEOREM 5.4. (a) Assume that o is convex. Then the function v :
O — R is a proper map, and hence its absolute minimum s always attained
at some point of the orbit O.

(b) Let € be as in (A.5.3) of Appendiz 5. By (5.4.3), to each 0 € O,
we associate a unique N\g € O such that 0 = wy,. Then the following are
equivalent:

(i) @ is a critical point for t;
(i) [y, )\91)5” =0 for all v € ¢7.

Proof of (a). For each positive real number 7, we put OL := {\ €
O' ; i(wy) < r}. By the same argument as in the proof of Lemma 5.3.2
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(see the arguments after (5.3.3)), there exists a constant C5 = C5(r) > 0
independent of the choice of A in OL such that

HSOHCM(M) <Cs

holds for all ¢ € OL, where in this proof we use the inequality t(wy,) < 7 in
place of (5.3.3). Now, (a) is straightforward. U

Proof of (b). Let A = A(t), —e < t < ¢, be a smooth one-parameter
family in O such that A(0) = \,. Then wyy = 0- In view of (A11) in
Appendix 1,

(5.4.4) {%L(w(t))}ltzo _ /M(aA(O), 95(0)),0"

_ / A(0) (E1,A(0)) 6" = / A0)A0)F",
M M

where we have A(0) € ¢ (= Tp(E%) = Ty(0)) by (A.5.6) and (b) of Propo-
sition A.5 of Appendix 5. The equivalence of (i) and (ii) is now immediate.

O

We now consider the Hessian of ¢ : O — R at a critical point § =
wy, € O of 1, where \g € O is as in (b) of Theorem 5.4. Let ¢y, (s,t) €
[—e,¢] X [—¢, €], be a smooth two-parameter family of functions in O such
that A\g = @o,0. Put ws; := W, ;- Then

S,

‘Pl - &psvt and 4,0” — a(Ps,t
C 05 |(s,)=(0,0) Ot |(s,0)=(0,0)

~

are regarded as elements in T (O) (= Tp(E%)) by the isomorphism Ty(£S) =
% in (A.5.6) of Appendix 5. By differentiating A(ps) = exp(—@ss + fuo)
with respect to ¢, we obtain

= a(ps,t o a@s,t
(5.5.1) Ds’t< o )_ o

where we put s, = Vo, ,, Ust = Uu,,, sz = Lo, ,, lj&t = 0y, for
simplicity. Differentiating (5.5.1) with respect to s at the origin (s,t) =
(0,0), we obtain

(5:5.2) (00", 009" )g — 6 (ug)(X ") (X ") = (O + 1)9,8,0(0).
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Here, we used the identities ‘js,t = ot + V=16(ust) X, tust = Uy, —
V—1 X, (see (1.3) and (2.5)) and we put

8290515
0.0,0(0) := d .
Or0(0) ( Js0t )(s,t):(0,0)

Since ljego’ = —¢/, by comparing the identity (5.5.2) with (A.3.1) in Ap-
pendix 3 applied to (w,(,v) = (6, ¢, ¢"), we obtain

(5.5.3) (B +1)(0¢",0¢")g = (g + 1)9,0,(0).

Next, we put ts = t(wsy) for simplicity. Then by the same computation
as in (5.4.4), we obtain the identity

8Ls,t _/ 0 a‘PS,t on
ot M st ot st

In view of Ay = ¢, and (a) of Lemma 2.4, we further differentiate this
with respect to s at the origin (s,t) = (0,0). Then the Hessian (Hesst), of
¢t at 0 is given by

82657t

0s0t |(s,t)=(0,0)

(5.5.4) (Hess)y(¢',¢") =
/ {£9" + 200,0,0(0) + Ag" (D) 10"
/ {0 (1= Xg) + 2p0,0,0(0) } ™.

By (b) of Theorem 5.4 together with (A.5.3) of Appendix 5, we have an

Xg-invariant function £ € C®°(M)g such that A\, = (0, 4+ 1)¢. As in [BM,
(6.7)], (5.5.4) is rewritten as

(5.5.5) (HeSSL)g(go',tp")—/ {£¢"(1 — ) + €Oy +1)0,0,0( )}5”
M
/ [0"(1 = Ag) + (G + 1)@, 06" }0"  (cf. (55.3))
- /Mgo'go"éu > / Mof G )¢ + & (o)}

+ / X (0¢, 0¢") 0"
M
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- 1 - -
= / P+ 5 / ALy (' ") 0"
M M
1~ -
= / QDIQO”<1 + 5D9)\9)0n
M
We now follows the arguments in [BM, Section 7]. Let 0 < ¢ < 1 and
0 < a < 1. For each nonnegative integer k, let C’ﬁ“‘(’o‘(M)]R be the space
of all Xp-invariant functions in C*®(M)g, and consider the set Hgéa of all
p € C’?ga(M)R such that w, := wy + +/—100¢p is a positive definite C%
form on M. Put

= {we ceons [

wvf™ = 0 for all v € e"}.
M

We here observe that 3%(X) = £ by Proposition A.5 in Appendix 5. In
order to solve the equation I'(p,t) =0 in ¢ € 'Hggo(‘), it suffices to solve the

following equation in v € H?éa:
(5.5.6) A(y) = exp(—ty + fup).

