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Abstract

Background: The glomerular filtration rate (GFR), estimated from serum creatinine (SCr), is
widely used in clinical practice for kidney function assessment, but SCr-based equations are
limited by non-GFR determinants and may introduce inaccuracies across racial groups. Few
studies have evaluated whether advanced modeling techniques enhance their performance.
Methods: Using multivariable fractional polynomials (MFP), generalized additive models
(GAM), random forests (RF), and gradient boosted machines (GBM), we developed four
SCr-based GFR-estimating equations in a pooled data set from four cohorts (n = 4665). Their
performance was compared to that of the refitted linear regression-based 2021 CKD-EPI SCr
equation using bias (median difference between measured GFR [mGFR] and estimated GFR
[eGFR]), precision, and accuracy metrics (e.g., P10 and P30, percentage of eGFR within 10%
and 30% of mGFR, respectively) in a pooled validation data set from three additional cohorts
(n = 2215). Results: In the validation data set, the greatest bias and lowest accuracy, were
observed in Black individuals for all equations across subgroups defined by race, sex, age, and
eGFR. The MFP and GAM equations performed similarly to the refitted CKD-EPI SCr
equation, with slight improvements in P10 and P30 in subgroups including Black individuals
and females. The GBM and RF equations demonstrated smaller biases, but lower accuracy
compared to other equations. Generally, differences among equations were modest overall and
across subgroups. Conclusions: Our findings suggest that advanced methods provide limited
improvement in SCr-based GFR estimation. Future research should focus on integrating novel
biomarkers for GFR estimation and improving the feasibility of GFR measurement.

Introduction

The glomerular filtration rate (GFR), estimated from serum creatinine (SCr), is a standard tool
in diagnosing, staging, andmanaging chronic kidney disease (CKD) in clinical practice. Over the
years, many SCr-based equations have been developed, with current clinical guidelines
recommending the race-free 2021 CKD-EPI SCr equation [1]. However, the performance of
these equations is limited by non-GFR determinants that influence SCr, such as muscle mass
and nutritional intake [2,3]. In the study that developed the 2021 CKD-EPI equations, external
validation has shown that the CKD-EPI SCr equation may introduce inaccuracies in GFR
estimation for both Black and non-Black populations, and lead to differential bias between race
groups (namely, overestimation in non-Black individuals and underestimation in Black
individuals). Furthermore, the 2021 CKD-EPI SCr equation may be less precise than the 2009
race-based CKD-EPI SCr equation [4].

To address these limitations, guidelines from theNational Kidney Foundation (NKF) and the
American Society of Nephrology (ASN) recommend using the CKD-EPI creatine-cystatin C
combined equation for further confirmation and advocate for further investigation into other
endogenous filtration markers that may enhance GFR estimation [1]. Several studies have
explored the potential of novel biomarkers like beta-trace protein, β2-microglobulin, and
citrulline for estimating GFR [5,6], but SCr remains a valuable marker for GFR estimation due to
its low cost, widespread availability, and routine inclusion in the basic metabolic panel. While it
is important to continue exploring alternatives to SCr, until guidelines update their
recommendations for GFR estimation, the SCr-based 2021 CKD-EPI equation will likely
continue to be the standard in clinical settings. Given its clinical relevance, we sought to
investigate whether SCr-based equations can be improved using advanced modeling techniques
without incorporating additional biomarkers, potentially offering a cost-effective approach to
enhance clinical practice.

It is well-known that SCr has a nonlinear relationship with measured GFR (mGFR) [7].
Existing SCr-based equations typically employ linear regression methods with piecewise spline
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terms for SCr to capture the nonlinearity, using log-transformed
values for both mGFR and SCr [4]. However, several advanced
smoothing and machine learning techniques can model complex
nonlinear associations and identify the most appropriate relation-
ships between the outcome and predictors based on the data itself,
without assuming a predefined functional form. We, therefore,
assessed whether these advanced methods could improve equation
performance by more accurately capturing the nonlinear relation-
ship between SCr and mGFR compared to the traditional linear
regression-based approach. Specifically, we developed four new
SCr-based equations using advanced approaches and compared
their performance to the refitted linear regression-based 2021
CKD-EPI SCr equation.

Materials and methods

Data sources

This investigation utilized existing data from seven study cohorts
that had mGFR data. For the development of new equations, we
used the Genetic Epidemiology Network of Arteriopathy Study
(GENOA) (N = 1010) [8], African American Study of Kidney
Disease and Hypertension Study (AASK) (N = 1807) [9],
Modification of Diet in Renal Disease (MDRD) Study (N =
1628) [10], and Consortium for Radiologic Imaging Studies of
Polycystic Kidney Disease (CRISP) (N = 168) [11]. For external
validation, we utilized three studies: the Epidemiology of Coronary
Artery Calcification (ECAC) cohort study (N = 406) [12], the
Assessing Long Term Outcomes in Living Kidney Donors
(ALTOLD) (N = 386) [13], and the Chronic Renal Insufficiency
Cohort (CRIC) Study (N = 1423) [14]. Additional information
about these cohorts can be found in the Supplemental Materials
(Section: Details of Study Cohorts).

