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Abstract

In this paper we derive the exact asymptotics of the probability of Parisian ruin for self-
similar Gaussian risk processes. Additionally, we obtain the normal approximation of
the Parisian ruin time and derive an asymptotic relation between the Parisian and the
classical ruin times.
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1. Introduction

Let {XH (t), t ≥ 0} be a centred self-similar Gaussian process with almost surely continuous
sample paths and index H ∈ (0, 1), i.e. var(XH (t)) = t2H and for any a > 0 and s, t ≥ 0,

cov(XH (at), XH (as)) = a2H cov(XH (t), XH (s)).

Let β, c be two positive constants. In risk theory, the surplus process of an insurance company
can be modelled by

Ru(t) = u+ ctβ −XH (t) for t ≥ 0, (1.1)

where u is the so-called initial reserve, ctβ models the total premium received up to time t ,
and XH (t) represents the total amount of aggregated claims (including fluctuations) up to time
t . Typically, classical risk models assume a linear premium income, meaning that β = 1.
In this paper we deal with a more general β > H case allowing for a nonlinear premium
income. Below we shall refer to Ru as the self-similar Gaussian risk process. The justification
for choosing self-similar processes to model the aggregated claim process comes from [35],
where it was shown that the ruin probability for a self-similar Gaussian risk process is a good
approximation of the ruin probability for some classical risk process. Recent contributions
have shown that self-similar Gaussian processes such as fractional Brownian motion (fBm),
sub-fractional Brownian motion (sub-fBm), and bi-fractional Brownian motion (bi-fBm) are
useful in the modelling of financial risks, see, e.g. [19], [26]–[28], [31], and the references
therein.

For any u ≥ 0, define the classical ruin time of the self-similar Gaussian risk process by

τu = inf{t ≥ 0 : Ru(t) < 0} with inf{∅} = ∞
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Parisian ruin of Gaussian risk processes 689

and, thus, the probability of ruin is defined as

P{τu <∞}.
The classical ruin time and the probability of ruin for self-similar Gaussian risk processes are
well studied in the literature; see, e.g. [17], [27], and [28].

Recently, an extension of the classical notion of ruin, i.e. the Parisian ruin, was the focus
of substantial interest; see [6], [9], [10], and the references therein. The core notion of the
extension to Parisian ruin is that now one allows the surplus process to spend a prespecified
time under the level 0 before the ruin is recognized. To be more precise, let Tu model the
prespecified time which is a positive deterministic function of the initial reserve u. In our
setup, the Parisian ruin time of the self-similar Gaussian risk process Ru is defined as

τ ∗u = inf{t ≥ Tu : t − κt,u ≥ Tu} with κt,u = sup{s ∈ [0, t] : Ru(s) ≥ 0}.
Here, we use the convention that sup{∅} = 0.

In this paper we focus on the Parisian ruin probability, i.e.

P{τ ∗u <∞} = P

{
inf
t≥0

sup
s∈[t,t+Tu]

Ru(s) < 0

}
; (1.2)

see [5]–[7], [10], and [33] for a recent analysis of (1.2) for the Lévy surplus model. In
mathematical finance, Parisian stopping times have been studied initially by Chesney et al.
[4] in the context of barrier options.

Assume for the moment that XH is a standard Brownian motion, β = 1, and Tu = T > 0,

u > 0. Thus, Ru is the Brownian motion risk process with a linear trend. As shown in [33], for
any u ≥ 0,

P{τ ∗u <∞} = exp(−c2T /2)− c
√

2πT �(−c
√

T )

exp(−c2T /2)+ c
√

2πT �(c
√

T )
exp(−2cu), (1.3)

where �(·) is the distribution function of a standard normal random variable. Since the β �= 1
case seems to be completely untractable, even for the Brownian motion risk process, one has
to resort to bounds and asymptotic results, allowing the initial capital u to become large; see,
e.g. [20].

