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Turbulence is commonly observed in nearly collisionless heliospheric plasmas,
including the solar wind and corona and the Earth’s magnetosphere. Understanding
the collisionless mechanisms responsible for the energy transfer from the turbulent
fluctuations to the particles is a frontier in kinetic turbulence research. Collisionless
energy transfer from the turbulence to the particles can take place reversibly, resulting
in non-thermal energy in the particle velocity distribution functions (VDFs) before
eventual collisional thermalization is realized. Exploiting the information contained in
the fluctuations in the VDFs is valuable. Here we apply a recently developed method
based on VDFs, the field–particle correlation technique, to a β = 1, solar-wind-like,
low-frequency Alfvénic turbulence simulation with well-resolved phase space to
identify the field–particle energy transfer in velocity space. The field–particle
correlations reveal that the energy transfer, mediated by the parallel electric field,
results in significant structuring of the VDF in the direction parallel to the magnetic
field. Fourier modes representing the length scales between the ion and electron
gyroradii show that energy transfer is resonant in nature, localized in velocity space
to the Landau resonances for each Fourier mode. The energy transfer closely follows
the Landau resonant velocities with varying perpendicular wavenumber k⊥ and
plasma β. This resonant signature, consistent with Landau damping, is observed in
all diagnosed Fourier modes that cover the dissipation range of the simulation.

Key words: astrophysical plasmas, plasma heating, space plasma physics

1. Introduction
Plasma turbulence is ubiquitous in the universe. In near-Earth collisionless plasmas

– such as the solar corona, the solar wind and the Earth’s magnetosphere – turbulence
plays a fundamental role in the transport of energy from large fluid scales to small
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kinetic scales. This cascade of turbulence energy across scales is usually characterized
by a power law in the energy spectrum of fluctuating quantities. A spectral break
(change of the power law index) in the energy spectrum near the proton scale defines
the transition into the dissipation range where the turbulence energy is converted
into plasma heat and/or particle energization. How this process occurs remains a
key subject of current kinetic plasma research in space observations (He et al. 2012;
Alexandrova et al. 2013; Chen et al. 2013; Narita et al. 2016; Perrone et al. 2016;
Roberts et al. 2017; Vech, Klein & Kasper 2017; Wang et al. 2018), numerical
simulations (Howes et al. 2008b; Parashar et al. 2009; Karimabadi et al. 2013;
TenBarge, Howes & Dorland 2013; Chang, Peter Gary & Wang 2014; Vásconez
et al. 2014; Franci et al. 2015; Told et al. 2015; Li et al. 2016; Navarro et al. 2016;
Parashar & Matthaeus 2016; Wan et al. 2016; Grośelj et al. 2017; Hughes et al. 2017;
Yang et al. 2017; Cerri, Kunz & Califano 2018; Grośelj et al. 2018; Arzamasskiy
et al. 2019; Kawazura, Barnes & Schekochihin 2019) and theoretical efforts
(Howes et al. 2008a; Schekochihin et al. 2009; Boldyrev et al. 2013; Howes 2015;
Passot & Sulem 2015; Schekochihin et al. 2016; Adkins & Schekochihin 2018;
Schekochihin, Kawazura & Barnes 2019).

Recent advances in temporal and phase-space resolution in spacecraft observations
(Servidio et al. 2017; Chen, Klein & Howes 2019) and numerical simulations
(Li et al. 2016; Klein, Howes & TenBarge 2017; Cerri et al. 2018) have opened up
new pathways for characterizing turbulence: using the velocity distribution functions
(VDFs) to investigate non-thermal structures in the velocity space arising from the
dissipation mechanisms. These velocity-space structures contain important information
about the transfer of energy to particles from turbulent fields, ultimately leading to the
thermodynamic heating of the plasma. Indeed, information in the VDFs underlying
the nature of dissipation has been explored and identified in recent three-dimensional
(3-D) kinetic turbulence simulations (Li et al. 2016; Klein et al. 2017; Cerri et al.
2018). Current space missions such as the Multiscale Magnetosphere Mission (MMS)
(Burch et al. 2016) have the capability to sample well-resolved VDFs at high time
cadence. Utilizing and understanding the crucial information contained in the phase
space represents a new avenue in kinetic turbulence research (Howes 2017).

Recently, an innovative technique tracking the net energy transfer between turbulent
fields and plasma particles in velocity space was developed, the field–particle
correlation technique, (Klein & Howes 2016; Howes, Klein & Li 2017), and first
illustrated in a nonlinear one-dimensional-one-velocity (1D–1V) Vlasov–Poisson
plasma. Clear velocity-space signatures of direct energy exchange between the
electric field and the particles was demonstrated. The 3-D implementation of this
technique and application to single-point data sets was performed in gyrokinetic
turbulence simulations, which showed velocity-space structures associated with ion
Landau resonance (Klein et al. 2017). It was also applied to diagnose the particle
energization in current sheets arising self-consistently from Alfvén wave collisions
(Howes 2016), showing spatially localized energization by Landau damping (Howes,
McCubbin & Klein 2018). It has recently been applied to well-resolved data from
the MMS, which has provided evidence for electron Landau damping in the turbulent
magnetosheath (Chen et al. 2019).

Both of these previous numerical studies sampled the 3-D electromagnetic
turbulence simulation at single spatial points. Here we apply this technique in Fourier
space for the first time. Sampling in Fourier space is a complementary approach
to sampling in spatial space in numerical simulations, but it requires full spatial
information of the system and therefore cannot be applied to spacecraft data that
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often make in situ measurements from only one or a few spatial locations at a given
time. Nevertheless, application of the field–particle correlation technique in Fourier
space can be advantageous. It can be particularly useful in revealing information
on the length scale dependence of the energy transfer mechanisms. In Alfvénic
turbulence, the nonlinear turbulent cascade of Alfvén waves may undergo significant
collisionless damping when it reaches the kinetic regime k⊥ρi & 1 (where k⊥ is the
perpendicular wavenumber and ρi the ion gyroradius), where the kinetic Alfvén wave
becomes dispersive. In this dispersive regime, the resonant velocity vp‖ associated with
the collisionless damping of kinetic Alfvén waves depends on k⊥ linearly. Sampling
at a single point will measure contributions from a broad range of k⊥ modes, each
with a different resonant velocity, potentially smearing out any resonant signatures
of the energy transfer in velocity space. Analysing in Fourier space, however, each
turbulent wave mode specified by k= (kx, ky, kz) has vp‖ that directly depends on k⊥,
producing a relatively clean resonant signature at that vp‖ even in a turbulent plasma
containing a broadband spectrum of modes.

In this work, we study the properties of energy transfer in a β = 1, gyrokinetic
turbulence simulation. Resonant signatures associated with Landau resonances are
observed in particle velocity space in all diagnosed Fourier modes spanning the
dissipation range of the simulation. The energy transfer signatures also show a clear
k⊥ dependence of the resonant velocity (moving to higher resonant velocities with
increasing k⊥), reflecting the characteristic of phase velocity of kinetic Alfvén waves.
Remarkable agreement with the β dependence of the resonant velocity is observed
in the energy transfer signatures in identical simulations with lower β. Our results
demonstrate the resonant nature of field–particle energy transfer by collisionless
wave–particle interactions with Alfvén waves.

This paper is organized as follows: the theory of nonlinear field–particle energy
transfer in collisionless plasmas in three dimensions and in Fourier space is outlined
in § 2.1; field–particle correlations are defined and constructed in the gyrokinetic
framework in § 2.2; the form of field–particle correlations in Fourier space is derived
in § 2.3; the sampled spectrum in Fourier space is illustrated in § 2.4; the simulation
set-up and parameters are described in § 2.5; the results on energy evolution of the
systems are presented in § 3; field–particle correlations in gyrotropic velocity space
(v‖, v⊥) are examined in § 4.1; primary results of this work including (i) examples
of v⊥-integrated, reduced correlations of individual Fourier modes for electrons and
ions, (ii) correlations summing over a range of kz modes for all diagnosed (kx, ky)
Fourier modes, (iii) k⊥ dependence in summed-kz modes and (iv) βi dependence of
energy transfer signatures are presented and discussed in § 4.2; we further discuss
and summarize our results in § 5.

2. Techniques and simulation set-up
Here we describe the field–particle correlation technique in terms of its formulation

in physical and Fourier space, its implementation within the gyrokinetic framework,
and provide the set-up of the simulation.

2.1. Rate of energy transfer between fields and particles in a collisionless plasma
Dissipation in weakly collisional plasmas consists of a two-step process (Howes
2017). First, energy is transferred from the electromagnetic fields to plasma
particles, appearing as non-thermal energy in the particle velocity distributions. This
collisionless process is reversible. Then, the non-thermal energy is cascaded in phase
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space, generating fine structures in the velocity space that are eventually smoothed
out as thermal energy in the particle distributions via the action of collisions, and
hence realizing irreversible heating of the plasma (Howes 2008; Schekochihin et al.
2008, 2009). The energy transfer directly measured by the field–particle correlation
technique is the net energy transferred between the electromagnetic fields and plasma
particles in the first step.