Measured GFR, serum creatinine, and covariates

Details of mGFR protocols and laboratory measurements were
published elsewhere [8,10,11,13–16]. GFR was measured using
urinary clearance of non-radiolabeled iothalamate in GENOA,
ECAC, and CRISP; radiolabeled 125I-iothalamate urinary clear-
ances in MDRD, AASK, and CRIC; and plasma clearance of
iohexol in ALTOD. mGFRs from all studies were standardized to
1.73 m2 of body surface area. SCr measurement was standardized
in all studies. Age, sex, and race were self-reported.

Similar to the guideline-recommended 2021 CKD-EPI SCr
equation, all models included age, sex, and SCr as predictors, with
mGFR as the outcome. mGFR was expressed in ml/min/1.73m2,
SCr in mg/dL, and age in years for equation development. mGFR
was log-transformed due to its high variability and to ensure
positive predictions. SCr was kept on its original scale in all models
except for the linear regression model used to refit the CKD-EPI
SCr equation, where it was log-transformed.

Statistical analysis

We selected four distinct methods to estimate GFR – each with
unique strengths in capturing nonlinear relationships between
predictors and the outcome – to estimate GFR: multivariable
fractional polynomials (MFP), generalized additive models (GAM),
random forests (RF), and gradient boosted machines (GBM). MFP
employs built-in variable selection and applies appropriate power
transformations to continuous predictor variables when nonline-
arity is identified [17]. GAM utilizes smooth functions, represented

by penalized regression splines, to flexibly model nonlinear
relationships when present and can effectively handle complex
interactions between variables [18]. RF and GBM are ensemble
machine learning techniques that combine predictions from
multiple models to improve the overall accuracy and robustness of
predictions. RF aggregates predictions frommultiple deep decision
trees, each trained on a random subset of the data, ensuring
diversity among the trees and reducing overfitting [19]. It captures
nonlinearity by allowing individual decision trees to model
different aspects of the relationship between dependent and
independent variables. GBM uses a stochastic gradient boosting
strategy, sequentially building a series of shallow decision trees,
where each tree corrects the residuals of the previous ones [20,21].
The technical details of these methods are provided in the
Supplemental Materials (Technical Notes of Statistical Methods).

To compare these four methods with the linear regression-
based CKD-EPI SCr equation, we refitted the 2021 CKD-EPI SCr
equation using a linear regression model (hereafter referred to as
LM). We preserved the same expression for the linear predictors as
in the original 2021 CKD-EPI SCr equation, which included a
linear effect for age and sex-specific linear splines for SCr, with cut-
off values of 0.9 for females and 0.7 for males.

TheMFP, GAM, RF, and GBMmethods were implemented using
R packages mfp, mgcv, RandomForest, and gbm, respectively, while
the LM was implemented using base R. R packages pdp and visreg
were used to visualize the function form of equations.

External validation

We evaluated the performance of the new GFR-estimating
equations in the pooled external validation data set using several
population-level and individual-level metrics. Bias, the popula-
tion-level systematic difference, was evaluated as the median
difference between mGFR and estimated GFR (eGFR) (i.e., mGFR
minus eGFR). Precision was assessed as the interquartile range of
the difference. Population-level accuracy was assessed as root
mean square error (RMSE) of log mGFR and log eGFR, mean
absolute error (MAE) of the difference between mGFR and eGFR,
percentage of eGFR within 10% of mGFR (P10), and percentage of
eGFR within 30% of mGFR (P30) [22,23].

We examined individual-level accuracy by calculating 95%
prediction intervals (PIs) of mGFR at different eGFR values. The
lower and upper bounds of these intervals were determined using
the 2.5th and 97.5th percentiles of mGFR, predicted from quantile
regression models [24,25]. Similarly, we constructed the 50%
prediction interval (PI) using the 25th and 75th percentiles of mGFR
obtained from quantile regression models.

We obtained 95% confidence intervals (CIs) (2.5th percentile,
97.5th percentile) for all population-level metrics using 2000 bootstrap
samples (see details in Supplemental Materials: Bootstrapping
Methods to Calculate Obtain Estimates (95% CI) of Metrics for
Equation Performance) [26]. All analyses were performed in R (R
Foundation for Statistical Computing, Vienna, Austria) and STATA/
SE version 18.0 (StataCorp LLC, College Station, TX). Exemplary R
code is provided in Supplementary Materials.

Results

Characteristics of study participants

Table 1 shows the characteristics of the participants in both the
development and external validation data sets. In the development
data set, the mean ± SD age of participants was
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54 ± 13 years; 2099 (45%) participants were female, and 2516
(54%) self-reported Black race. The mean mGFR was 58 ± 28 ml/
min/1.73 m2, and 2571 (55%) had mGFR < 60 ml/min/1.73 m2.
The external validation data set showed a slightly higher mean
mGFR (62 ± 28 ml/min/1.73 m2), an older mean age (56 ± 14
years), a higher proportion of females (49%), and a lower
proportion of Black race (24%). Characteristics of participants
from each cohort are shown in Supplemental Table 1.