Because any solution v € HI)C(’O‘ of (5.5.6) allows us to obtain a solution
Y€ H];(’Oé of the equation I'(¢,t) = 0 by setting ¢ = v — (1/Vo) [;, 795
Next, we see that (5.5.6) is further reduced to the equation

(5.5.7) ®(t,y) =0,

where ®(t,7) := ty — fu, + log A(y). Note that (¢§)+ c (¢§)*. Let P :
C’g](’O‘(M)]R (=@ (8)1) — £ be the projection to the first factor. For each
v € HY®, write

Yy=X+2T+Y,

with 2 := P(y — X\g) € € and y := (1 — P)(y — \g) € (£§)*. Now, the
equation (5.5.7) is written in the form

Po(t,\p+2z+y)=0 and Y(t,z,y)=0,
where ¥ : R x €7 x (€§)+ — (€§)* is the mapping defined by
U(t,a,y) == (1-P)B(t,\g+x+y), (ta,y)eRxt’x ()"

Then ¥(1,0,0) = 0 and the Fréchet derivative DyW,q o) of ¥ with respect
toy at (¢,z,y) = (1,0,0) is

)3y — Dy¥,1.0,0) (¥) = (O + 1)y € (8),
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which is invertible. Hence, the implicit function theorem enables us to ob-
tain a smooth mapping V 3 (t,2) — y,, € (£3)* of a small neighbourhood
V of (1,0) in R x £ to the Banach space (£5)* such that

i) Y10~ 0,

i) [[%4llcza <6 onV for some § > 0, and

iii) W(t,2,y) = 0 (where ||y|/p2. < 6) is, as an equation in y € (€))%,
uniquely solvable in the form y =y, , on U.

The derivative (9/0t)y, , is denoted by 3, , for simplicity. Then by differ-
entiating the identity V(¢,z,y,,) = 0 at (t,z) = (1,0), we obtain

(558) {@a + 1) W ol1.0) = o,

(nyt,x)\u,o)(‘/?/) =0 for all ¢ € ¢,

where (nyt’x)‘(m) : €9 — (¥))L denotes the Fréchet derivative of the
smooth mapping V' > (¢,2) — y;, € (8))* with respect to x at (t,2) =
(1,0). Then the equation (5.5.7), on a small neighbourhood of (t,v) =
(1, Ag), reduces to

Qo(t,x) =0 (withy=Xg+2+y.,),

where we put ®¢(t,z) := P®(t, \g+z+y, ) for (t,z) € V. Since ®(1,z2) =0
for all z € O, we have &, = 0 on {t = 1}, and hence the mapping

Vigezy 2 (t2) — @41(t,z) == @o(t,2)/(t — 1) € ¢

naturally extends to a smooth map, denoted by the same @1, of V to &,
In view of the first identity of (5.5.8), we obtain

®1(1,0) = (9 /0t)(1,0) = 0.

Then the Fréchet derivative D;®1(1) : £ — ¢ of ®; with respect to z at
(t,z) = (1,0) is given by the following:

THEOREM 5.5. By using the notation in Section 2 on the left-hand
side, we have

(De®1)1,0)(¢), " Vg = (Hess)y(¢',¢"), ¢ ¢" € ¥
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Proof. Since P(Cg + 1) = 0 on (€9)*, the latter identity of (5.5.8)
above together with (1.3) and (2.5) implies

Dy®1)(1,0)(¢") = {D2(0P0/0t) }(1,0) (¢')
=y - P(aaﬂt,x|(1,o)a 83(/?/)9 + P{&(UG)(XW/)th,x\(l,O)}'

Moreover, we observe the first identity of (5 5.8). Then by (A.3.2) in Ap-
pendix 3 applied to (w,v1,v2,() = (0,9", ', 9 4(1,0)), We obtain

(D2®1)(1,0)(#"), ©" N

- /M (¢ = P(00541(1.0), 009 )g + P{6 (ug) (X&) Xy (1.0 }) 0"
= / (9" = " (004 011,07 00 Vg + ¢ {65 (1) (X ) Xy 2)(1,0)}) 6"
/ (@' — "Ny + (09", 0 ) g Ay O™
/ (@@ (1 — Ag) + (8¢, 09" g Ao }6™.

This together with the second equality of (5.5.5) implies the required iden-
tity. U

Regarding wg as a function in &, we write
(551) wo = w0(€), €€ [07 1]

Hence, the corresponding w, := wo + v/—1009¢, fwo, L, A(p), T'(t,v), u°
and ’HXO will be written respectively as wy(¢), fwo(e), tey Ac(p), Te(t,7),

g and HXO(e). For 1. at € = 0, we see by (a) of Theorem 5.4 that the
functional ¢y : O — R takes its absolute minimum at some point 6 € O.
Then we have a unique function Ay, € C°°(M)r such that § = w, (0) and

that Ag(Ag;0) = exp(—Ag,g + wa(o)). Then by (b) of Theorem 5.4,

(5.5.2) / Ag;ovén =0 forallvet
M

and the bilinear form (Hess ), : € x € — R is positive semidefinite. Let
us now perturb wp(0) by setting

(5.5.3) wo(e) := (1 — )wy(0) + €6 = wy(0) + vV =199(eXg), 0<e<1.
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Let A\g, € C°°(M)gr be the unique function satisfying 6 = wy, _(¢) and
As()\é’;a) = _)\9;6 + fwo(e)' By CU)\G;O(O) =0 = w)xe;e(e) = WO(O) +
V—100(eXg,0) + vV—100Mg,c, we have

(5.5.4) Xoe = (1 —€)Ago + C:  for some C. € R.