The theory describing the energy transfer between fields and plasma particles,
which is directly measured in field–particle correlations, was first derived for a 1D–1V
Vlasov–Poisson plasma (Klein & Howes 2016; Howes et al. 2017), and subsequently
for a 3D–3V electromagnetic plasma (Klein et al. 2017). Here we briefly summarize
the key points of the theory in 3D–3V, using insights from the 1D–1V model.
Consider the Boltzmann’s equation for species s(= i, e) in a proton–electron plasma

∂fs

∂t
+ v · ∇fs +

qs

ms

(
E+

v×B
c

)
·
∂fs

∂v
=

(
∂fs

∂t

)
c

. (2.1)

Focusing on the net collisionless energy transfer in the first step of dissipation, we
neglect the collision term, (∂fs/∂t)c, on the right. We then multiply the whole equation
by msv

2/2 to obtain an equation for the rate of change of phase-space energy density,
ws ≡ (msv

2/2)fs,

∂ws

∂t
=−v · ∇ws − qs

v2

2
E ·

∂fs

∂v
−

qs

c
v2

2
(v×B) ·

∂fs

∂v
. (2.2)

When integrating over all space and velocity, ws gives the microscopic kinetic energy
Ws

Ws ≡

∫
d3x
∫

d3v
1
2

msv
2fs. (2.3)

When integrating (2.2) over all space, the first term on the right vanishes for periodic
or infinite spatial boundaries. When integrating over velocity space, the magnetic force
term involves v · (v × B)= 0 and therefore does not contribute to the change of the
microscopic kinetic energy Ws, as expected. The change of the microscopic kinetic
energy, or equivalently, the energy transfer to species s, comes from the electric field
term. We can further separate the E‖ and E⊥ contributions to the rate of change of
the microscopic kinetic energy as

∂Ws

∂t
=−

qs

2

∫
d3x
∫

d3v v2

(
E‖
∂fs

∂v‖
+E⊥ ·

∂fs

∂v⊥

)
, (2.4)

where ‘‖’ is with respect to the local magnetic field. The first and second terms on
the right represent energy transfer mediated by E‖ and E⊥, respectively. Note that this
rate of energy density transfer, when integrated over velocity, simply yields the rate
the work done by the electric field, Js ·E= Js‖ · E‖ + Js⊥ ·E⊥ (Klein & Howes 2016;
Howes et al. 2017; Klein et al. 2017).

2.2. Field–particle correlations and gyrokinetics
We can now construct the field–particle correlations based on (2.4). Without
integrating over space or velocity, the transfer rate of phase-space energy density
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can be directly computed by correlating E‖ or E⊥ with the corresponding velocity
derivative of fs at a point x and time t over a correlation interval τ as

CE‖(x, v, t, τ )=C

(
−qs

v2
‖

2
∂fs(x, v, t)

∂v‖
, E‖(x, t)

)
(2.5)

CE⊥(x,v, t, τ )=C
(
−qs

v2
⊥1

2
∂fs(x, v, t)
∂v⊥1

, E⊥1(x, t)
)
+C

(
−qs

v2
⊥2

2
∂fs(x, v, t)
∂v⊥2

, E⊥2(x, t)
)
,

(2.6)
where the unnormalized correlation on the right is defined as

C(A, B)=
1
N

i+N∑
j=i+1

AjBj (2.7)

for real quantities Aj and Bj measured at discrete times tj = j1t over a correlation
interval τ =N1t that starts from an initial time ti+1. The factor v2

= v2
‖
+ v2

⊥
in (2.4)

is reduced to v2
‖

in (2.5) upon integration
∫

dv⊥ as it can be separated from
∫

dv‖.
The correlation interval τ is an important parameter in the unnormalized correlation.
When τ is set to zero, the unnormalized correlation measures the instantaneous energy
transfer at each time t, which often contains a large oscillatory component due to
undamped wave motions To measure the net secular or long-term energy transfer, τ is
chosen to be sufficiently long such that the oscillatory component in the instantaneous
energy transfer, which is often large but does not contribute to the net energy transfer,
can be averaged out. Normally, one wave period of the outer-scale mode is sufficient
(Howes et al. 2017). The parallel correlation CE‖(x, v, t, τ ) measures the net energy
transfer rate mediated by the parallel electric field, and is therefore a suitable measure
for Landau damping (Landau 1946), or mechanisms like strong-guide-field magnetic
reconnection that may be dominated by E‖ (Dahlin, Drake & Swisdak 2016); it,
however, does not capture transit time damping (Barnes 1966; Quataert 1998) that
arises from the change in the magnetic field strength. Similarly, the perpendicular
correlation CE⊥(x, v, t, τ ) captures the net transfer rate mediated by the perpendicular
electric field, and is therefore suitable for determining cyclotron damping (Coleman
1968; Isenberg & Hollweg 1983) or stochastic ion heating (Chen, Lin & White
2001; Chandran et al. 2010). In this study using gyrokinetic simulations, we cannot
explore perpendicular energization due to the conservation of the magnetic moment
in gyrokinetic theory, so we focus here on the net energy transfer rate accomplished
by E‖.

In gyrokinetics, the system evolves in a three-spatial and two-velocity dimension
(3D–2V) phase space, where the two velocity coordinates are v‖ and v⊥. The
distribution function to the first order in gyrokinetics (Howes et al. 2006) is given by

fs(v‖, v⊥)=

(
1−

qsϕ

T0s

)
F0s(v)+ hs(v‖, v⊥), (2.8)

where F0s = (n0s/π
3/2v3

ts) exp(−v2/v2
ts) is the equilibrium Maxwellian distribution,

qsϕ/T0s is the Boltzmann term (qs the species charge and ϕ the electric potential), hs
is the first-order gyroaveraged part of the perturbed distribution. When substituting
fs(v‖, v⊥) into the first term in (2.4), we see that ∂F0s(v)/∂v‖ is odd in v‖, and
is multiplied by an even power v2

‖
. Thus, this term vanishes upon integration over

all v‖ (again,
∫

dv⊥ can be separated from
∫

dv‖ here). Hence, the equilibrium
Maxwellian distribution and the Boltzmann term in (2.8) do not contribute to the net
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energy transfer in the field–particle correlation in (2.5). The perturbed, gyroaveraged
contribution hs can be used in place of fs for the purpose of calculating field–particle
correlations.

Another convenient transformation used is the complementary distribution function
gs (Schekochihin et al. 2009)

gs(v‖, v⊥)= hs(v‖, v⊥)−
qsF0s

T0s

〈
ϕ −

v⊥ ·A⊥
c

〉
Rs

, (2.9)

where 〈· · · 〉 represents gyroaveraging at constant guiding centre Rs, capturing the
perturbations to the Maxwellian distribution in the moving frame of Alfvén waves. It
retains the parallel perturbations of δfs(≡ fs−F0s) in (2.8), and is therefore appropriate
for calculating the net energy transfer. Note that the term 〈ϕ − v⊥ · A⊥/c〉Rs is
independent of v‖, and therefore yields zero upon integration

∫
dv‖ when substituted

into the first term in (2.4). Therefore, this term is the same, whether evaluated with
hs or gs. As a result, the correlation CE‖ in (2.5), which is based on this term, is
quantitatively similar using hs or gs, but gs contains less additional terms and can
more clearly reveal structures near the resonant velocity in the distribution functions
themselves.

Here we will use gs in the calculation of field–particle correlations, so the specific
parallel field–particle correlation used to analyse the gyrokinetic turbulence simulations
here takes the form

CE‖(x, v‖, v⊥, t, τ )=C

(
−qs

v2
‖

2
∂gs(x, v‖, v⊥, t)

∂v‖
, E‖(x, t)

)
, (2.10)

where E‖ is gyroaveraged. For simplicity, we refer to this form of parallel correlation
that depends on gyrotropic velocity space (v‖, v⊥) as CE‖(v‖, v⊥, t). The parallel
reduced correlation CE‖(v‖, t), defined by integrating CE‖(v‖, v⊥, t) over all v⊥, is
given by

CE‖(v‖, t, τ )=
∫
v⊥ dv⊥CE‖(v‖, v⊥, t, τ ). (2.11)

2.3. Field–particle correlations in Fourier space
To derive the appropriate form of the field–particle correlation in Fourier space, we
first express the electric field at a single position x by a Fourier series

E(x)=
∑

k

Ekeik·x, (2.12)

summed over all Fourier modes k in a 3-D domain of volume L3. The particle velocity
distribution function fs(x) is expressed similarly in terms of its Fourier coefficients
fsk. The product of two real quantities A(x) and B(x) integrated over a volume L3 can
be converted to a sum over the product of the Fourier coefficients∫

d3x A(x)B(x)= L3
∑

k

A∗kBk = L3
∑

k

AkB∗k, (2.13)

where the complex Fourier coefficients Ak and Bk both satisfy the reality condition
Ak=A∗

−k. Substituting these Fourier series into (2.4) and using this relation, we obtain
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the rate of change of microscopic kinetic energy in terms of the Fourier coefficients
of the electric field and particle distribution function,

∂Ws

∂t
=

∑
k

(
−

qs

2

)
L3
∫

d3v v2

(
E‖k

∂f ∗sk

∂v‖
+E⊥k ·

∂f ∗sk

∂v⊥

)
. (2.14)

Without summing over all Fourier modes, the contribution to the change of particle
energy from each Fourier mode k is given by the summand, leading to the following
forms of the field–particle correlations in Fourier space corresponding to (2.5) and
(2.6):

CE‖(k, v, t, τ )=C

(
−qs

v2
‖

2
∂f ∗sk(v, t)
∂v‖

, E‖k(t)

)
(2.15)

CE⊥(k, v, t, τ )=C
(
−qs

v2
⊥1

2
∂f ∗sk(v, t)
∂v⊥1

, E⊥1k(t)
)
+C

(
−qs

v2
⊥2

2
∂f ∗sk(v, t)
∂v⊥2

, E⊥2k(t)
)
.