Formulation of equations

MFP equation
Nonlinear relationships of both SCr and age with log(mGFR) were
selected by the MFP model based on the deviance criterion. The
following equation was used to estimate GFR:

exp ½1:869� 2:389 � 1
SCr

þ 6:8489 � SCr�0:5 þ 1:2049 � ðage
100

Þ0:5

� 1:610� ðage
100

Þ0:5 � logðage
100

Þ þ 0:294 if male�

Supplemental Figure 1 displays the relationships of MFP-based
eGFR with SCr and age.

GAM equation
Nonlinear relationships with log(mGFR) for both SCr and age
were statistically supported in the GAM-based equation; Penalized
cubic regression splines were used in the GAM model, as they
resulted in the lowest generalized cross-validation scores compared
to other available spline functions. The equation to estimate
GFR is:

exp [3.755293þ f (SCr) þ f (age) þ 0.291015 if male] where f
represents the smooth functions.

However, unlike MFP, it is difficult to transcribe the
mathematical forms of the smooth terms concisely.
Supplemental Figure 2 shows the relationships of GAM-based
eGFR with SCr and age.

RF equation
In the RF approach, a grid search was conducted across various
parameter combinations, including the number of trees and the
minimum size of terminal nodes, to identify the optimal
parameters for the final model, based on the lowest out-of-bag
RMSE. The final model used 1000 trees with a node size of nine.
Two randomly sampled variables were used to perform each of the
splits because there were only three predictors in total. In contrast
to the MFP and GAM models, RF models are purely designed for

Table 1. Characteristics of study participants

Development data set External validation data set

Total Non-Black Black Total Non-Black Black

N
n = 4665
(100.0%)

n = 2149
(46.1%)

n = 2516
(53.9%)

n = 2215
(100.0%)

n = 1680
(75.8%)

n = 535
(24.2%)

Age, years 54.0 (12.9) 52.3 (14.1) 55.4 (11.7) 55.6 (13.5) 55.6 (13.9) 55.7 (12.3)

Categories, n (%)

<40 716 (15.3) 462 (21.5) 254 (10.1) 352 (15.9) 278 (16.5) 74 (13.8)

40–65 2946 (63.2) 1255 (58.4) 1691 (67.2) 1255 (56.7) 929 (55.3) 326 (60.9)

>65 1003 (21.5) 432 (20.1) 571 (22.7) 608 (27.4) 473 (28.2) 135 (25.2)

Female, n (%) 2099 (45.0) 992 (46.2) 1107 (44.0) 1083 (48.9) 831 (49.5) 252 (47.1)

Body mass index, kg/m2 29.5 (6.2) 28.0 (5.4) 30.7 (6.6) 30.1 (6.4) 29.2 (6.1) 32.9 (6.7)

Categories, n (%)

Underweight 37 (0.8) 18 (0.8) 19 (0.8) 10 (0.5) 9 (0.5) 1 (0.2)

Normal weight 1092 (23.5) 663 (31.0) 429 (17.1) 485 (21.9) 425 (25.3) 60 (11.2)

Overweight 3225 (69.3) 1391 (65.1) 1834 (73.0) 1541 (69.6) 1149 (68.5) 392 (73.3)

Obese 297 (6.4) 65 (3.0) 232 (9.2) 177 (8.0) 95 (5.7) 82 (15.3)

Body surface area, m2 2.0 (0.2) 1.9 (0.2) 2.0 (0.2) 2.0 (0.3) 2.0 (0.3) 2.1 (0.3)

Measured GFR, ml/min/1.73
m2

57.8 (28.3) 54.6 (31.0) 60.6 (25.4) 62.1 (27.6) 66.7 (28.1) 47.6 (20.0)

Categories, n (%)

>= 90 640 (13.7) 325 (15.1) 315 (12.5) 434 (19.6) 414 (24.6) 20 (3.7)

60–89 1454 (31.2) 513 (23.9) 941 (37.4) 644 (29.1) 529 (31.5) 115 (21.5)

45–59 871 (18.7) 345 (16.1) 526 (20.9) 432 (19.5) 301 (17.9) 131 (24.5)

30–44 815 (17.5) 401 (18.7) 414 (16.5) 432 (19.5) 272 (16.2) 160 (29.9)

<30 885 (19.0) 565 (26.3) 320 (12.7) 273 (12.3) 164 (9.8) 109 (20.4)

Serum creatinine, mg/dL 1.6 (1.0) 1.7 (1.1) 1.6 (0.9) 1.4 (0.7) 1.3 (0.6) 1.9 (0.7)

Note: GFR = glomerular filtration rate; mGFR = measured glomerular filtration rate. Data are presented as mean (standard deviation) for continuous variables and as n (%) for categorical
variables.
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prediction and thus do not provide interpretable equations.
Supplemental Figure 3 shows how RF-based eGFR changes with
SCr or age.

GBM equation
The GBM equation was developed based on a boosted regression
model. A grid search, similar to that used for RF models, was
performed to determine the parameters for the final model,
including the total number of trees, the maximum depth of each
tree, and the shrinkage parameter, based on the RMSE. A total of
1386 trees were included in the final model.

Like the RF equation, predictions can be easily generated from the
GBM model, although interpretable equations are not available.
Supplemental Figure 4 illustrates how the eGFR changes with SCr
or age.