Since [,,v0" = 0 for all v € €, (5.5.2) and (5.5.4) aboved imply
I )\9;51)5” = 0 for all v € €. Hence by (b) of Theorem 5.4, it follows
that

(5.5.5) 6 is a critical point for ¢, : O — R.

Let 0 <e < 1. For all 0 # v € €,

(Hess 1. )y(v.0) = |

M
1 - - -
=(1- 5)/ v? (1 + —|:|9)\9;0) 0" + 5/ 020" (cf. (5.5.4))
M 2 M

= (1 —¢)(Hess tp)g(v,v) +€/ v20" > 0.
M

v? (1 + %EW;E) " (cf. (5.5.5))

Then for such a wy = wp(e) with ¢ fixed, Theorem 5.5 shows that Dy P10 :
£ — ¥ is invertible. Now by the implicit function theorem, the equation
®y(t,z) = 0 in = € ¢ is uniquely solvable in a small neighbourhood of
(t,x) = (1,0) to produce a smooth curve z(t), 1 — 8§ <t < 1, in €% for some
0 < § < 1 such that

z(1)=0 and P4(¢t,z(t)) =0 (1-0<t<1).

Replacing § > 0 by a smaller number if necessary, we obtain ®(¢, \g.c +
x(t) + Y py) = 0 for 1 —§ <t < 1. In view of the reduction to (5.5.6) and
(5.5.7), we obtain

THEOREM 5.6. For each Z°(X)-orbit O in £%, let § be a point on O
at which ¢ in (5.4.1) takes its absolute minimum. Then replacing wo by
(1 —e)wo + €b for some 0 < ¢ < 1, we have a 0 < § < 1 such that there
exists a smooth one-parameter family of functions {¢; ;1 -39 <t <1} in
H%}% satisfying wy, =60 and I'(t, ;) =0 for all t € [1 —4,1].
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Proof of Theorem C. Let O’ and O” be Z%(X)-orbits in £%. We con-
sider the nonnegative function ¢ : Kx — R defined by

vw) :=(Z° — J)(wo,w), weEKx.

The restrictions of ¢ to O’ and O” are denoted by ¢/ : O' — R and /" :
O” — R, respectively. We follow the arguments in [BM, (8.2)]. The proof
is divided into three steps.

Step 1. In view of Theorem 5.6, by perturbing wq if necessary, we may
assume that the function ¢’ is critical at some 6’ € O’ with positive definite
Hessian. Next by (a) of Theorem 5.4, the function " takes its absolute
minimum at some point 8” € O”. For 0 < € < 1, we define a nonnegative
function ¢, on Kx by

te(w) =27 = J)(wo(e),w), weKx.

Let ¢L : O' — R and ¢/ : O” — R be the restrictions of the function ¢, to
O’ and O”, respectively. Put wy(e) := (1 — &)wo + €6”. Then by (5.5.5),
the function .” is critical at #” with positive definite Hessian. Moreover,
by € < 1, the restriction (. takes its local minimum with positive definite
Hessian at some point 62 of O’ near #’. Hence, replacing wo by wo(g), we
may assume from the begining that both ./ : O’ — R and " : O” — R have
critical points with positive definite Hessian. Therefore by Theorem 5.6,
for some 0 < & < 1, we have smooth one-parameter families of functions
{pi;1-0<t<1}and{¢/;1-6<t<1}in H%}% satisfying the following

conditions:
(5.7.1) L(t, o) =T(t,¢f)=0 forallte[l-41];

. . / . . "
(5.7.2) }Eﬁ wy, =wy € 0" and %gr{ wgr = wyn € 0.

Then by Theorem 5.3, these extend to smooth one-parameter families of
functions {¢} ; 0 <t < 1} and {p} ; 0 < ¢ < 1} in H%goé satisfying the
equalities in (5.7.1) for all ¢ € [0, 1].

Step 2. Appendix 4 shows that ¢, € Hi’% satisfying the equation
I'(¢y,0) = 0 is unique. Hence, by Theorem 5.3 7together with Step 1, the
local uniqueness in Theorem 5.1 implies the uniqueness of a smooth one-
parameter family of functions

{or;0<t <1}
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in H?éao satisfying I'(¢;,t) = 0 for all 0 < ¢ < 1. In particular, we obtain
w; = ¢y for all 0 < ¢ < 1. This together with (5.7.2) implies O’ = O”, as
required. {

86. Corollaries of Theorem C

Throughout this section, we assume that o is convex. Let u? : x — R
be the function defined in Appendix 2. Then by the arguments in [BM] and
[Ba], we obtain the following corollaries of Theorem C:

COROLLARY D. If G # 0, then the function p” : Kx — R takes its
absolute minimum ezactly on £%.

COROLLARY E. IfE% # 0, then for any, possibly non-connected, com-
pact subgroup H of Z(X), there exists an H-invariant metric w in £%.