This paper is concerned with the asymptotic behaviour of the Parisian ruin probability as
u → ∞ for a large class of self-similar Gaussian risk processes. Under a local stationarity
condition on the correlation of the self-similar process XH (see (2.4)) and a mild condition
on Tu (see (3.2)), in Theorem 3.1 we derive the asymptotics of the Parisian ruin probability.
Interestingly, as a corollary, it appears that for the fBm risk process with a linear trend, if
H > 1

2 ,
P{τ ∗u <∞} = P{τu <∞}(1+ o(1)) as u→∞, (1.4)

even if Tu grows to∞ at a specified rate as u→∞.
The combination of (1.4) with the asymptotic behaviour of P{τu <∞} derived in [27] thus

implies the exact asymptotic behaviour of the Parisian ruin probability.
Additionally, we derive the approximation of the conditional (scaled) Parisian ruin time,

and the asymptotic relation between the classical ruin time and the Parisian ruin time, given
that the Parisian ruin occurs. This result is in agreement with, e.g. [2], [14], [20]–[24], [28],
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[29], and [36], where the approximation of the classical ruin time is considered. The obtained
normal approximation of the Parisian ruin time is a new result, even for the Brownian motion
risk process with a linear trend.

A brief outline of the paper. In Section 2 we introduce our notation and present a preliminary
result concerning the tail of the sup-inf functional of a Gaussian random field. The asymptotics
of the Parisian ruin probability is presented in Section 3, while the time of the Parisian ruin is
presented in Section 4. Proofs are relegated to Section 5.

2. Notation and preliminaries

Let {XH (t), t ≥ 0} be a centred self-similar Gaussian process with almost surely continuous
sample paths and index H ∈ (0, 1) as defined in the introduction. By {Bα(t), t ≥ 0}, we denote
a standard fBm with Hurst index α/2 ∈ (0, 1].

It is useful to define, for β > H and c > 0,

Z(t) = XH (t)

1+ ctβ
for t ≥ 0. (2.1)

Indeed, by the self-similarity of XH , for any positive u,

P{τ ∗u <∞} = P

{
sup
t≥0

inf
s∈[t,t+Tu]

(XH (s)− csβ) > u
}

= P

{
sup
t≥0

inf
s∈[0,Tuu−1/β ]

Z(t + s) > u1−H/β
}
. (2.2)

It follows that (cf. [27] and [28]) σZ(t) = √var(Z(t)) attains its maximum on [0,∞) at the
unique point

t0 =
(

H

c(β −H)

)1/β

and

σZ(t) = A− BA2

2
(t − t0)

2 + o((t − t0)
2) as t → t0,

where

A = β −H

β

(
H

c(β −H)

)H/β

, B =
(

H

c(β −H)

)−(H+2)/β

Hβ. (2.3)

In the rest of the paper we assume the local stationarity of the standardized Gaussian process
XH (t) := XH (t)/tH , t > 0 in a neighbourhood of the point t0, i.e.

lim
s→t0, t→t0

E((XH (s)−XH (t))2)

K2(|s − t |) = Q > 0 (2.4)

holds for some positive function K(·), which is assumed to be regularly varying at 0 with index
α/2 ∈ (0, 1). Condition (2.4) is common in the literature; most of the known self-similar
Gaussian processes (such as fBm, sub-fBm, and bi-fBm) satisfy (2.4); see, e.g. [25]. Note that
the local stationarity at t0 and the self-similarity of the process XH imply the local stationarity
of XH at any point r > 0, i.e.

lim
s→r, t→r

E((XH (s)−XH (t))2)

K2(|s − t |) =
(

t0

r

)α

Q.
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Throughout this paper we denote by K←(·) the asymptotic inverse of K(·); by definition

K←(K(t)) = K(K←(t))(1+ o(1)) = t (1+ o(1)) as t → 0.