Refitted CKD-EPI SCr 2021 (LM) equation
The 2021 CKD-EPI SCr equation was refitted using our develop-
ment data set. The refitted equation, referred to as the LM
equation, was defined as follows:

135 �ðSCr0:7Þ�0:135 �0.9940Age if SCr ≤ 0.7, female

135 �ðSCr0:7Þ�1:159 �0.9940Age if SCr > 0.7, female

139 �ðSCr0:9Þ�0:110 �0.9940Age if SCr ≤ 0.9, male

139 �ðSCr0:9Þ�1:159 �0.9940Age if SCr > 0.9, male

Supplemental Figure 5 demonstrates that the refitted equation
produced predictions generally consistent with the original CKD-
EPI SCr equation across various SCr values.

Performance of equations in the external validation data set
Overall, all equations underestimated mGFR with small biases
ranging from 0.9 to 1.4, except for the GBM equation, which
resulted in a bias that was not significantly different from zero
(–0.3, 95%CI: –0.9, 0.3) (Table 2). The LM, MFP, and GAM
equations demonstrated similar accuracy, asmeasured by both P10
and P30, while the GBM and RF equations showed lower accuracy
(Table 2). Imprecision, RMSE, andMAE followed a similar pattern
as P10 and P30, with GBM and RF demonstrating larger
imprecision and errors than the other equations (Table 2).
Despite these small differences, the overall performance of the
equations was generally similar, as the 95% confidence intervals
overlapped for most of the metrics.

The performance of these equations across subgroups of race,
sex, age, and eGFR (calculated using the CKD-EPI SCr equation)
(Supplemental Table 2) mirrored the overall trends. All equations,
including the LM equation, exhibited the greatest underestimation
biases in the Black subgroup, followed by the eGFR < 60 ml/min/
1.73 m2 subgroup (Supplemental Table 2, Figure 1). The GBM
equation showed the smallest bias in both of these subgroups;
however, it exhibited the largest overestimation bias in the White
and eGFR ≥ 60 ml/min/1.73 m2 subgroups. Other equations
demonstrated relatively similar biases within each subgroup.
The GBM and RF equations generally yielded lower accuracy,
as measured by P10 and P30, within each subgroup when
compared to other equations (Supplemental Table 2, Figures 2
and 3). The LM, MFP, and GAM equations performed similarly
within most of the subgroups, but the MFP and GAM equations
tended to show higher P10 and P30 than the LM equation
in Black individuals and females (Figures 2 and 3). Other
performance metrics, including imprecision, MAE, and RMSE,
followed the pattern of P10 and P30, with GBM and RF showing
slightly larger errors compared to the other equations in most
subgroups (Supplemental Figure 6).

We further performed the analysis in subgroups based on
combinations of race and age (<65 years), sex and age (<65 years),
race and eGFR (<60 ml/min/1.73 m2), and sex and eGFR (<60 ml/
min/1.73 m2) (Supplemental Tables 3 and 4, Supplemental Figure
7, Supplemental Figure 8). We found that the performances of
GBM and RF were similar in these subgroups and comparable to
the performance in the overall sample, with generally smaller
biases but lower precision and accuracy. The GAM equation had
higher P10 and P30 compared to the LM equation for Black
individuals across age groups (Supplemental Figure 7B,
Supplemental Figure 7C) and eGFR categories (Supplemental
Figure 8B, Supplemental Figure 8C). Similarly, the MFP equation
showed higher P30 than the LM equation for Black individuals,
regardless of age group (Supplemental Figure 7C) or eGFR
category (Supplemental Figure 8C), although 95% CIs overlapped
for most of the equations across subgroups.

Figure 1. Bias of equations overall and by subgroups in the external validation data
set. Shows the bias of all equations overall and across subgroups. The dots are point
estimates and the horizontal lines are 95% confidence intervals. The vertical dashed
line represents the unbiased reference line, with estimates closer to 0 indicating better
performance. eGFR based on the 2021 CKD-EPI SCr equation was used to define the
subgroups with eGFR < 60 ml/min/1.73 m2 and eGFR ≥ 60 ml/min/1.73 m2.
Note: Bias was defined as the median of the differences between mGFR and eGFR for
each individual in the sample (mGFR minus eGFR); GFR = glomerular filtration rate;
eGFR = estimated GFR; mGFR = measured GFR; CKD-EPI = Chronic Kidney Disease
Epidemiology Collaboration; SCr = serum creatinine; LM = the refitted 2021 CKD-EPI
SCr equation using a linear regression model; MFP = the equation based on the
multivariable fractional polynomial model; GAM= the equation based on the generalized
additive model; RF = the equation based on random forests; GBM = the equation based
on gradient boosted machines.
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The individual-level differences between mGFR and all eGFRs
derived from all equations, including the LM equation, were large
(Supplemental Table 5, Figure 4). 95% PIs were wide at each eGFR
threshold used to define CKD diagnosis or staging. For example, at

eGFR of 60 ml/min/1.73 m2, 95% PI of mGFR range from 38 to 89
ml/min/1.73 m2 for the LM equation (i.e., mGFR could fall
anywhere between 38 to 89ml/min/1.73m2), 36 to 88ml/min/1.73m2

for both theMFP andGAMequation, 37 to 87ml/min/1.73m2 for the

Table 2. Overall performance of estimating equations in the external validation data set