Proof of Corollary D. For an arbitrary element n of Kx, we have a
unique element 7’ of Kx such that n = Ric? () (see for instance [M4] and
Appendix 4). Put

wo(0) =17

by the notation in (5.5.1). Choosing a Z°(X)-orbit O in £%, let § be a point
at which ¢ : O — R in (5.4.1) takes its absolute minimum. For 0 < ¢ < 1,
we perturb 7 = wy(0) by

wo(e) == (1 —¢e)n+¢cb

as in (5.5.3). Then by Theorem 5.3 together with Theorem 5.6, we have
a smooth one-parameter family of functions {¢;. ;0 < ¢ < 1} in Hi’%(e)
satisfying

w(lie) =0 and T.(t,p,.)=0, 0<t<1,

where I'; and ’H%éoa(s) are as in the arguments immediately after (5.5.1), and
for simplicity we put w(t;e) := wy, . for all 0 <t < 1. Now by Theorem 5.2,

(6.1) M?(w(05¢),0) <0,

where M7 is as in Appendix 2. We next observe that Ric?(n) = n = w,(0),
and that Ric?(w(0;¢)) = wy(e). Let € — 0. Since wy(e) — wy(0) in C%«, it
follows that w(0;e) — i’ in C%“. Hence, (6.1) implies

(6.2) M?(n/,0) <0, ie., B, <u’(n) forallne Ky,
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where we put B, := p?(f). On the other hand, by Theorem C and (a) of
Proposition A.2 in Appendix 2, the function pu? takes a constant value B,
on £%. Then by Lemma 6.3 below, we have the inequality B, < pu?(n') <
1% (n), and the equality B, = p7(n) holds if and only if n € £%, as required.

0

LEMMA 6.3. (cf. [Ba] for Kéhler-Einstein cases) For each w € Kx, let
W' be the element of Kx such that Ric’(w') = w. Then the inequality
o (W) < p(w) holds, and the equality u°(w') = p’(w) holds if and only if
W =w, e, we &%

Proof. Put wy = w. For ¢; := logVy — log{ [}, exp(twa)cD(?}, let
o € ’H%éoa denote the solution (see for instance [M4]) of the equation:

(6.4) A(py) = exp(tfu, +¢), 0<t<1.

For simplicity, we put w(t) := w,, and O; := ﬂw(t). Then w(0) = wy =
w. Differentiating (6.4) with respect to ¢, we obtain [, = fu, + ¢.
Next by taking 99 of both sides of (6.4), we see that Ric”(w(t)) — w(t) =
V=100{(1 —t)f., — @t} Therefore,

d (W [ 5. — o — w(t)"
S @®) == [ 2B =0 Fu — b

——(-1) [ @0+ [ a@wswr
< — (T~ )@ (0), ()}

where @(t) is as in (2.3). Thus, by w(0) = w and w(1) = w’ (cf. Appendix 4),
we obtain p7(w') — p7(w) < —(Z9 — J7)(w,w’) <0, and p? (') = p?(w) if
and only if ' = w. 0

We consider an arbitrary smooth path A = {w), ; a <t < b} sitting in
&%, where {At' ; a <t <b} is the corresponding smooth path in C°°(M)r
such that [, M@ = 0 for all t. Then the length £(A) of the path A in £%

is defined by
b . 1/2
L(A) ;_/ (/ Af@g) dt.
a M

This naturally defines a Riemannian metric on £%. Let 6 € £. Then by
the notation in Appendix 5, the identity component Z°(X) of Z(X) (see
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also Section 1) is nothing but the complexification K¢ of K in G (cf. (a) of
Proposition A.5). Then we have:

PROPOSITION 6.5. If £ # 0, then Z(X) acts isometrically on £%,
and in particular, £% is isometric to the Riemannian symmetric space
Kc/K endowed with a suitable metric.

Proof. Note that £% = Z°(X)/K = K®/K by Theorem C. Then it
suffices to show that Z(M) acts isometrically on £%. Let g € Z(M), and
we can write g*wg = wy, for some ¢, € C°°(M)g. For a smooth path A in

¢ as above, we have g*w), = wg, for all ¢, where & := ¢4 + g" ;. In view
of g*wy, = W¢,, we obtain

b . 1/2 b . 1/2
L(gA) = / ( /Msfwg:) dt = / ( /Mg*AEg*ovft) dt = £(A),

as required. 0

Proof of Corollary E. We follow the arguments in [BM]. By Proposi-
tion 6.5, £% is isometric to the Riemannian symmetric space K € /K without
compact factors. Hence, £% is a simply connected Riemannian manifold
with nonpositive sectional curvature. Since the compact group H acts iso-
metrically on £, the action has a fixed point in £%, as required. U

Appendix 1. Inequalities between Aubin’s functionals

For 0 € C*°(Ix)g as in the introduction, the purpose of this appendix
is to establish inequalities between multiplier Hermitian analogues Z¢ :
Kx x Kx — Rand J7 : Kx x Kx — R of Aubin’s functionals (cf. [A1],
[BM], [T1]). Let o', w” € Kx. In view of (1.1), we can write ' := wy and
w" := wyn for some ¢, ¢” € Hx. Then by using the notation in (1.4), we

define 77 and the difference 79 — 77 by

Ia(w/7w//) = / (90// o 90/){(@/)71 o ((D//)n}7

(A.1.1) M be oo

(17 — 7o) (W, u") = / { / (8g0t,8<pt)w(t)d(t)”}dt,
a M

where ¢ := {¢, ; a <t < b} is an arbitrary smooth path in Hx satisfying
the equalities ¢, =0, ¢, = ¢” — ¢’ and w(t) = W' + /=100y, for all t with
a<t<hb.
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Cramm. (Z°9-J7)(W',w") defined in the second line of (A.1.1) depends
only on (W',w"), and is independent of the choice of the path ¢.