It follows that K←(·) is regularly varying at 0 with index 2/α; see, e.g. [20].
Let Hα be the classical Pickands’ constant defined by

Hα = lim
T→∞

1

T
E

(
exp

(
sup

t∈[0,T ]
(
√

2Bα(t)− tα)
))
;

see [1], [3], [11], [12], [15], [16], [18], [34], and [39] for the basic properties of the Pickands’
and related constants. A new constant that will appear in our findings below is defined as

Fα(T ) = lim
S→∞

1

S
E

(
exp

(
sup

t∈[0,S]
inf

s∈[0,T ](
√

2Bα(t + s)− (t + s)α)
))
∈ (0,∞) (2.5)

for any T ∈ [0,∞).
We conclude this section with a general result for the tail of the sup-inf functional applied to

the Gaussian process Z. Recall that by �(·) we denote the distribution function of a standard
normal random variable. In order to simplify the notation, we shall set

q = q(v) := K←
(

1

v

)
for v > 0. (2.6)

Theorem 2.1. Let {Z(t), t ≥ 0} be the centred Gaussian process given as in (2.1), and let
xi(·), i = 1, 2 be two functions such that

lim
v→∞ xi(v) = xi, lim

v→∞ xi(v)v−1/2 = 0, i = 1, 2

for some x1, x2 ∈ R ∪ {∞} satisfying x2 > −x1. Furthermore, for all large v denote
	x1,x2(v) = [t0 − x1(v)v−1, t0 + x2(v)v−1]. Then, for any positive function λ(·) such that
limv→∞ λ(v) = λ ∈ [0,∞), we have

P

{
sup

t∈	x1,x2 (v)

inf
s∈[0,λ(v)q]Z(t + s) > v

}
= Fα(D0λ)

Hα

(�(A−1/2B1/2x2)−�(−A−1/2B1/2x1))

× P

{
sup
t≥0

Z(t) > v
}
(1+ o(1)) as v→∞,

where D0 = 2−1/αA−2/αQ1/α , and Fα(·) defined in (2.5) is positive and finite.

The complete proof of Theorem 2.1 is given in Section 5.

3. Asymptotics of the Parisian ruin probability

In this section we display the main result of the paper, which is the asymptotics of the Parisian
ruin probability P{τ ∗u <∞} as u→∞ for the self-similar Gaussian risk model in (1.1).

First, we note that in light of the seminal paper [27],

P{τu <∞} =
(

A3/2−2/αQ1/αHα

21/αB1/2

)
u2H/β−2

K←(uH/β−1)
exp

(
− u2(1−H/β)

2A2

)
(1+ o(1)) (3.1)

holds as u→∞. In order to control the growth of Tu, we shall assume that

lim
u→∞

Tuu
−1/β

K←(uH/β−1)
= T ∈ [0,∞). (3.2)
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Theorem 3.1. Let {Ru(t), t ≥ 0} be the self-similar Gaussian risk process given as in (1.1)
with XH satisfying (2.4) and Tu, u > 0 satisfying (3.2). If τ ∗u denotes the Parisian ruin time of
Ru then

P{τ ∗u <∞} = Fα(D0T )

Hα

P{τu <∞}(1+ o(1)) as u→∞,

where D0 = 2−1/αA−2/αQ1/α with Fα(T ) defined in (2.5).

The proof of Theorem 3.1 is deferred to Section 5; it relies on the general result for the
asymptotics of sup-inf functional of the Gaussian process Z, given in Theorem 2.1.

Remark 3.1. Observe that Pickands’ constant Hα = Fα(0) and H1 = 1 (cf. [39]). It is not
clear how to calculate Fα(T ) using the definition in (2.5). However, for the α = 1 special case,
(1.3) and (3.3) below imply that

F1(T ) = exp(−T/4)−√πT �(−√T/2)

exp(−T/4)+√πT �(−√T/2)
for T > 0.

In this paper we shall refer to Fα(T ) as the generalized Pickands’ constant.

As a corollary of the last theorem, we next present a result for the fBm risk processes with a
linear trend where XH is assumed to be a standard fBm B2H . Specifically, for any H ∈ (0, 1],
we have

cov(XH (t), XH (s)) = 1
2 (t2H + s2H − |t − s|2H ) for t, s ≥ 0

and, thus, (2.4) holds with K(t) = tH , t ≥ 0, and Q = t−2H
0 = [H/(c(β −H))]−2H/β if,

further, β > H .