Equation
Bias (95% CI),
ml/min/1.73 m2

Imprecision (95% CI),
ml/min/1.73 m2 P10 (95% CI), % P30 (95% CI), %

RMSE (95% CI),
ml/min/1.73 m2

(log scale)
MAE (95% CI),
ml/min/1.73 m2

LM 1.0 (0.4, 1.5) 15.3 (14.3, 15.9) 38.7 (36.7, 40.8) 83.7 (82.3, 85.3) 0.23 (0.22, 0.24) 10.0 (9.6, 10.4)

MFP 1.3 (0.7, 1.9) 14.8 (14.0, 15.6) 39.3 (37.3, 41.3) 84.3 (82.9, 85.8) 0.23 (0.22, 0.24) 10.0 (9.6, 10.4)

GAM 1.4 (1.0, 2.0) 14.8 (13.9, 15.5) 39.4 (37.4, 41.4) 84.6 (83.2, 86.1) 0.23 (0.22, 0.24) 10.0 (9.6, 10.4)

RF 0.9 (0.1, 1.5) 16.2 (15.4, 17.0) 36.5 (34.6, 38.5) 82.3 (80.7, 83.9) 0.24 (0.23, 0.25) 10.4 (10.0, 10.8)

GBM −0.3 (−0.9, 0.3) 15.8 (15.0, 16.7) 37.0 (35.1, 39.0) 81.3 (79.8, 82.9) 0.24 (0.23, 0.25) 10.4 (10.0, 10.8)

Note: RMSE = root mean square error; MAE = mean absolute error; GFR = glomerular filtration rate; eGFR = estimated GFR; mGFR = measured GFR; CKD-EPI = Chronic Kidney Disease
Epidemiology Collaboration; SCr = serum creatinine; LM = the refitted 2021 CKD-EPI SCr equation using a linear regression model; MFP = the equation based on the multivariable fractional
polynomial model; GAM= the equation based on the generalized additive model; RF = the equation based on random forests; GBM= the equation based on gradient boostedmachines. Bias is
defined as themedian of the differences betweenmGFR and eGFR for each individual in the sample (mGFRminus eGFR). Imprecision is the interquartile range (75th minus the 25th percentiles) of
the differences. P10 is the percentage of eGFRs within 10% ofmGFR, and P30 is the percentage of eGFRs within 30% ofmGFR. RMSE is the root mean square error of logmGFR and log eGFR. MAE
is calculated as the average of the absolute differences between each eGFR and the corresponding mGFR.

Figure 2. P10 of equations overall and by subgroups in the external validation data
set. Shows accuracy measured by P10 of all equations overall and across subgroups.
The dots are point estimates and the horizontal lines are 95% confidence intervals. The
vertical reference line is positioned at the highest P10 value across all equations, with
estimates closer to 100 indicating higher accuracy. eGFR based on the 2021 CKD-EPI
SCr equation was used to define the subgroups with eGFR < 60 ml/min/1.73 m2 and
eGFR ≥ 60 ml/min/1.73 m2.
Note: P10 is the percentage of eGFRs within 10% of mGFR; GFR = glomerular filtration
rate; eGFR = estimated GFR; mGFR = measured GFR; CKD-EPI = Chronic Kidney
Disease Epidemiology Collaboration; SCr = serum creatinine; LM = the refitted 2021
CKD-EPI SCr equation using a linear regression model; MFP = the equation based on
the multivariable fractional polynomial model; GAM = the equation based on the
generalized additive model; RF = the equation based on random forests; GBM = the
equation based on gradient boosted machines.

Figure 3. P30 of equations overall and by subgroups in the external validation data
set. Shows accuracy measured by P30 of all equations overall and across subgroups;
the dots are point estimates and the horizontal lines are 95% confidence intervals. The
vertical reference line is positioned at the highest P30 value across all equations, with
estimates closer to 100 indicating greater accuracy. eGFR based on the 2021 CKD-EPI
SCr equation was used to define the subgroups with eGFR < 60 ml/min/1.73 m2 and
eGFR ≥ 60 ml/min/1.73 m2.
Note: P30 is the percentage of eGFRs within 30% of mGFR; GFR = glomerular filtration
rate; eGFR = estimated GFR; mGFR = measured GFR; CKD-EPI = Chronic Kidney
Disease Epidemiology Collaboration; SCr = serum creatinine; LM = the refitted 2021
CKD-EPI SCr equation using a linear regression model; MFP = the equation based on
the multivariable fractional polynomial model; GAM = the equation based on the
generalized additive model; RF = the equation based on random forests; GBM = the
equation based on gradient boosted machines.
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RF equation, and 36 to 86 ml/min/1.73 m2 for the GBM equation.
Overall, all equations exhibited similar performance at the chosen
eGFR thresholds.