(2.16)

The discussion on using gs in gyrokinetics in place of fs, which is based on velocity
integrals, applies also to the correlations in Fourier space (with the gyroaveraging
operation 〈· · · 〉 in (2.9) reduced to multiplications by Bessel functions (Howes et al.
2006; Numata et al. 2010)). The parallel correlation in (2.10) then becomes

CE‖(k, v‖, v⊥, t, τ )=C

(
−qs

v2
‖

2
∂g∗sk(v‖, v⊥, t)

∂v‖
, E‖k(t)

)
. (2.17)

This represents the net energy transfer rate in Fourier and gyrotropic velocity space.
Together with the parallel reduced correlation in (2.11), it is the form of field–particle
correlations we use in this work.

2.4. Diagnosing energy transfer in Fourier space
Previous studies have used the field–particle correlation technique at a single point in
physical space to evaluate the energy transfer between fields and particles (Klein &
Howes 2016; Howes 2017; Howes et al. 2017, 2018; Klein 2017; Klein et al. 2017;
Chen et al. 2019). Here we diagnose the particle energization in Fourier space, where
each Fourier mode k is specified by a normalized wavevector (kxρi, kyρi, kzLz/2π),
where Lz is the system size in z. There are a number of advantages when applying
field–particle correlations in Fourier space compared to physical space. First, by
utilizing full spatial information of the whole domain as opposed to a single point,
we can determine how the length scale of fluctuations, within the broadband turbulent
spectrum, influences the collisionless field–particle energy transfer. Second, in the
gyrokinetic limit k‖ � k⊥, well justified for the anisotropic turbulence observed in
the solar wind at kinetic scales (Sahraoui et al. 2010; Narita et al. 2011; Roberts,
Li & Li 2013; Roberts, Li & Jeska 2015), the parallel phase velocity vp‖ = ω/k‖
of the linear wave modes depends only on the perpendicular wavenumber and the
plasma parameters, ω ≡ ω/(k‖vA) = vp‖/vA = ω(k⊥ρi, βi, Ti/Te) (Howes et al. 2006).
Therefore, the parallel phase velocity that governs resonant collisionless interactions
is well defined for each mode k in Fourier space. In contrast, at a single point in
physical space, the dispersive nature of kinetic Alfvén waves (see figure 1) would
lead to a range of resonant velocities, broadening the energy transfer signal and
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(b)(a)

FIGURE 1. The linear gyrokinetic dispersion relation for a βi = 1 and Ti/Te = 1 plasma,
showing (a) the normalized real frequency or phase velocity ω/k‖vA (dashed black) and
(b) damping rates γ /k‖vA for the electrons (green), ions (cyan) and the total damping rate
(blue). The total shaded region represents the resolved dynamic range 0.25 6 k⊥ρi 6 10.5.
The inner yellow shaded region indicates the range of the sampled k⊥ spectrum given in
table 1, 1.4 6 k⊥ρi 6 9.9.

(kxρi, kyρi) k⊥ρi ω/k‖vA = vp‖/vti vp‖/vte τk/τ0

(1,1) 1.4 1.3 0.25 0.79
(2,2) 2.8 2.1 0.42 0.47
(3,4) 5.0 3.3 0.66 0.30
(5,5) 7.1 4.0 0.79 0.25
(6,6) 8.5 4.2 0.84 0.24
(7,7) 9.9 4.2 0.85 0.23

TABLE 1. List of diagnosed (kx, ky) modes in Fourier space.

potentially smearing out any resonant energy transfer signatures in velocity space.
Third, the broadband turbulent fluctuations have decreasing amplitudes with increasing
perpendicular wavenumber k⊥ρi, but in Fourier space one can isolate the fluctuations
at higher k⊥ from the rest of the fluctuations containing much larger amplitude
fluctuations at lower k⊥.

In figure 1, we plot (a) the normalized frequency ω/k‖vA and (b) the normalized
damping rate γ /k‖vA as a function of k⊥ρi from the linear gyrokinetic dispersion
relation (Howes et al. 2006) for a plasma with parameters βi≡ 8πniTi/B2

= v2
ti/v

2
A= 1,

Ti/Te = 1, and mi/me = 25. The total shaded region represents the resolved dynamic
range of k⊥ in the simulation, 0.25 6 k⊥ρi 6 10.5. Table 1 lists the perpendicular
wavevectors (kxρi, kyρi) of Fourier modes that are sampled in the simulation,
along with the corresponding normalized perpendicular wavenumber k⊥ρi, where
k⊥ ≡

√
k2

x + k2
y . The range of these sampled perpendicular wavenumbers k⊥ρi is

indicated in figure 1 by the inner yellow shaded region, covering 1.4 6 k⊥ρi 6 9.9
or 0.3 6 k⊥ρe 6 2.0. For each (kxρi, kyρi) mode, seven kzLz/2π ∈ [−3,3] modes are
selected, for a total sampling of 42 modes in (kxρi, kyρi, kzLz/2π) Fourier space. Also
tabulated in table 1 are the parallel phase velocities normalized to the ion thermal
velocity, vp‖/vti = ω/k‖vA (valid for a βi = 1 plasma) and vp‖/vte. The last column
gives the linear wave period τk of a kinetic Alfvén wave specified by k⊥ρi.

The dispersion relation plot in figure 1(a) shows the characteristic dispersion of
kinetic Alfvén waves, where the parallel phase velocity begins increasing at the
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transition of k⊥ρi ∼ 1. Given the energy transfer from fields to particles due to
resonant collisionless wave damping is governed by the parallel phase velocity, one
would expect to observe that the region of velocity space in which the particles
exchange energy with the fields, known as the velocity-space signature of the particle
energization, will shift to higher parallel velocities, tracking the increased parallel
phase velocity as the perpendicular wavenumber k⊥ρi increases. Our analysis in §§ 4.1
and 4.2 confirms this expectation.

Finally, the collisionless damping rates for ions (cyan) and electrons (green) and the
total damping rate (blue) are plotted in figure 1(b). The total damping of the waves
is primarily attributed to electron damping for k⊥ρi > 2 while both ion and electron
damping contribute for k⊥ρi < 2. Particularly, ion collisionless damping becomes
significant and peaks around k⊥ρi ∼1, but drops off very rapidly for k⊥ρi > 2.

2.5. Simulation set-up
The simulation was performed with the gyrokinetic code AstroGK (Numata et al.
2010). It has been extensively used to investigate turbulence in weakly collisional
space plasmas (Howes et al. 2008b; Tatsuno et al. 2009; Howes et al. 2011;
TenBarge & Howes 2012; Nielson, Howes & Dorland 2013; TenBarge & Howes
2013; Kobayashi, Rogers & Numata 2014; Howes 2016; Li et al. 2016; Howes et al.
2018) as well as collisionless magnetic reconnection in the strong-guide-field limit
(Numata et al. 2011; TenBarge et al. 2014; Numata & Loureiro 2015). AstroGK
is an Eulerian continuum code with triply periodic boundary conditions. It has
a slab geometry elongated along the straight, uniform background magnetic field,
B0 = B0ẑ. The code evolves the perturbed gyroaveraged Vlasov–Maxwell equations
in five-dimensional phase space (3D–2V) (Frieman & Chen 1982; Howes et al.
2006). The evolved quantities are the electromagnetic gyroaveraged complementary
distribution function gs(x, y, z, λ, ε) for each species s, the scalar potential ϕ, parallel
vector potential A‖ and the parallel magnetic field perturbation δB‖, where ‖ is along
the total local magnetic field B = B0ẑ + δB. Note that the total and background
magnetic fields are the same to first-order accuracy, which is retained for perturbed
fields in gyrokinetics. The 2V velocity grid is specified by pitch angle λ= v2

⊥
/v2 and

energy ε= v2/2. The background distribution functions for both species are stationary
uniform Maxwellians. Collisions are incorporated using a fully conservative, linearized
gyroaveraged Landau collision operator consisting of energy diffusion and pitch-angle
scattering between like particles, electrons and ions and inter-species scattering of
electrons off ions (Abel et al. 2008; Barnes et al. 2009).

The same simulation set-up as Li et al. (2016) is used, a 3-D generalization of
the classic 2-D Orszag–Tang Vortex (OTV) problem (Orszag & Tang 1979). The
2-D problem was widely used in fluid and MHD turbulence simulations; various
3-D generalizations have also been used for studying turbulence (Dahlburg & Picone
1989; Politano, Pouquet & Sulem 1989; Picone & Dahlburg 1991; Politano, Pouquet
& Sulem 1995; Grauer & Marliani 2000; Mininni, Pouquet & Montgomery 2006;
Parashar et al. 2009; Parashar, Vasquez & Markovskii 2014). This 3-D OTV set-up
consists of counterpropagating Alfvén waves along B = B0ẑ such that on the z = 0
plane, its initial condition reduces to that of the 2-D OTV problem. An initial
amplitude z0 of Elsässer variables in the OTV set-up (Li et al. 2016) is chosen to
yield a nonlinearity parameter χ = k⊥z0/(k‖vA) = 1 (where vA = B0/

√
4πmin0 is a

characteristic Alfvén speed), corresponding to critical balance (Goldreich & Sridhar
1995), or a state of strong turbulence. Note that previous studies using AstroGK
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have shown consistency with the prediction of a critically balanced cascade in the
dissipation range (TenBarge & Howes 2012; TenBarge et al. 2013).