Proof. In view of (a) of Lemma 2.4 and the first line of (A.1.1), by
using the notation in (2.3), we obtain

d o . ~\n ~ n 3 3, ~ n
(A12) W wlt) = [ sd@) -0+ [ @endp0).0@0"
M M
Hence, it suffices to show that the integral fab(fM G (@) — o(t)"}) dt is
independent of the choice of the path ¢ above. Let
[0,1] x [a,b] 5 (s,t) — ¢, ; € CF(M)r

be a smooth 2-parameter family of functions in C°°(M)g such that w,, , €
Kx for all (s,t). For such a family ¢ = ¢, of functions, we consider the
1-form

0 := (/M g—f{(@’)n - @g}>ds + (/M %—f{(@’)“ - @g})dt

on [0,1] X [a,b]. In view of (2.2) and (2.5),
op 0 ,. Odp 0 .
dO =ds Adt ——(@0)) - —— (@)
O =dsh /M{ 95 o1 “) ~ Br b5 (%)}

- ds/\dt/M {g_f(m%%_f) - g—f(i%g—f) }a)g ~0,

and this implies the required independence. b

Next, take the infinitesimal form of the second line of (A.1.1) with
respect to t, and subtract it from (A.1.2). Then by integration,

(A1) W)= [ b( | ad@r - @(t)"})dt

for w(t) and ¢ as above. In (A.1.1) and (A.1.3), we choose ¢ such that
o =14, 0<t <1, wherea=0,b=1and @ :=¢" —¢'. Then
. 1

:Z'O'(wl’wl/) :f(1)7 ja(w/’w/l) — f(t) dt,

0

(A1) @I = [ {50 - f)ar
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where f = f(t) is defined by

f(t) = /M H{(@)" - Bt} = 71T (W w(t)
=t7179(W, W W - W)).

In the last inequality of (A.1.4), we easily see that (Z7 — J7)(w',w") =0
if and only if W’ coincides with w”. Let k be a nonnegative real number.
Replacing 0 € C®(Ix)p by ko € C®(Ix)g, we have functionals J*7 :
Kx x Kx — R and ZF : Kx x Kx — R. For instance, if k = 0, then Z%°
and J" are nothing but the restriction to Kx x Kx of the ordinary Aubin’s
functional Z and J. Put ¢ := maxses, |0(s)| as in the introduction. Then
by the last line of (A.1.4), we can easily compare Z#* — 7% and 7% — J°
as follows:

LEMMA A.1.5. For all w',w" € Kx, using the notation in (1.2), we
have the inequalities e~ 1F=1(77 — 7o), ") < (TF — TF) (W', ") <
6\k—1|c(z(7 _ JU)(w’,w”).

Put by := (Bx — ax)max,; [6(s)| > 0. To each positive real number
m > 0, we associate a function ¢,, = ¢,,(t) on the closed interval [0, 1] by
setting
g,t)=1—(1 -ty o0<t<1.

LEMMA A.1.6. Ifm:=mn—1+b,, then f(t) < f(1)gq,,(t) for all 0 <
t<1,

Proof. We may assume that ¢ is nonconstant. For w(t) = w’ +

tv/—100p, we write the function Yo just as (t) for simplicity. By dif-
ferentiation, the definition of f(¢) yields

ft) = - /M (O 2) 00" = /Mwsa,asa)w(t)cv(t)”
— VT / (0 A 5p)e=PO(tyn=1 > 0,
M

and by f(0) = 0, we have f(t) > 0 for all 0 < ¢ < 1. Differentiate the
equality just above with respect to t. Then by ;) = uw +tv/—1 X and

P(t) = V=10 (u,) X,
f(t) =nv—-1 /M 99 N 9P {—w(t)(t) + (n — 1)V=19p e V()2
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—n\/—l/ Op N 0P
M

AN =V—=Tw(t)6 (uyw)Xé + (n—1)vV-1 85@}e_¢(t)w(t)”_2.
Now by max, [X¢@| < max; [u,q) — uu0)| < Bx — ax, we have

) Xop| <
mj\%x‘o—(uw(t)) 90‘ < by

forall 0 <t < 1. By (1 — t)v/=199% + w(t) = w” > 0, we further obtain
(1 =) {—vV=Tw(t)d(uyw)X @+ (n —1)V=100¢} + mw(t) > 0

for all 0 <t < 1. Hence,

(1—t)ft) +mf(t) >0, 0<t<1.
This implies (d/dt)(log f(t)) > —m/(1 —t) = (d/dt)(log ¢(t)) for 0 <t < 1,
where we put ¢(t) := f(1)gm(t) for simplicity. Hence, f(t)/¢(t) is monotone
increasing for 0 < t < 1, while we have both f(1) > 0 = ¢(1) and f(1) =
q(1). Therefore, if there were ty € (0,1) such that f(t9) = ¢(to), then in
view of the behaviour of the curve {(f(¢),q(t)) ; 0 <t < 1}, it would follow
that f(to) < ¢(to) in contradiction to f(0) = 0 = ¢(0). We now conclude
that f(t) < g(t) for all 0 <t < 1, as required. 0

Remark A.1.7. If o(s) = —log(s + C), s € Ix, for some real constant
C > —ax, then we obtain f(t) < f(1)gn(t) for all 0 < ¢ <1 as follows: For
such a function o, we have

e Ve® =uy, +tV/-1Xp+C and  — G (uygp)e Vo0 =1,

and —(1 — t)v/=16(uyq))e OXp + e 0 =y, + V/-1Xp+C =
e~%w” > 0 follows. Hence, in view of (1 — )\/—190¢ + w(t) = w” > 0,
we obtain

(1 =) {—V=Tw(t)é (uyw)XP + (n —1)V=180¢} + nw(t) > 0.