Discussion

In this study, we developed and examined four new SCr-based
GFR-estimating equations using advancedmethods and compared
their performance to that of the refitted linear regression-based
2021 CKD-EPI SCr equation (the LM equation). Our findings
showed that the MFP and GAM equations performed very
similarly to the refitted CKD-EPI SCr equation, with slightly
improved accuracy as measured by P10 and P30 in certain
subgroups, includingBlack individuals and females. TheGBMandRF
methods had smaller biases in the overall sample, as well as in some
subgroups, including Black and eGFR < 60 ml/min/1.73 m2

subgroups. However, they tended to show lower precision and
accuracy compared to the other equations. Generally, differences
among equations were modest across the entire external validation
data set and subgroups defined by race, sex, age, and eGFR categories.

A few other studies have also looked into GFR estimation using
machine learningmethods. For example, Xunliu et al. employed an
artificial neural network (ANN) model to estimate GFR using sex,
age, and SCr as predictors based on data collected from a group of
patients with CKD in China. The model did not outperform a
linear regression model [27]. The authors later applied an
ensemble approach, averaging predictions from ANN, support
vectormachines, and the regressionmodel, to estimate GFR, which

improved precision but yielded bias and accuracy comparable to
the regression-model-based approach [28].

Despite the numerous advantages of RF or GBM, our study did
not demonstrate the clear benefits of these techniques for SCr-
based GFR estimation. One possible explanation is that variable
selection is one of the key strengths of these machine learning
methods. However, in our study, the predictors were pre-selected
according to the standard clinical practice. As a result, the variable
selection capability of machine learning was not fully utilized,
which may explain why GBM and RF did not significantly
outperform the traditional linear regression approach in GFR
estimation. In addition, we suspect that our data did not exhibit
complex nonlinear relationships between SCr and mGFR. As a
result, the usual benefits of advanced methods – such as their
ability to handle intricate nonlinear relationships – may not be
fully demonstrated in our study sample.

All equations, including the LM-based refitted 2021 CKD-EPI
SCr equation, exhibited suboptimal performance in the external
validation data set. The greatest underestimation biases were
observed in Black individuals across all subgroups defined by race,
sex, age, and eGFR (Figure 1). The largest biases were seen in the
Black subgroup with eGFR > 60 ml/min/1.73 m2, followed by the
Black subgroup with eGFR<60 ml/min/1.73 m2 (Supplemental
Table 4, Figure 8A). P30 was lowest for Black individuals with
eGFR < 60 ml/min/1.73 m2 subgroup (Supplemental Table 4,
Figure 8C), ranging between 70% and 80%, while 90% is typically
considered good. Our findings indicate that the limitations of SCr-
based equations persist even when advanced statistical and
machine learning methods are employed, highlighting the

Figure 4. Comparison of 95% prediction intervals of mGFR among all equations in the external validation data set. Vertical lines represent prediction intervals of the new
equations, with each equation represented by a different color. The numbers near the caps of vertical lines show the 2.5th and 97.5th percentiles of mGFR at given eGFR values.
Symbols (arrows and dots) on the vertical lines identify the 25th and 75th percentiles, and median of mGFR at given eGFR values. The interpretation is that at a given eGFR, 95% of
mGFRs range from the 2.5th to 97.5th percentiles. Similarly, 50% of mGFRs range from the 25th to 75th percentiles. For each equation, the percentile values of mGFR are obtained
from separate quantile regression models (at the 2.5th, 25th, median, 75th, and 97.5th percentiles, respectively) of mGFR on eGFR.
Note: GFR = glomerular filtration rate; eGFR = estimated GFR; mGFR =measured GFR; CKD-EPI = Chronic Kidney Disease Epidemiology Collaboration; SCr= serum creatinine; LM
= the refitted 2021 CKD-EPI SCr equation using a linear regression model; MFP= the equation based on the multivariable fractional polynomial model; GAM = the equation based
on the generalized additive model; RF = the equation based on random forests; GBM = the equation based on gradient boosted machines.
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difficulty of improving upon established SCr-based equations such
as the CKD-EPI SCr equation.

Some limitations of the current study bear mentioning. First,
the sample sizes of both our development and external validation
data sets were relatively small compared to those used to develop
the CKD-EPI equations. The external validation data set included
fewer Black participants (n = 535, 24%) than White participants,
resulting in wide confidence intervals in certain analyses, such as
the subgroup analyses. This may have reduced the ability to detect
true differences between White and Black participants across
equations. Future research with a larger sample of Black
participants would enable more robust and valid comparisons.

Moreover, the equations generated using the methods we
employed are more difficult to understand than those based on
linear regression models. While we were able to explicitly
formulate the MFP equation, we could only visualize the GAM,
RF, and GBM equations. User-friendly tools, such as online
calculators and R packages, will be essential to facilitate the
application of these advanced methodologies in clinical practice.
However, the goal of this study is to assess whether advanced
methods can improve SCr-based GFR-estimating equations
without incorporating other markers rather than to advocate for
any of these equations.

In conclusion, our results suggest that advancedmethodologies,
including MFP, GAM, RF, and GBM, may have limited utility in
enhancing GFR estimation using SCr as the main predictor.
Future research should aim to integrate novel biomarkers to
enhance GFR estimation and to improve the clinical feasibility
of mGFR measurements, especially for subgroups where the
current eGFR equations show less optimal performance, such as
Black individuals.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2025.10057

Acknowledgments. The data from the CRIC, MDRD, AASK, CRISP, and
ALTOLD studies reported here were supplied by the NIDDK Central
Repository. Data for GENOA is housed at the University of Mississippi
Medical Center.We thankDrAndrewRule from theMayoClinic for the help in
obtaining data from the ECAC cohort study.