To resolve the turbulent cascade from the inertial range to the dissipation range
for both ions and electrons, a reduced mass ratio of mi/me = 25 is used. The
simulation domain is L⊥ = 8πρi and dimensions are (nx, ny, nz, nλ, nε, ns) =
(128, 128, 32, 64, 32, 2), which resolves a dynamic range of 0.25 6 k⊥ρi 6 10.5,
or 0.05 6 k⊥ρe 6 2.1, covering both the inertial and dissipation ranges of the system.
Typical conditions of solar wind turbulence are considered with ion plasma beta
βi= 8πniT0i/B2

0= 1, where T0i is the constant background ion temperature, and equal
temperatures are used for ions and electrons (T0i/T0e = 1).

To realize collisional dissipation of turbulent energy in particle velocity space,
weak finite collision frequencies are required (Howes 2008; Schekochihin et al. 2008,
2009). Low collision frequencies νs/ωA0� 1 are chosen to avoid altering the weakly
collisional dynamics, where collision frequencies of νi= 3× 10−3ωA0 and νe= 0.06ωA0
(where ωA0≡ k‖vA is a characteristic Alfvén wave frequency) are used. We also employ
a constant ion hypercollision frequency of νHi = 6 × 10−3ωA0 and adaptive electron
hypercollision frequency of νHe = 0.12ωA0 to ensure fluctuations in velocity space
remain well resolved (Howes 2008; Howes et al. 2011). The electron hypercollisional
coefficient is adjusted based on nonlinear estimations of the total collisional damping
rate (including hypercollisions) γnl and of the energy transfer frequency ωnl (that is
given by the cascade model (Howes et al. 2008a) and dependent on the magnitude of
the magnetic field fluctuations) such that a value of γnl/ωnl' 1/2π is achieved within
some tolerance. The hypercollisionality chosen has the form of a pitch-angle-scattering
operator with a wavenumber-dependent collision rate νHs(k⊥/k⊥max)

ps , where k⊥max is
a grid-scale wavenumber with pi = 4 and pe = 8. It produces positive–definite heating
close to the grid scale and is sufficient to terminate the turbulent cascade at the
smallest resolved scales.

3. Energy evolution and current density
Here we present an overview of the evolution of the 3-D OTV simulation in terms

of the evolution of the energy and the self-consistent development of current sheets
in the simulation.

Under weakly collisional conditions, the removal of energy from turbulent
fluctuations and the eventual conversion of that energy into plasma heat, unlike in
the more familiar fluid limit, is a two-step process (Howes 2017): first, the turbulent
fluctuations are damped through reversible, collisionless interactions between the
electromagnetic fields and the plasma particles, leading to energization of the particles;
and second, this non-thermal energization of the particle velocity distributions is
subsequently thermalized by arbitrarily weak collisions, thereby accomplishing the
ultimate conversion of the turbulent energy into particle heat.

In a gyrokinetic system, the total fluctuating energy δW (Howes et al. 2006; Brizard
& Hahm 2007; Schekochihin et al. 2009) is given by1

δW =
∫

d3r

[
|δB|2 + |δE|2

8π
+

∑
s

∫
d3v

T0sδf 2
s

2F0s

]
, (3.1)

where the index s indicates the plasma species and T0s is the temperature of each
species’ Maxwellian equilibrium. The left term represents the electromagnetic energy

1Note that in the gyrokinetic approximation, the electric field energy is relativistically small relative to the
magnetic field energy (Howes et al. 2006).
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and the right term represents that microscopic fluctuating kinetic energy of the
particles of each plasma species s. As explained in Howes et al. (2018), in the
standard form of gyrokinetic theory the appropriate conserved quadratic quantity in
gyrokinetics is the Kruskal–Obermann energy, E(δf )s ≡

∫
d3r
∫

d3v T0sδf 2
s /2F0s (Kruskal

& Oberman 1958; Morrison 1994), in contrast to the usual kinetic theory definition
of microscopic kinetic energy,

∫
d3r
∫

d3v (msv
2/2)fs. Note also that δW includes

neither the equilibrium thermal energy,
∫

d3r(3/2)n0sT0s =
∫

d3r
∫

d3v1/2msv
2F0s, nor

the equilibrium magnetic field energy,
∫

d3r B2
0/8π. Thus, the terms of δW in (3.1)

represent the perturbed electromagnetic field energies and the microscopic kinetic
energy of the deviations from the Maxwellian velocity distribution for each species.

A more intuitive form of the total fluctuating energy δW can be obtained by
separating out the kinetic energy of the bulk motion of the plasma species from the
non-thermal energy in the distribution function that is not associated with bulk flows
(Li et al. 2016),

δW =
∫

d3r

[
|δB|2 + |δE|2

8π
+

∑
s

(
1
2

n0sms|δus|
2
+

3
2
δPs

)]
, (3.2)

where n0s is the equilibrium density, ms is mass and δus is the fluctuating bulk flow
velocity, which includes the parallel and perpendicular bulk flows. The non-thermal
energy in the distribution function (not including the bulk kinetic energy) is defined
by TenBarge et al. (2014)

E(nt)
s ≡

∫
d3r

3
2
δPs ≡

∫
d3r
[∫

d3v

(
T0sδf 2

s

2F0s

)
−

1
2

n0sms|δus|
2

]
. (3.3)

The turbulent energy is defined as the sum of the electromagnetic field and the bulk
flow kinetic energies (Howes 2015; Li et al. 2016; Howes et al. 2018),

E(turb)
≡

∫
d3r

[
|δB|2 + |δE|2

8π
+

∑
s

1
2

n0sms|δus|
2

]
. (3.4)

Therefore the total fluctuating energy is simply the sum of the turbulent energy and
species non-thermal energies, δW = E(turb)

+ E(nt)
i + E(nt)

e .
In figure 2, we present area plots of the components of the energy in the simulation

as a function of normalized time t/τ0, where τ0 is the period of Alfvén waves at
the domain scale. Note that collisions in AstroGK, as well as in real plasma systems,
convert non-thermal to thermal energy, representing irreversible plasma heating with
an associated increase of entropy. The energy lost from δW by collisions is tracked by
AstroGK and represents thermal heating of the plasma species, but this energy is not
fed back into the code to evolve the equilibrium thermal temperature, T0s (Howes et al.
2006; Numata et al. 2010; Li et al. 2016). We account for the energy lost from δW in
the AstroGK simulation to collisional plasma heating by accumulating the thermalized
energy in each species over time, E(coll)

s (t)=
∫ t

0 dt′Qs(t′), where AstroGK computes the
collisional heating rate per unit volume for ions Qi and electrons Qe.

In figure 2(a), we plot the evolution of the energy budget over the course of the
simulation, showing that turbulent energy E(turb), which dominates at the beginning
of the simulation, is largely converted to electron heat E(coll)

e and ion heat E(coll)
i and

by the end of the simulation, with approximately 70 % of the initial total fluctuating
energy δW0 lost by t/τ0 = 3. Approximately one third of the energy dissipated is
channelled to ions and two thirds to electrons. This is in close agreement with a
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(a)

(b)

FIGURE 2. (a) The energy budget of the simulation versus time, showing the turbulent
energy E(turb), non-thermal ion energy E(nt)

i , non-thermal electron energy E(nt)
e , ion heat

E(coll)
i and electron heat E(coll)

e . (b) The same energy budget decomposed according to (3.1),
showing the perpendicular magnetic field energy EB⊥ , parallel magnetic field energy EB‖

(cyan, not labelled, appearing between EB⊥ and E(δf )i ), total fluctuating ion kinetic energy
E(δf )i , total fluctuating electron kinetic energy E(δf )e , ion heat E(coll)

i and electron heat E(coll)
e .

The total fluctuating energy δW is shown in both panels (thick black line).

recent gyrokinetic turbulent simulation using a realistic mass ratio of mi/me = 1836
in which approximately 70 % of the total dissipated energy is channelled through
electrons (Told et al. 2015). Total energy E is conserved over the course of the
simulation to less than 1 %.

Another view of the energy budget, based on (3.1), is presented in figure 2(b),
where we plot the perpendicular magnetic field energy EB⊥ (green) and parallel
magnetic field energy EB‖ (cyan) along with the total fluctuating kinetic energy of the
ions and electrons E(δf )s . An interesting feature of the evolution of the energy budget,
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seen in both panels (a,b), is that although the electrons gain the bulk of the thermal
energy, the total fluctuating kinetic energy E(δf )e and total non-thermal energy E(nt)

e in
the electrons remains small. Thus, electrons do not contain much of the non-thermal
energy at any given time, and are an effective conduit for channelling the turbulent
energy into electron thermal energy.

The field–particle correlation technique diagnoses the collisionless, reversible
transfer of energy between the electromagnetic fields and the particles. This first
step of the two-step process in converting turbulent energy into particle thermal
energy is not easily discerned in the energy budget plots shown in figure 2. To more
directly evaluate this rate of energy transfer, we compute the net rate of energy
transfer due to field–particle interactions using

Ė( fp)
s = Ė(nt)

s +Qs, (3.5)

where Ė(nt)
s is the rate of change of non-thermal species energy and Qs is the

collisional heating of the species. To check the energy conservation in the simulation,
we can plot

−Ė(turb)
= Ė( fp)

i + Ė( fp)
e , (3.6)

because the rate of change of turbulent energy must be the sum of the collisionless
field–particle energy transfer for each species.