Then (1 —t)f(t) +nf(t) > 0 for all 0 < ¢ < 1. Finally, the same argument
as in the above proof of Lemma A.1.6 yields the required inequality.

In the definition of f(t), since w(1) = w”, we obtain

£ — £(t) = /M<—¢>{<w">“ — 5",
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where w(t) = w” + (1 —t) 90 (—¢). Replace 1 —t by ¢t. Then by (A.1.3),
the right-hand side of the middle line of (A.1.4) is regarded as J7(w”,w’).
Hence,

(A.1.8) ja(w/,w”)—l—ja(w”,w/) _ Ia(w/,w”) _ Ia(w”,w/), w/’w// € Ky.

By Lemma A.1.6, we have f(1) — f(t) > f(1)(1 — ¢q,,(t)) for all 0 < ¢ < 1.
Integrating this inequality over [0,1], we see that

1
(T - 7)) > (1) / (1— (1)) dt
=(m+ 2)*1f(1) =(m+ 2)*1I0(w’,w”).

Hence, by (A.1.8), we obtain the following fundamental inequalities between
the multiplier Hermitian analogues of Aubin’s functionals:

ProposITION A.1. 0 < Z7(w,0") < (m + 2)(Z° — J°) (W, 0") <
(m+1)Z°(W, ") for all ', W" € Kx, where m :==n — 1+ b,.

Remark A.1.9. Suppose that o(s) = —log(s+C), s € Ix, for some real
constant C' > —ax. Then by Remark A.1.7, we can improve the estimate
as follows:

0<7 W) < (n+2)(Z° - J) (") < (n+ 1DI(,").

Appendix 2. K-energy maps for multiplier Hermitian metrics

In this appendix, we shall define a multiplier Hermitian analogue p? :
Kx — R of the K-energy map, where the Kahler class of K is assumed to be
2me1(M)r. As in (2.8) in Section 2, we have functions fw € Kx,we Kx,
such that

( : Ric? (W) —w = v—100f,;
A21 - ~ N I n
Jo = fu+ Yo -l—lOg(fM—UJ‘),l) = fu+o(uy) —l—log(wao ),

S s S we

where f, is as in (2.8). For ' and w” in Kx, let {¢; ; a <t < b} be an
arbitrary smooth path in Hx such that w(a) = v’ and w(b) = w”, where
we put

(A.2.2) w(t) == wy, =wo +V—-100¢;, a<t<b.
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LEMMA A.2.3. In the below, we use the notation (1.4), and in par-
ticular, @(t) is as in (2.3). Then the integral M (w',w") defined below
depends only on the pair (W' ,w"), and is independent of the choice of the
path {¢¢; a <t < b} in Hx:

Moo= [ b{ [ 0020050}
(Lo

Proof. Let [0,1] x [a,b] > (s,t) = s € Hx be a smooth 2-parameter
family of functions in Hx. Then ny; := w,,, sits in Ky for all (3 t). For

surnphClty, fnq t f77s t 1#77@ t unq ty Dﬁs,tv Dn ot are denoted by fs ty fs ts % ts
Us,t, Ut Ds +, respectively. We define

O := {/ f~s,t (‘js,tastp)a)‘:t}ds + {/ fs,t(ljs,tat(p)dgt}dt7
M M

where 0, 1= 0y, ;/0s and 0y 1= Dy ,/Ot. Then the proof is reduced to
showing d© = 0 on [0, 1] x [a,b]. By ‘js,t = st +vV—16(ust) X and [M5,
(2.6.1)],

%(Ds tang) - ai([js tatso)
VT2 o) X0y} - F—{aust (0.6}

st X(06) ~ T 5, @so)

)
= 6(us,) X (0pp) X (05) — 6 (us,0) X (0,0) X (

= -1 &(U&t) a
Oyp) =

where we used the eiquality us 4= Uy — V— 1X s t (~see Section 2). Hence,
by (9/08)(@1) = (O,,000)&7, and (9/9s)(@7,) = (O, ,ds)d1,, we obtain

(A24)  dO —dsndt /M{_ et (@, ,0,0) + 2ot (3, ) }a)st
On the other hand,

afs,t _
ot

afs,t _
Js

—(0s¢+ 10 +C5,y  and

— (O + 1)0s + C;,,t
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for some real constants Cf ;, and C{, depending only on s and ¢. Hence, by
Yot = 0(Ust) = 0(Uyy — V—1Xps4t), we see that

(A.2.5)
ofs s =
gti =~ + Doy + gt’t + 0 = =0 + Do + Oy,
8]?5, s, =
ast = (00 + Ddsp+ —° Ly Ol = —(0,, + s + CL,.

By (A.2.4) and (A.2.5), we finally obtain the following required identity:

dO =ds A dt/ {8t(p(|js,tas()0) - 8890(is,t8t90) }(Dsnt =0.
M

By Lemma A.2.3 above, for all w, o, w” € Kx, it is easily seen that
M? satisfies the 1-cocycle conditions

Mo (w,w") + M7 (W, w) =0,
M (w,w") + M (W', w") + M7 (w",w) = 0.

As a multiplier Hermitian analogue of a K-energy map, we can now define
u’ : Kx — R by setting pu?(w) := M7 (wg,w) for all w € Kx. As in the
introduction, let £ denote the set of all w in Kx such that Ric”(w) = w.
Then by (A.2.1) and Lemma A.2.3 together with (b) of Lemma 2.9, we
obtain

PROPOSITION A.2. (a) An element w in Kx is a critical point of u, :
Kx — R if and only if w € £%, i.e., the function fo defined in (A.2.1) is
zero everywhere on M.