Author contributions. Xiaoqian Zhu: Conceptualization, data curation,
formal analysis, investigation, methodology, project administration, resources,
software, validation, visualization, writing – original draft, writing – review and
editing; Tariq Shafi: conceptualization, supervision, writing – review and
editing; Keith Norris: supervision, writing – review and editing; Jeannette
Simino: supervision, writing – review and editing; Srishti Shrestha: writing
review and editing; Thomas Mosley: resources, writing – review and editing;
Michael Griswold: supervision, writing – review and editing; Seth Lirette:
conceptualization, methodology, supervision, writing – review and editing.

Funding statement. XZ is partially supported by 75N92022D0004,
HHSN268201800012i, and HIS-2020C1-19350. JS is supported by
75N92022D0004, 5P20GM144041, and 1RF1AG059421. KCN is partially
supported by NIH research grants UL1TR001881, P30AG021684, U2CDK129496,
P50MD017366, and OT2OD032581. TS is supported by R01NR017399,
R01DK123062, U01DK127918, and R01HL153499. SL is partially supported by
the Mississippi Center for Clinical and Translational Research and Mississippi
Center of Excellence in Perinatal Research COBRE funded by the National
Institute of General Medical Sciences of the National Institutes of Health
under Award Numbers 5U54GM115428 and P20GM121334.

Competing interests. KCN is a Kidney Disease Quality Improvement
Consultant for Atlantis Health, Inc.

References

1. Delgado C, Baweja M, Crews DC, et al. A unifying approach for GFR
estimation: recommendations of the NKF-ASN task force on reassessing
the inclusion of race in diagnosing kidney disease. Am J Kidney Dis.
2022;79(2):268–288.e1. doi: 10.1053/j.ajkd.2021.08.003.

2. Kashani K, Rosner MH, Ostermann M. Creatinine: from physiology to
clinical application. Eur J Intern Med. 2020;72:9–14. doi: 10.1016/j.ejim.
2019.10.025.

3. Tio MC, Shafi T, Zhu X, Kalantar-Zadeh K, Chan A, Nguyen L.
Traditions and innovations in assessment of glomerular filtration rate using
creatinine to cystatin C. Curr Opin Nephrol Hypertens. 2023;32(1):89–97.
doi: 10.1097/mnh.0000000000000854.

4. Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-
based equations to estimate GFR without race. New Engl J Med. 2021;
385(19):1737–1749. doi: 10.1056/NEJMoa2102953.

5. Lousa I, Reis F, Beirão I, Alves R, Belo L, Santos-Silva A. New potential
biomarkers for chronic kidney disease management-a review of the
literature. Int J Mol Sci. 2020;22(1):1–43. doi: 10.3390/ijms22010043.

6. Benito S, Unceta N, Maciejczyk M, et al. Revealing novel biomarkers
for diagnosing chronic kidney disease in pediatric patients. Sci Rep.
2024;14(1):11549. doi: 10.1038/s41598-024-62518-w.

7. Raman M, Middleton R, Kalra P, Green D. Estimating renal function
in old people: an in-depth review. Int Urol Nephrol. 2017;49:
1979–1988.

8. Rule AD, Bailey KR, Lieske JC, Peyser PA, Turner ST. Estimating the
glomerular filtration rate from serum creatinine is better than from cystatin
C for evaluating risk factors associated with chronic kidney disease. Kidney
Int. 2013;83(6):1169–1176. doi: 10.1038/ki.2013.7.

9. Appel LJ, Middleton J, Miller ERI, et al. The rationale and design of the
AASK cohort study. J Am Soc Nephrol. 2003;14(suppl_2):S166–S172.
doi: 10.1097/01.Asn.0000070081.15137.C0.

10. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more
accurate method to estimate glomerular filtration rate from serum
creatinine: a new prediction equation. Modification of diet in renal disease
study group. Ann Intern Med. 1999;130(6):461–470. doi: 10.7326/0003-
4819-130-6-199903160-00002.

11. Chapman AB, Guay-Woodford LM, Grantham JJ, et al. Renal structure
in early autosomal-dominant polycystic kidney disease (ADPKD): the
consortium for radiologic imaging studies of polycystic kidney disease
(CRISP) cohort<sup>1</sup>.Kidney Int. 2003;64(3):1035–1045. doi: 10.
1046/j.1523-1755.2003.00185.x.

12. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular
filtration rate estimated by cystatin C among different clinical presenta-
tions. Kidney Int. 2006;69(2):399–405. doi: 10.1038/sj.ki.5000073.

13. Kasiske BL, Anderson-Haag T, Ibrahim HN, et al. A prospective
controlled study of kidney donors: baseline and 6-month follow-up. Am J
Kidney Dis. 2013;62(3):577–586. doi: 10.1053/j.ajkd.2013.01.027.

14. Anderson AH, Yang W, Hsu CY, et al. Estimating GFR among
participants in the chronic renal insufficiency cohort (CRIC) study. Am
J Kidney Dis. 2012;60(2):250–261. doi: 10.1053/j.ajkd.2012.04.012.