In figure 3, we plot these energy transfer rates, normalized to the characteristic
heating rate per unit volume, Q0 = (n0iT0ivti/L‖)(π/8)(L⊥/L‖)2, for (a) ions (red)
and (b) electrons (blue), as well as (c) the total energy transfer rate balance given
by (3.6). Several features of these energy transfer rate curves are notable. First,
with the exception of a brief large energy transfer to ions within the first 0.2τ0,
the field–particle energy transfer rate to electrons is about twice of that to ions on
average. Second, the time lag between field–particle energy transfer to electrons and
the collisional thermalization of that energy is very short, a delay of approximately
0.1τ0. Thus, energy transferred to electron non-thermal energy is rapidly converted
to electron heat by collisions. In contrast, for the ions, the time lag between the
peaks of the field–particle energization of the ions and the collisional thermalization
of that energy is much longer, approximately 1.0τ0. This longer time lag for ions
is consistent with the need for the ion entropy cascade (Schekochihin et al. 2009;
Tatsuno et al. 2009; Cerri et al. 2018) to transfer non-thermal energy to sufficient
small scales in velocity space before collisions can effectively thermalize that energy.
Finally, (c) the sum of the field–particle energy transfer to ions and electrons is in
quantitative agreement with the loss of turbulent energy.

In figure 4, we plot the spatial profiles on the z= 0 plane at t/τ0 = 0.5 of (a) the
parallel current J‖ (colour) and vector potential A‖ (contour), (b) J‖E‖ and (c) E‖.
The topology of the initial double-vortex pattern, representative of the Orzag–Tang
vortex, is traceable by the central white contours. Multiscale features in J‖, including
self-consistently generated current sheets, are seen over the entire (x, y) plane,
representing a turbulent state containing a spectrum of nonlinearly generated modes.
J‖E‖ represents the net energy density transfer rate mediated by the parallel electric
field (the first term on the right-hand side of (2.4) when integrated over velocity).
In (b), strong energy transfer density (red) occurs in sub-ion- or ion-scale regions.
Two particularly strong J‖E‖ regions are centred at (x, y)∼ (3,14) and (20,10). They
co-locate with thin sheet-like currents and share similar shapes with them, but not
necessarily with the strongest J‖ regions. They, however, are seen at the strongest E‖
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(a)

(b)

(c)

FIGURE 3. The rate of energy transfer by field–particle interactions Ė( fp)
s (solid), the rate

of change of non-thermal energy Ė(nt)
s (dotted) and the collisional heating rate Qs (dashed)

for (a) ions (red) and (b) electrons (blue). (c) The energy balance between the loss of
turbulent energy −Ė(turb) (purple solid) and the summed transfer of energy to both ions
and electrons, Ė( fp)

i + Ė( fp)
e (black dashed).

in (c), which also occurs in localized ion-scale regions. Otherwise, E‖ has generally
broad features.

4. Field–particle correlations
Here we present results on identifying the collisionless energy transfer in the

simulation using field–particle correlations.

4.1. Field–particle correlations in gyrotropic velocity space
To identify the regions of gyrotropic velocity space (v‖, v⊥) where particles play a
role in the collisionless transfer of energy density from the parallel electric field to
the plasma ions and electrons, we employ the field–particle correlation technique to
compute CE‖(k, v‖, v⊥, t, τ ), given by (2.17).

4.1.1. Electron gyrotropic correlations
Here we explore the net energy transfer rate to the electrons by the parallel electric

field as a function of particle velocity in gyrotropic velocity space (v‖, v⊥) for
particular Fourier modes, each denoted by their normalized wavevector (kxρi, kyρi, kzLz/
2π). On the top row of figure 5, we plot the instantaneous correlation CE‖(k, v‖, v⊥, t, τ
= 0) for modes (a) (2, 2, −1) and (b) (6, 6, +3). The instantaneous energy transfer
is spread over a wide range of v‖ relative to vp‖ of each Fourier mode of the kinetic
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(a) (b)

(c)

FIGURE 4. Spatial profile of (a) J‖ (colour) and A‖ (contour), (b) J‖E‖ and (c) E‖ on the
z= 0 plane at t/τ0 = 0.5. Contours represent positive (white) and negative (black) values
of A‖.

Alfvén wave, given by (a) ω/(k‖vte) = ±0.42 and (b) ω/(k‖vte) = ±0.84, indicated
by the vertical dashed black lines. This shows that particles over a relatively broad
range of v‖ participate in energy exchange with the parallel electric field.

In order to eliminate the often large contribution to the instantaneous energy
transfer given by the oscillating energy transfer associated with undamped wave
motions (which is measured in a kinetic Alfvén wave (Gershman et al. 2017)), the
field–particle correlation technique performs a time average of the correlation product
(in the unnormalized correlation) over a suitably long time period (Klein & Howes
2016; Howes et al. 2017). This effectively removes the oscillating component of the
energy transfer, isolating the often smaller net secular energy transfer from fields
to particles. In both of these cases, we choose a correlation interval τ = 2τk where
τk is the linear wave period of a kinetic Alfvén wave specified by the normalized
wavevector, given by the final column in table 1. The correlation interval is chosen
such that the time evolution of the parallel reduced correlation qualitatively converges,
which corresponds to τ > τk (see Appendix). The resulting time-averaged field–particle
correlations are plotted in figure 5 for Fourier modes (c) (2, 2,−1) and (d) (6, 6,+3).

For the time-averaged correlations, time t is defined at the beginning of the
correlation interval τ . Another convenient way to specify time is at the centre of the
correlation interval, giving a centred time of tc = t+ τ/2. Both t and tc are given in
figure 5 for reference.

Several key features of the net energy transfer over the correlation interval τ are
observed in figure 5(c,d). First, the region in velocity space of largest net transfer
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(a) (b)

(c) (d)

FIGURE 5. Electron gyrotropic correlation CE‖(v‖, v⊥, t) for the (2, 2,−1) Fourier mode
using (a) τ = 0 and (c) τ = 2τk, plotted at tc/τ0 = 0.86, corresponding to t/τk = 0.81 for
τ = 2τk. Also plotted are CE‖(v‖, v⊥, t) for the (6, 6,+3) Fourier mode using (b) τ = 0
and (d) τ = 2τk at tc/τ0 = 0.34, corresponding to t/τk = 0.42 for τ = 2τk. Dashed lines
denote Landau resonant velocities: vp‖/vte = ±0.42 for the (2, 2, −1) Fourier mode and
vp‖/vte = ±0.84 for the (6, 6, +3) Fourier mode. Arbitrary units are used in the colour
bars while the relative amplitudes between the τ = 0 and 2τk correlations are preserved
for each Fourier mode.

of energy between E‖ and the electrons is closely connected to vp‖. This contrasts
with the broader spread over v‖ of instantaneous energy transfer when taking τ = 0
in panels (a,b). The resulting velocity-space characteristic of the energy transfer
is consistent with the velocity-space signature of Landau damping of the turbulent
fluctuations, as found in previous studies (Klein & Howes 2016; Klein et al. 2017;
Howes et al. 2017, 2018; Chen et al. 2019). The contrast in the energy transfer signals
between the instantaneous and long-time-averaged correlations shows that while
electrons over a broad range of parallel velocities participate in instantaneous energy
transfer, the net secular energy transfer is largely contributed by ‘near-resonance’
electrons that are closely connected to vp‖. This reflects the resonant nature of secular
net energy transfer in Landau damping of the turbulent fluctuations. Second, the
variation in the energy transfer is largely a function of v‖, with weak v⊥ dependence
other than the monotonic drop off as v⊥ increases. For the (6, 6, +3) mode in (d)
which has k⊥ρe ≈ 1.7 > 1, however, there is weak v⊥ dependence near v‖/vte ∼ 1,
which lasts very briefly, for ∼0.2τk. This v⊥ dependence in the energy transfer
reveals structuring of the distribution in v⊥ as E‖ does not depend on velocity. This
qualitative feature is consistent with the expectation of the electron entropy cascade
(Schekochihin et al. 2009; Tatsuno et al. 2009; Schoeffler et al. 2014), which predicts
some structuring of the distribution in v⊥ due to nonlinear phase mixing for k⊥ρe > 1.

4.1.2. Ion gyrotropic correlations
In figure 6, we plot the instantaneous correlation CE‖(k, v‖, v⊥, t, τ = 0) for ions for

modes (a) (1, 1, +3) and (b) (2, 2, −1). As with the instantaneous correlations for
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(a) (b)

(c) (d)

FIGURE 6. Ion gyrotropic correlation CE‖(v‖, v⊥, t) for the (1, 1, +3) Fourier mode
using (a) τ = 0 and (c) τ = 2τk, plotted at tc/τ0 = 1.2, corresponding to t/τk = 0.48 for
τ = 2τk. (c) Shows observable weak v⊥ variations at v‖< 0 in addition to more prominent
v‖ dependence. Also plotted are CE‖(v‖, v⊥, t) for the (2, 2, −1) Fourier mode using
(b) τ = 0 and (d) τ = 2τk at tc/τ0= 0.90, corresponding to t/τk= 0.90 for τ = 2τk. Dashed
lines denote Landau resonant velocities: vp‖/vti = ±1.3 and ±2.1 for the (1, 1, +3) and
(2, 2,−1) Fourier modes, respectively. The same format is used as figure 5.

the electrons in figure 5, we see that the energy transfer is not tightly constrained in
v‖ to the resonant parallel phase velocities for these modes ((a) ω/(k‖vti)=±1.2 and
(b) ω/(k‖vti) = ±2.1 (vertical dashed black lines)). For the (2, 2, −1) mode, having
resonant parallel phase velocities much higher than the ion thermal speed, there is
only very weak energy transfer.