(b) For an arbitrary smooth path {p; ; a < t < b} in Hx, the one-
parameter family of Kahler forms w(t), a <t <b, in Kx defined by (A.2.2)
satisfies
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Appendix 3. Technical equalities related to the operator iw

In this appendix, related to the operator ﬂw, some technical equalities
analogous to those in [BM, Lemma 2.3] will be given. Note that, by the
notation in (2.6) and Appendix 5, we have the inclusion Kerg((, +1) C g¥
for all w € £%. Now, we have:

PROPOSITION A.3. Let w € &% and ¢ € C*°(M)r. Then for all
v,v1,v2 € Kerg(d,, + 1),

(A3.1)  Ou(9¢, 0v),, = (93¢, 00v),, + (8(0g), 9v), — 6 (u,) (X ) (Xv).

In particular, (0w 4 1)(dvy, Ova),, = (80v1,dd2),, — 6 (uy)(Xv)(Xwve) =
(Ou + 1)(0vg, 0vy),,, and

w?

(A.3.2) /M{v1v2 (v, 002) H (O, + D)CIa"
——/ vl(é?g(,&%g)w@”—i—/ 5 (uy,)v1 (X¢)(Xvg) @™,
M M

Proof. (A.3.1) follows from (1.3) and [BM, (2.3.1)] in view of the fol-
lowing identities:

(O{V—16(uw) X}, 0v), — V—15(u,)X(9¢,0v),
= (X)) (ug)V—1 (Quy, 0v), = 6(uy,) (X)) (X).

For (A.3.2), put € := (O, 4 1)¢. Then following [BM, p. 21], by (1.3) and
(1.4), we obtain

/ {vivg — (Ov1, Ovg),, }0" = —/ {v1(0,v2) + (Qv1, Ovs),, FE&"
M M
— —\/—1/ (11009 + Qvy A Ov2)E A ne Vw1
M
—I—/ v1 (0, 8vg)w§e_%w”
M
= — —1/ O(v10v2)E A ne Yol
M
+ \/—1/ v1 (Y, A Oug)E Ame Vet
M
- \/—1/ v10€ A Ovg A ne Yol = / v1(0€, Ovg) ,&"
M M
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—/ vl(ﬁ(ﬂwg),avg)wo}”—i—/ ’Ul(ac,avg)w(ﬂn.
M

M

This together with (A.3.1) above implies the required identity (A.3.2) as
follows:

/ {7)17)2 - (81)1, 8vg)w}§dj" + / (85C, 851}2)wv1@"
M M

= [ {00006,00). + 5 (XOK ey + [ 01(06, 005"
M

M
_ / (0¢, Bv2) [T, + Dor Ja" + / & (u, o (X O) (Xvg)is”
M M
:/ F(uy, )1 (X ) (Xvg)D™.
M
a
Appendix 4. Uniqueness of solutions for equations of Calabi-
Yau’s type

Fix wyp € Kx and 0 € C*(Ix)r as in the introduction, and let Vj be
as in Lemma 2.4. In this appendix, we discuss the following equation of
Calabi-Yau’s type:

(A4.1) Ric? (w) = wp.
Here, any solution w of (A.4.1) is required to belong to Kx. The purpose

of this appendix is to show the following uniqueness:

PROPOSITION A.4. The equation (A.4.1) has a unique solution w in
Kx.

Before getting into the proof, we give some remark. Let 0 < a < 1,
and we consider the mapping I' : H3 S x R — Cy®(M)g defined in (5.1.2)
by

D(p.t) = Alp) - {Vi

where Vg := [, @" and A(p) := ©}/&g". Note that, if (¢,t) € HE&% x R
satisfies I'(¢,t) = 0, then ¢ automatically belongs to C'°°(M)g. Hence,
it is easily seen that the set of the solutions of (A.4.1) and the set of the
solutions of I'(¢, 0) = 0 are identified by

(A42) {pe H%g% i T'(p,0) =0} ¥ {w e Kx ; Ric7(w) = wo}, ¢ < we.

-1
/M exp(—tp + fwo)w(?} exp(—te + fl,.);
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Proof of Proposition A.4. By (A.4.2), it suffices to show that ¢ € H?&%
satisfying I'(,0) = 0 is unique. Suppose that ¢’, ¢ in ’H%goé satisfy

I'(¢,0) =0=T(",0).

Since the Fréchet derivatives D, |0y, Dylj(,r0) are invertible (cf.

(5.1.5)), we have smooth one-parameter families {¢} ; —e < t < 0},

{¢} ; —e <t < 0} (where 0 < ¢ < 1) of functions in H])C(’O(‘) satisfying

vy = ¢ and ¢ = ¢” such that I'(¢},t) = 0 = ['(¢],t) for all ¢ with

—e <t <0. Put

S

Vo Jur

For t = 0, (b) of Lemma 2.9 yields ef; = 1 and ef; = 1, and hence we can find

¢, cf € R, —e <t <0, depending on ¢ continuously such that e}, = exp(tc})

and e} = exp(tc)) for all t with —e < ¢ < 0. Then by setting &; := ¢} + ¢}

and &' := ¢ + ¢/, we have

(A43)  AE) = exp(—t& + fup) and  A(E)) = exp(—t&) + fu,).