15. Gassman JJ, Greene T,Wright JT Jr., et al.Design and statistical aspects of
the African American study of kidney disease and hypertension (AASK). J
Am Soc Nephrol. 2003;14(7 Suppl 2):S154–S165. doi: 10.1097/01.asn.
0000070080.21680.cb.

16. Kwong YT, Stevens LA, Selvin E, et al. Imprecision of urinary iothalamate
clearance as a gold-standard measure of GFR decreases the diagnostic
accuracy of kidney function estimating equations. Am J Kidney Dis.
2010;56(1):39–49. doi: 10.1053/j.ajkd.2010.02.347.

17. Sauerbrei PRW. Multivariable Model-Building: A Pragmatic Approach to
Regression Analysis based on Fractional Polynomials for Modelling
Continuous Variables. John Wiley & Sons Ltd, 2008: 322

18. Wood S. Generalized Additive Models. 2nd ed. Chapman and Hall/CRC,
2017: 496.

19. Breiman L. Random Forests.Mach Learn. 2001;45(1):5–32. doi: 10.1023/a
:1010933404324.

Journal of Clinical and Translational Science 7

https://doi.org/10.1017/cts.2025.10057
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 28 Jul 2025 at 17:42:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/cts.2025.10057
https://doi.org/10.1053/j.ajkd.2021.08.003
https://doi.org/10.1016/j.ejim.2019.10.025
https://doi.org/10.1016/j.ejim.2019.10.025
https://doi.org/10.1097/mnh.0000000000000854
https://doi.org/10.1056/NEJMoa2102953
https://doi.org/10.3390/ijms22010043
https://doi.org/10.1038/s41598-024-62518-w
https://doi.org/10.1038/ki.2013.7
https://doi.org/10.1097/01.Asn.0000070081.15137.C0
https://doi.org/10.7326/0003-4819-130-6-199903160-00002
https://doi.org/10.7326/0003-4819-130-6-199903160-00002
https://doi.org/10.1046/j.1523-1755.2003.00185.x
https://doi.org/10.1046/j.1523-1755.2003.00185.x
https://doi.org/10.1038/sj.ki.5000073
https://doi.org/10.1053/j.ajkd.2013.01.027
https://doi.org/10.1053/j.ajkd.2012.04.012
https://doi.org/10.1097/01.asn.0000070080.21680.cb
https://doi.org/10.1097/01.asn.0000070080.21680.cb
https://doi.org/10.1053/j.ajkd.2010.02.347
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1017/cts.2025.10057
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


20. Friedman JH. Greedy function approximation: a gradient boosting
machine. The Annals of Statistics. 2001;29(5):1189–1232, 44.

21. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal.
2002;38(4):367–378. doi: 10.1016/S0167-9473(01)00065-2.

22. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate
glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612.
doi: 10.7326/0003-4819-150-9-200905050-00006.

23. Stevens LA, Zhang Y, Schmid CH. Evaluating the performance of equations
for estimating glomerular filtration rate. J Nephrol. 2008;21(6):797–807.

24. Austin PC, Tu JV,Daly PA, Alter DA.The use of quantile regression in health
care research: a case study examining gender differences in the timeliness of
thrombolytic therapy. Stat Med. 2005;24(5):791–816. doi: 10.1002/sim.1851.

25. Shafi T, ZhuX, Lirette ST, et al.Quantifying individual-level inaccuracy in
glomerular filtration rate estimation : a cross-sectional study. Ann Intern
Med. 2022;175(8):1073–1082. doi: 10.7326/m22-0610.

26. Royston P, Sauerbrei W. Bootstrap assessment of the stability
of multivariable models. Stata J. 2009;9(4):547–570. doi: 10.1177/
1536867X0900900403.

27. Liu X, Li NS, Lv LS, et al.A comparison of the performances of an artificial
neural network and a regression model for GFR estimation. Am J Kidney
Dis. 2013;62(6):1109–1115. doi: 10.1053/j.ajkd.2013.07.010.

28. Liu X, Li N, Lv L, et al. Improving precision of glomerular filtration rate
estimating model by ensemble learning. J Transl Med. 2017;15(1):231.
doi: 10.1186/s12967-017-1337-y.

8 Zhu et al.

https://doi.org/10.1017/cts.2025.10057
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 28 Jul 2025 at 17:42:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.1002/sim.1851
https://doi.org/10.7326/m22-0610
https://doi.org/10.1177/1536867X0900900403
https://doi.org/10.1177/1536867X0900900403
https://doi.org/10.1053/j.ajkd.2013.07.010
https://doi.org/10.1186/s12967-017-1337-y
https://doi.org/10.1017/cts.2025.10057
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Comparing methods for glomerular filtration rate estimation
	Introduction
	Materials and methods
	Data sources
	Measured GFR, serum creatinine, and covariates
	Statistical analysis
	External validation

	Results
	Characteristics of study participants
	Formulation of equations
	MFP equation
	GAM equation
	RF equation
	GBM equation
	Refitted CKD-EPI SCr 2021 (LM) equation
	Performance of equations in the external validation data set


	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