Computing the unnormalized correlation (time average) over the correlation interval
τ =2τk for each mode, we obtain the ion energization rate in gyrotropic velocity space
shown in figure 6 for Fourier modes (c) (1, 1,+3) and (d) (2, 2,−1). The ion energy
transfer rate results for (c) (1, 1, +3) have similar characteristics to the findings for
the electrons: (i) the secular energy transfer rate is closely connected to the parallel
resonant velocity; and (ii) the energy transfer rate varies strongly as a function of v‖,
again consistent with the velocity-space signature expected of Landau damping. One
notable difference is that there is significantly more variation of the energy transfer
rate in the v⊥ direction than for the electrons. This is qualitatively consistent with
the action of the ion entropy cascade (Schekochihin et al. 2009; Tatsuno et al. 2009)
which leads to structuring of the perturbed distribution function in the v⊥ direction
(Howes 2008).

Another notable difference from the electron case is that the energy transfer rates
are significantly weaker, with nearly no resonant energy transfer signatures near
vp‖/vti, for the (d) (2, 2, −1) Fourier mode. In fact, the (1, 1) Fourier modes are
the only k⊥ value in the sampled spectrum (table 1) displaying resonant signatures
in the resolved range of v‖/vti plotted. The (1, 1) Fourier modes also sit near the
peak of the ion collisionless damping rate (γi in figure 1). At k⊥ρi > 2, γi drops off
rapidly. This is because vp‖/vti moves to the tail of the ion distribution (at greater
than twice the ion thermal speed) where there are very few particles to interact with
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the waves. For instance, the (2, 2) and (3, 4) Fourier modes have vp‖/vti =±2.1 and
±3.3, respectively, which are in the tail of the distribution. Indeed, resonant energy
transfer signatures are not observed for the (2, 2) to (7, 7) Fourier modes.

4.2. Parallel reduced correlations
Because the variation of the rate of energy density transfer, shown in figures 5 and
6, is largely a function of v‖ with little variation in v⊥, we may integrate over v⊥
to obtain reduced parallel correlations CE‖(v‖, t, τ ), given by (2.11). These reduced
correlations can conveniently be plotted, for a given correlation interval τ , as timestack
plots of CE‖(v‖, t) as a function of v‖ and time t to illustrate the evolution of the
field–particle energy transfer due to a single Fourier mode over the course of the entire
simulation.

4.2.1. Electron parallel reduced correlations
Plotted in figure 7 are timestack plots of the parallel reduced correlations CE‖(v‖, t)

for the electrons for the (2, 2) Fourier mode, separately for each of the seven kz ∈

[−3, +3] modes in panels (a–g) and the sum of these seven kz modes in panel (h),
labelled (2, 2). The correlation interval chosen for all panels is τ = 2τk. Plotted to
the right of each timestack plot is the v‖-integrated correlation, giving the net transfer
rate of energy density for that Fourier mode

∫
CE‖(v‖, t) dv‖ as a function of time (red

curve) and the accumulated energy transferred
∫ t

0 dt
∫

CE‖(v‖, t) dv‖ over time (green
curve). The Landau resonant parallel phase velocity of each Fourier mode is indicated
by vertical black lines. We note that, for a given value of k⊥, the normalized phase
velocity ω = ω/k‖vA is independent of k‖, so the phase velocity (ω/k‖) is constant
for all kz (note that k‖ and kz are the same in the linear dispersion relation by which
ω is given). This leads to a constant Landau resonant velocity, vp‖/vte = ±0.42, for
all (2, 2, kz) Fourier modes in figure 7. Also plotted on the right of the v‖-integrated
correlation for (h) the sum of the seven kz mode is an axis for the normalized centred
time tc/τ0.

A key characteristic of the parallel reduced correlations for all (2, 2, kz) Fourier
modes is that the energy transfer is largely dominated by particles connected to
vp‖, with an increase in electron energy (red) just above vp‖. This reduced parallel
velocity-space signature is consistent with previous results showing Landau damping
(Klein & Howes 2016; Klein et al. 2017; Howes et al. 2017, 2018; Chen et al. 2019).
This localization of the energy transfer in parallel velocity indicates that collisionless
damping by Landau resonant electrons is the dominant mechanism for transferring
energy from the turbulent electromagnetic fluctuations to the electrons, a primary
result of this study.

Furthermore, the timestack plots show clearly that this resonant energization of the
electrons by the parallel electric field is sustained over the course of the simulation,
although the amplitude of this rate of energization decreases in time as the initial
fluctuations (the total turbulence energy) damp in time. In fact, the decrease in the
rate of electron energization by the electric field over the course of the simulation is
qualitatively consistent with the decrease in the spatially integrated rate of electron
energization Ė( fp)

e (solid blue) in figure 3(b). Additionally, the characteristic time scale
of the energy transfer in the parallel reduced correlations is approximately τk of this
(2, 2) Fourier mode. This time scale is consistent with the linear wave period of this
Fourier mode, as naturally expected.

The panels (a–g) for the seven different (2, 2, kz) Fourier modes in figure 7 show
that most of the different kz modes yield a net energy gain (green curve) at the end of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 7. Electron parallel reduced correlations CE‖(v‖, t) for seven kz modes and
summed CE‖(v‖, t) for the (2, 2) Fourier mode. Correlation interval of τ = 2τk is chosen.
Time t is defined at the beginning of the correlation interval. Vertical black lines indicate
Landau resonant velocities: vp‖/vte =±0.42. An arbitrary unit is used. Line plots on the
right of each correlation are the v‖-integrated correlation as a function of time (red curve)
and accumulated over time (green curve). The ×10n factor above each colour bar applies
also to the x-axis of the line plots. Also plotted on the right of panel (h) is an axis for
the normalized centred time tc/τ0.

the run. The (h) sum of these seven kz components of the (2, 2) Fourier mode indeed
demonstrates a net heating of electrons over the course of the simulation.

4.2.2. Ion parallel reduced correlations
In figure 8, we plot timestack plots of the parallel reduced correlations CE‖(v‖, t)

for the ions for the (1, 1) Fourier mode, in the same format as for the electrons
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 8. Ion parallel reduced correlations CE‖(v‖, t) for seven kz modes and summed
CE‖(v‖, t) for the (1, 1) Fourier mode. Correlation interval of τ = 2τk is used. CE‖(v‖, t)
for each individual kz mode shows resonant signatures associated with Landau resonances,
vp‖/vti =±1.3, indicated by vertical black lines. Highly localized energy transfer signals
are observed for all seven Fourier modes. The same format is used as figure 7. Arbitrary
unit is used.

in figure 7. Again, a correlation interval of τ = 2τk is used for all plots. The Landau
resonant parallel phase velocity for these modes, normalized in terms of the ion
thermal velocity, is given by vp‖/vti =±1.3.

The ion reduced parallel correlations for the (1, 1, kz) modes also show that the
energy transfer is largely dominated by particles near the resonant velocity, indicating
that collisionless damping by Landau resonant ions is the dominant mechanism for
transferring energy from the parallel electric field to the ions. Although there is
significantly more variation of the accumulated energy transfer to the ions among the
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different kz modes in panels (a–g), the summed kz result in (h) is also qualitatively
consistent with the gradual decrease in time of the spatially integrated rate of ion
energization Ė( fp)

i (solid red) in figure 3(a). Furthermore, in the same way as the
characteristic time scale of the electron energization rate being consistent with τk of
the Fourier mode in figure 7, the characteristic time scale of the ion energization rate
for the different kz modes is also approximately τk of this (1, 1) Fourier mode.

Consistent with the rapid decrease of the ion collisionless damping rate γi/k‖vA

(cyan) in figure 2 at perpendicular wavenumbers k⊥ρi > 2, the reduced parallel
correlations (not shown) for all Fourier modes other than (1, 1) do not exhibit clear
resonant energy transfer velocity-space signatures.

4.2.3. Reduced parallel correlations: k⊥ dependence and βi dependence
Previous applications of the field–particle correlation have analysed the energy

transfer at a single point in space (Klein & Howes 2016; Klein et al. 2017; Howes
et al. 2017, 2018; Chen et al. 2019). Although this has the advantage of enabling the
spatial localization of the energy transfer between fields and particles to be studied,
it cannot provide any information about how that energy transfer is mediated by
fluctuations at different scales. By performing the field–particle correlation analysis
in Fourier space, we can examine how the energy transfer as a function of the
scale of the Fourier modes plays a role in the energy transfer. In the gyrokinetic
limit k‖ � k⊥, the resonant parallel phase velocity ω/k‖ of the kinetic Alfvén wave
modes is strictly a function of k⊥ρi (as shown in figure 1a), so the reduced parallel
correlation for a single perpendicular wavevector (kx, ky) summed over kz has a single
resonant velocity. We may obtain a clean velocity-space signature for each distinct
k⊥ρi mode.