For simplicity, we put wj := wg and wy' := wer (—¢ <t < 0). Note that, by

(2.5), ww,’s = U(uwé) = U(UWO —+v-1 X{é) and wwé’ = a(qu —v-1 X{él) =
— . _d)w” —ww/

o (ugy —V—1X(& = &})), while A(§)/A(E) = {e "t (wf)"}/{e "t(wi)"}

For each ¢t with —e < ¢t < 0, let p; be the point on M at which the function

Y — &, on M takes its maximum. Then by (A.4.3), the maximum principle
shows that

o 1 -
exp(—tp; + fwe)@o and ef == 70 /M exp(—t@) + fuo )0 -

1> {A(E) /A }(pr) = exp{—t(& — &) (pe)}-

Then (¢/ — €)(p) < (/ — €)(p) < 0 for all p € M, ie., € < & on M. By
exactly the same argument, we have £ < &' on M. Hence, & = &, on M
for all t with —e < t < 0. Let ¢ tend to 0. By passing to the limit, we see
that &) = &), i.e., ¢ — ¢ is a constant on M. Then by ¢', " € H%&%, we
immediately obtain ¢” = ¢’ on M, as required. o

Appendix 5. A multiplier Hermitian analogue of Matsushima’s
obstruction

In this appendix, Matsushima’s obstruction [Mat] will be generalized
for multiplier Hermitian metrics of type o, where o is an arbitrary real-
valued function on Ix. Assuming £¢ # 0, let 0 € £. Write

0=v-1) g(0),;d=" Ad,
a7ﬁ

https://doi.org/10.1017/50027763000008540 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008540

112 T. MABUCHI

in terms of a system (z', 22,..., 2™) of holomorphic local coordinates on M.

Since Ric?(6) = 6, the Kéhler class of Kx is 2mci(M)g. Then by (2.8) and
(a) of Lemma 2.9,

(A.5.1) fo=—vo+Co

for some real constant Cy. By [F1, p. 41], g? in (2.6) coincides with the
kernel Kerc (O, + 1) of the operator O, + 1 on C°°(M ), since by (A.5.1),
0y is written in the form

Ba af@ 0
82’0‘ 825 ’

Do =0+ > _g(0)
a,B

LEMMA A.5.2. The vector space g in (2.6) forms a complex Lie al-
gebra in terms of the Poisson bracket by 0, and in particular the C-linear
isomorphism g® = g in (2.6) is an isomorphism of complex Lie algebras.

Proof. For each vi,vy € C*®°(M)c, we consider their Poisson bracket
[v1,v2] € C°(M ) on the Kéhler manifold (M, 6) as in [FM]. Let u,us €
g’. Then by grad§[uy, us] = [grad§ uy, grady us], we see that [uy,us] + ko
belongs to g for some constant kg € C. Hence it suffices to show ko = 0,

i.e.,
/ [ul,UQ]é” =0.
M

Let F' : g — C be the Futaki character. Then by [FM, (2.1)] and [M1,
Theorem 2.1], we see that [, (1—efo)[u1, u2)0" = F([grad§ ui, grad§ us]) =
0. Therefore, in view of (A.5.1), we obtain

[ sl = exp(=Co) [ fun,wle6" = exp(~Co) [ fur.uale” =0,
M M M

as required. 0

For the centralizer 3(X) of X in g, the group Z"(X) in the introduction
is exactly the complex Lie group generated by 3(X) in G. Consider the Lie
subalgebra £ of 3(X) associated to the group K of all isometries in Z°(X)
on the Kéhler manifold (M, #). Let £c be the complexification of ¢ in the
complex Lie algebra g. Put

37(X) == {u € Kerg(
8 = {u € Kerg(

1) ; X]Ru = 0}7

(4:55) 1) ; Xgu = 0},

O, +
O, +
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where Kerg (L, +1) denotes the kernel of the operator (,+1) on C°°(M ).
Put € := ¢ + /=18 in C>(M). Then by ¢ C 3%(X) C g% and ¢/ > g,
we obtain

(A.5.4) te C 3(X).

Note that Z(X) acts on ¢ by Z(X) x €% 2 (g,0) — (g71)*0 € £%. Since
the isotropy subgroup of Z°(X) at 6 is K, we can write the Z%(X)-orbit O
through 6 as

(A.5.5) 0= 72°%X)/K,

Let Ty(£%) and T,(O) denote the tangent spaces at 6 of £ and O, respec-
tively. In view of the homeomorphism g}’( ~ £% immediately after (5.4.1)
in Section 5, the differentiation of the equation A(p) = exp(—¢ + fo) with
respect to ¢ yields

Ty(€5) te/t = ¥ (=Ty(E%)
V=100v « [V=1grad§v/2] < w,
where for every « in ¢, we mean by [y] the natural image of v under the

projection of ¢ onto £c/€. On the other hand, by (A.5.5), we have the
isomorphism

I

(A.5.6)

(A5.7) T,(0) = 5(X) /.

Since O C &%, we have T,(0) C T,(£%). This together with (A.5.4),
(A.5.6) and (A.5.7) implies that 3(X) = c, i.e., T,(O) = T,(£%). Thus, we
obtain

PROPOSITION A.5. (a) If €% # 0, then Z°(X) is a reductive algebraic
group. Actually for an arbitrary 6 € £%, we have 3(X) = ¢, i.e., 3°(X) =
E% by the above notation.

(b) If £% # 0, then each connected component of £% is a single Z°(X)-
orbit under the natural action of Z°(X) on £%.

Remark A.5.8. The above arguments are valid also for X = 0. If

X =0, then (a) of Proposition A.5 is nothing but Matsushima’s theorem
[Mat].
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