In figure 9, we present timestack plots of the reduced parallel correlations for the
electrons summed over the seven kz modes for each diagnosed k⊥ case spanning
1.4 6 k⊥ρi 6 9.9, or 0.3 6 k⊥ρe 6 2. The same format as the summed-kz results in
figure 7(h) is used. The results clearly show the distinct advantages of the Fourier
implementation of the field–particle correlation technique. First, the energy transfer
signal for different k⊥ρi modes follows closely the increasing Landau resonant velocity
(vertical black lines) as k⊥ρi increases from (a) through ( f ). A net energy energization
of the electrons is obtained in all of k⊥ρi modes, as shown in the accumulated energy
transferred (green curve). Clearly, Landau resonant interactions with the electrons
must play a key role in the damping of fluctuations across the sampled range of
scales, consistent with expectations for a significant rate of collisionless damping
by the electrons, γe/ωA0 & O(0.1), as shown in figure 1(b). Second, the magnitude
of energy transfer drops by approximately 3 orders of magnitude from k⊥ρi = 1.4
to k⊥ρi = 9.9. Of course, the number of perpendicular Fourier modes increases
linearly with k⊥, so the decrease in amplitude with k⊥ρi is partly compensated by
the larger number of Fourier modes at higher k⊥ρi. Nonetheless, the first one or two
k⊥ρi modes that we diagnosed here (specifically k⊥ρi = 1.4 and k⊥ρi = 2.8) would
dominate the signals in a single-point diagnostic, so one would not be able to identify
the energy transfer mediated by higher k⊥ρi modes without Fourier decomposition.
Finally, the characteristic time scale of the energy transfer is consistent with τk of
each (kx, ky) Fourier mode, even though τk decreases with increasing k⊥ρi. As seen
in the accumulated energy transferred (green curve), most of the electron energization
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(a) (b)

(c) (d)

(e) (f)

FIGURE 9. Parallel reduced correlations summed over seven kz modes
∑
+3
kz=−3 CE‖(v‖, t)

for 6(kx, ky) values: (1, 1), (2, 2), (3, 4), (5, 5), (6, 6) and (7, 7), representing a total of 42
Fourier modes of electron parallel reduced correlations. Their Landau resonant velocities
are: vp‖/vte=±(0.25, 0.42, 0.66, 0.79, 0.84, 0.85) respectively. The same format is used as
figure 7(h).

occurs before a normalized centred time of tc/τ0 ∼ 1.5. This is consistent with the
spatially integrated rate of electron energization Ė( fp)

e (solid blue) in figure 3(b) being
the most significant by 1.5τ0.

In order to illustrate more clearly how the energy transfer to the electrons
closely tracks that Landau resonant velocity of kinetic Alfvén waves with a given
perpendicular wavenumber k⊥ρi, we zoom into the central part of the v‖ range
in figure 10(a–c). The localized region dominating electron energization moves to
higher v‖ with higher k⊥ρi, consistent with the increasing resonant parallel phase
velocity of kinetic Alfvén waves as k⊥ increases. This analysis strongly suggests
that collisionless damping via the Landau resonance with electrons plays a key role
in the removal of energy from the turbulence and consequent energization of the
electrons.

Another plasma parameter that has a strong impact on the resonant parallel phase
velocity of kinetic Alfvén waves is the plasma βi. We performed simulations with an
identical set-up as the βi = 1 simulation described in § 2.5, but with values βi = 0.1
and βi = 0.01. To analyse both of these additional simulations, we take a correlation
interval τ = τk for the (2, 2,−1) mode analysed here. In figure 10(d–f ), we present
timestack plots of the reduced parallel correlation CE‖(v‖, t, τ ) for electrons for Fourier
mode (2, 2,−1). The resonant parallel phase velocity vp‖ for the (2, 2) Fourier mode,
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(a) (d)

(b) (e)

(c) (f)

FIGURE 10. (a–c) Zoomed-in plot of summed-kz correlations from figure 9 for 3 (kx, ky)
values – (1, 1), (3, 4) and (7, 7) with the corresponding Landau resonant velocities being
vp‖/vte=±(0.25, 0.66, 0.85), respectively – showing how the field–particle energy transfer
rate closely tracks the resonant parallel phase velocities as (kx, ky) increases. (d–f ) Electron
parallel reduced correlations CE‖(v‖, t) for the (2, 2,−1) Fourier mode from simulations
with βi = 1 (current run), 0.1 and 0.01 in which the Landau resonant velocity, vp‖/vte =

±(0.42, 1.0, 1.4), respectively, increases with decreasing βi. The energy transfer signals
from all three simulations show remarkable agreement with the increasing parallel resonant
velocity.

when normalized to vte, increases with values ω/(k‖vte)=±0.42,±1.0,±1.4 (vertical
black lines) as the values of βi decreases for these three simulations βi= 1, 0.1, 0.01.
We indeed find a remarkably close association between vp‖ and the region of velocity
space where the electrons participate in energy exchange with the parallel electric
field E‖. This close quantitative agreement with the βi dependence of phase velocities
observed in the simulations again suggests the dominant role that the Landau
resonance plays in the field–particle energy transfer for electrons in the turbulence
systems.
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FIGURE 11. Accumulated particle energization 1E( fp)
s at the end of the simulation for

the sampled (kx, ky) modes (summed over kz) as a function of k⊥ρi. Each (kx, ky) mode
is represented by a point and all points are connected by lines. The same normalization
is used for both ion 1E( fp)

i (blue) and electron 1E( fp)
e (green) energization.

4.2.4. Accumulated particle energization: k⊥ dependence
The collisionless field–particle energy transfer rate is directly measured by the

field–particle correlations. With the sampled Fourier spectrum, we can see how the
accumulated particle energization varies as a function of the length scales of the
fluctuations. In figure 11, we plot this accumulated particle energization at the end of
the simulation 1E( fp)

s as a function of k⊥ρi. Each point represents the accumulated
energization in each (kx, ky) Fourier mode summed over kz for ions (blue) and
electrons (green). The electron energization 1E( fp)

e is then the value of the green
curve at the end of the simulation for each (kx, ky) mode in figure 9. The same
normalization is used for both ion and electron energization, 1E( fp)

i and 1E( fp)
e .

Several features of 1E( fp)
s are notable. First, the particle energization is dominated

by the lowest k⊥ mode that has the strongest amplitude, as expected. Second, the total
ion and electron energization over the sampled spectrum are comparable given that
both species are nearly equally energized at this dominant, lowest k⊥ mode. This is
consistent with the comparable species heating rates due to field–particle interactions
Ė( fp)

s (solid) in figure 3 in the turbulence system2. This is also consistent with the
ion and electron collisionless damping rates, γi and γe, being of the same order of
magnitude at k⊥ρi ∼ 1, represented by the lowest k⊥ mode, in figure 1. Third, when
plotted as a function of k⊥ρi, 1E( fp)

s here can represent the energy transfer spectra;
for electrons, 1E( fp)

e indicates a spectral rollover at the electron gyroradius scale of
k⊥ρe = 1 (k⊥ρi = 5), becoming less steep at k⊥ρe > 1. Lastly, ion energization shows
a dip at k⊥ρi = 7, rather than a monotonic drop for all k⊥ρi > 7 modes as would be
expected from the ion collisionless damping rate, suggesting that collisionless damping
cannot completely explain ion energization. These interesting features deserve further
investigation in the future.

5. Conclusions
The field–particle correlation technique is a new method both for determining the

rate of transfer of energy between electromagnetic fields and plasma particles and

2Note that in order to use the field–particle correlations to quantitatively measure the total species heating
(that is approximately twice larger for the electrons than for the ions), energization from the whole system
and hence all possible Fourier modes needs to be taken into account.
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for identifying the physical mechanisms responsible for that energy transfer through
their velocity-space signatures. Previous implementations of this novel technique
employ a time series of the particle velocity distribution and electromagnetic field
measurements performed at a single point in space. Here, we present an alternative
Fourier implementation of the field–particle correlation technique that determines the
energy transfer for a single wavevector in Fourier space instead of at a single point
in physical space.

The Fourier implementation has the capability to explore the energy transfer
between fields and particles as a function of the length scale of the fluctuations,
information that cannot be obtained through single-point measurements in physical
space. Furthermore, in a broadband turbulent spectrum, the resonant parallel phase
velocity ω/k‖ is generally a function of the wavevector, resonant collisionless
interactions analysed in terms of Fourier wavevector modes are expected to yield a
clean velocity-space signature at the resonant velocity. This contrasts the single-point
implementation in which all wave modes will contribute to the energy transfer at
a given point, potentially smearing out the velocity-space signals over the range
of resonant velocities for all contributing wave modes. Furthermore, the Fourier
decomposition separates the contributions to the energy transfer from each scale,
enabling the energy transfer for small amplitude modes at high wavenumber to be
observed even in the presence of much larger amplitude modes at lower wavenumbers.
This contrasts with the single-point implementation in which the much larger
amplitude modes at lower wavenumbers will dominate the energy transfer. Finally,
in the Fourier implementation, the correlation intervals need only extend over a few
periods of the mode under investigation, even in the presence of larger amplitude,
lower-frequency modes.

The Fourier implementation employs information throughout the spatial domain
to decompose fluctuations as a function of scale, so it cannot be applied to analyse
spacecraft observations that provide measurements at only one, or possibly a few,
points in space. Nonetheless, it can be used in numerical simulations in which full
spatial information is accessible. The key advantage of the Fourier implementation
to investigate the particle energization as a function of the length scale of the
electromagnetic fluctuations provides insights that are complementary to the spatial
information of particle energization provided by the more standard, single-point
implementation. In fact, dual implementation of the field–particle correlation technique
in both physical and Fourier space in simulations can take the advantages of both
approaches in identifying collisionless energy transfer in simulations supporting
spacecraft missions.

Here we apply the Fourier implementation of the field–particle correlation technique
to investigate the energization of the ions and electrons in strong electromagnetic
turbulence. We simulate a 3-D extension of the standard Orzsag–Tang vortex (3-D
OTV) problem, a set-up previously used to explore the differences between 2-D and
3-D turbulence (Li et al. 2016). We follow the flow of energy in the simulation from
turbulent energy that is first collisionlessly transferred to particles as non-thermal
energy in the velocity distribution functions of the ions and electrons, and later is
collisionally thermalized to ion and electron heat. For the βi = 1 conditions of the
simulation, we find that the electrons are heated about twice as much as the ions. We
show that the particle energization in the simulation, equal to J · E integrated over
the simulation volume, occurs in a spatially non-uniform manner, with the dominant
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heating confined to narrow current sheet layers associated with strong parallel electric
fields.

Applying the Fourier implementation of the field–particle correlation technique
to the simulation, we find that the velocity-space signature of electron and ion
energization for a particular Fourier mode is consistent with Landau damping at the
resonant parallel phase velocity of the kinetic Alfvén wave for that mode. Timestack
plots of the electron and ion energization by the parallel electric field E‖ also show
a net energization of the plasma particles at the expense of the turbulent energy.

The regions of velocity space in which particles exchange energy with the electric
field closely follow the resonant parallel phase velocity for kinetic Alfvén waves
as the perpendicular wavenumber k⊥ and plasma βi are varied (figure 10). This
shows that collisionless damping via the Landau resonance with ions and electrons
is an important channel of particle energization in strong electromagnetic turbulence,
relevant to space plasmas, such as the solar corona, solar wind and planetary
magnetospheres.
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Appendix. Determination and significance of correlation interval

Here we illustrate how a sufficiently long correlation interval is determined and its
significance using electron parallel reduced correlations, which conveniently depict the
energy transfer rate as a function of v‖ and time t. Plotted in figure 12 are electron
parallel reduced correlations for a correlation interval τ = 0, 0.5τk, τk and 2τk for the
(2, 2,−1) Fourier mode in (a)–(d).

Using τ = 0, (a) the instantaneous energy transfer between E‖ and electrons
manifests as alternating red and blue signals over short time scales as they exchange
energy back and forth many times throughout the course of the simulation. As τ
increases in (b) through (d), the time evolution of the energy transfer becomes
increasing concentrated to vp‖. In (c,d), the time evolution of the energy transfer
begins to be qualitatively consistent, with mostly red signals just above vp‖. The
maximum amplitude of energy transfer for τ = τk and 2τk in (c,d) becomes
comparable, whereas it is reduced by over twice from (a) τ = 0 to (b) τ = 0.5τk.
This indicates that a correlation interval of τ > τk leads to a qualitative convergence
of the time evolution of the energy transfer rate as a function of v‖. Hence, τ > τk

represents a sufficiently long correlation interval. The choice of τ = 2τk used in this
work is suitable for capturing the net secular energy transfer signals in velocity space.

An important feature again illustrated in figure 12 is that while electrons over a
broad range of v‖ participate in (a) the instantaneous energy transfer, the secular
net energy transfer identified by correlating over a suitably long time period in (c,d)
is dominated by ‘near-resonance’ electrons that are close to the parallel resonant
velocity vp‖.
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(a) (b)

(c) (d)

FIGURE 12. Electron parallel reduced correlations CE‖(v‖, t) using a correlation interval
(a) τ = 0, (b) τ = 0.5τk, (c) τ = τk and (d) τ = 2τk for the (2, 2,−1) Fourier mode. The
Landau resonant velocities: vp‖/vte =±0.42, are indicated by vertical black lines. Time t
is defined at the beginning of the correlation interval.

REFERENCES

ABEL, I. G., BARNES, M., COWLEY, S. C., DORLAND, W. & SCHEKOCHIHIN, A. A. 2008 Linearized
model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory. Phys. Plasmas
15 (12), 122509; arXiv:0808.1300.

ADKINS, T. & SCHEKOCHIHIN, A. A. 2018 A solvable model of vlasov-kinetic plasma turbulence
in fourierhermite phase space. J. Plasma Phys. 84 (1), 905840107.

ALEXANDROVA, O., CHEN, C. H. K., SORRISO-VALVO, L., HORBURY, T. S. & BALE, S. D.
2013 Solar wind turbulence and the role of ion instabilities. Space Sci. Rev. 178, 101–139;
arXiv:1306.5336.

ARZAMASSKIY, L., KUNZ, M. W., CHANDRAN, B. D. G. & QUATAERT, E. 2019 Hybrid-kinetic
simulations of ion heating in Alfvénic turbulence. Astrophys. J. 53; doi:10.3847/1538-4357/
ab20cc.

BARNES, A. 1966 Collisionless damping of hydromagnetic waves. Phys. Fluids 9, 1483–1495.
BARNES, M., ABEL, I. G., DORLAND, W., ERNST, D. R., HAMMETT, G. W., RICCI, P., ROGERS,

B. N., SCHEKOCHIHIN, A. A. & TATSUNO, T. 2009 Linearized model Fokker–Planck collision
operators for gyrokinetic simulations. II. Numerical implementation and tests. Phys. Plasmas
16 (7), 072107.

BOLDYREV, S., HORAITES, K., XIA, Q. & PEREZ, J. C. 2013 Toward a theory of astrophysical
plasma turbulence at subproton scales. Astrophys. J. 777, 41.

BRIZARD, A. J. & HAHM, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys.
79, 421–468.

BURCH, J. L., MOORE, T. E., TORBERT, R. B. & GILES, B. L. 2016 Magnetospheric multiscale
overview and science objectives. Space Sci. Rev. 199 (1), 5–21.

https://doi.org/10.1017/S0022377819000515 Published online by Cambridge University Press

http://www.arxiv.org/abs/0808.1300
http://www.arxiv.org/abs/1306.5336
https://doi.org/10.3847/1538-4357/ab20cc
https://doi.org/10.3847/1538-4357/ab20cc
https://doi.org/10.1017/S0022377819000515


28 T. C. Li, G. G. Howes, K. G. Klein, Y.-H. Liu, and J. M. TenBarge

CERRI, S. S., KUNZ, M. W. & CALIFANO, F. 2018 Dual phase-space cascades in 3d hybrid-
vlasovmaxwell turbulence. Astrophys. J. Lett. 856 (1), L13.

CHANDRAN, B. D. G., LI, B., ROGERS, B. N., QUATAERT, E. & GERMASCHEWSKI, K. 2010
Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind.
Astrophys. J. 720, 503–515.

CHANG, O., PETER GARY, S. & WANG, J. 2014 Energy dissipation by whistler turbulence: three-
dimensional particle-in-cell simulations. Phys. Plasmas 21 (5), 052305.

CHEN, C. H. K., BOLDYREV, S., XIA, Q. & PEREZ, J. C. 2013 Nature of subproton scale turbulence
in the solar wind. Phys. Rev. Lett. 110 (22), 225002; arXiv:1305.2950.

CHEN, C. H. K., KLEIN, K. G. & HOWES, G. G. 2019 Evidence for electron Landau damping in
space plasma turbulence. Nat. Commun. 10, 740 arXiv:1902.05785.

CHEN, L., LIN, Z. & WHITE, R. 2001 On resonant heating below the cyclotron frequency. Phys.
Plasmas 8, 4713–4716.

COLEMAN, P. J. JR. 1968 Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J.
153, 371–388.

DAHLBURG, R. B. & PICONE, J. M. 1989 Evolution of the Orszag–Tang vortex system in a
compressible medium. I – Initial average subsonic flow. Phys. Fluids B 1, 2153–2171.

DAHLIN, J. T., DRAKE, J. F. & SWISDAK, M. 2016 Parallel electric fields are inefficient drivers of
energetic electrons in magnetic reconnection. Phys. Plasmas 23 (12), 120704.

FRANCI, L., LANDI, S., MATTEINI, L., VERDINI, A. & HELLINGER, P. 2015 High-resolution hybrid
simulations of kinetic plasma turbulence at proton scales. Astrophys. J. 812 (1), 21.

FRIEMAN, E. A. & CHEN, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic
waves in general plasma equilibria. Phys. Fluids 25, 502–508.

GERSHMAN, D. J., F-VIÑAS, A., DORELLI, J. C., BOARDSEN, S. A., AVANOV, L. A., BELLAN,
P. M., SCHWARTZ, S. J., LAVRAUD, B., COFFEY, V. N., CHANDLER, M. O. et al. 2017
Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave. Nat. Commun.
8, 14719.

GOLDREICH, P. & SRIDHAR, S. 1995 Toward a theery of interstellar turbulence II. Strong Alfvénic
turbulence. Astrophys. J. 438, 763–775.

GRAUER, R. & MARLIANI, C. 2000 Current-sheet formation in 3D ideal incompressible
magnetohydrodynamics. Phys. Rev. Lett. 84, 4850.

GROŚELJ, D., CERRI, S. S., NAVARRO, A. B., WILLMOTT, C., TOLD, D., LOUREIRO, N. F.,
CALIFANO, F. & JENKO, F. 2017 Fully kinetic versus reduced-kinetic modeling of collisionless
plasma turbulence. Astrophys. J. 847 (1), 28.
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