Corollary 3.1. Let Ru(t) = u + ct − B2H (t), t ≥ 0, and let Tu, u > 0 be such that
limu→∞ Tuu

1/H−2 = T ∈ [0,∞). If c > 0 and H ∈ (0, 1) then

P{τ∗u <∞} = F2H (D0T )
2−1/2H

√
H(1−H)

(
cH u1−H

HH (1−H)1−H

)1/H−2

× exp

(
− c2H u2(1−H)

2H 2H (1−H)2(1−H)

)
(1+ o(1)) asu→∞, (3.3)

where D0 = 2−1/2H c2H−2(1−H)2−1/H .

Remark 3.2. Using the fact that F2H (0) = H2H , Corollary 3.1 implies that

P{τ ∗u <∞} = P{τu <∞}(1+ o(1)) as u→∞
if T = 0 (i.e. Tu = o(u(2H−1)/H )). Thus, if H > 1

2 , the asymptotics of the Parisian ruin
probability coincide with the asymptotics of the classical ruin probability even if Tu grows to
∞, provided that T = 0. This property is another manifestation of the long-range dependence
structure of fBm with Hurst index H > 1

2 .
For the Tu = T u1/H−2 boundary case with T > 0, the Parisian ruin probability and the

classical ruin probability are not asymptotically equivalent, as the initial capital u tends to∞.

In [32] a different type of Parisian ruin wass considered, where the deterministic prespecified
time Tu is replaced by an independent random variable (in particular, an exponential random
variable is dealt with therein; see also [8]). In the following corollary we calculate the Parisian
ruin probability of this model.
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Corollary 3.2. Let {Ru(t), t ≥ 0} be the self-similar Gaussian risk process given as in (1.1)
with XH satisfying (2.4). If T is a positive random variable independent of {Ru(t), t ≥ 0},
then

P

{
inf
t≥0

sup
s∈[t,t+T ]

Ru(s) < 0
}
= P{τu <∞}(1+ o(1)) as u→∞

holds, provided that 2H + α > 2β.

4. Normal approximation of the Parisian ruin time

In this section we present a normal approximation for the conditional (scaled) Parisian ruin
time. Additionally, we derive an asymptotic relation between the classical ruin time and the
Parisian ruin time, given that the Parisian ruin occurs.

Hereafter, ‘
d−→’and ‘

P−→’stand for convergence in distribution and convergence in probability,
respectively.

Theorem 4.1. Let τu, τ ∗u be the classical ruin time and the Parisian ruin time for the self-similar
Gaussian risk process {Ru(t), t ≥ 0} given as in (1.1). If XH satisfies (2.4) and Tu, u > 0
satisfies (3.2), then

τ∗u − t0u
1/β

A1/2B−1/2uH/β+1/β−1

∣∣∣∣(τ ∗u <∞)
d−→ N as u→∞, (4.1)

where A, B are as in (2.3) and N is a standard normal random variable. Moreover,

τ ∗u − τu

uH/β+1/β−1

∣∣∣∣(τ ∗u <∞)
P−→ 0 as u→∞. (4.2)

The complete proof of Theorem 4.1 is given in Section 5.
As a straightforward implication of Theorem 4.1, it follows that if H + 1 = β then

(τ ∗u − τu) | (τ ∗u <∞)
P−→ 0 as u→∞.

Remark 4.1. In [28] a slightly more general class of Gaussian processes was considered.
Under the additional technical conditions [28, A1 and A3] similar results as in Theorem 3.1 and
Theorem 4.1 also hold for that class of Gaussian processes; the only difference is that in (4.1)
and (4.2) we shall have

√
var(XH (u1/β)) instead of uH/β and s0(u) (in their notation) instead

of t0.
We note that extensions of our result to Gaussian processes with random variance under

similar conditions as in [30] are also possible.

5. Proofs

This section is dedicated to the proofs of Theorems 2.1, 3.1, 4.1, and Corollary 3.2. We first
present a crucial lemma which can be seen as an extension of the celebrated Pickands’ lemma;
see, e.g. [37]–[39]. We refer to [13] for recent developments in this direction.

Let λ1, λ2 be two given positive constants. Consider a family of almost surely continuous
centred Gaussian random fields

{Xv(t, s), (t, s) ∈ [0, λ1] × [0, λ2]}
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indexed by v > 0. We shall assume that its variance equals 1 and the correlation functions
rv(t, s, t

′, s′) = cov(Xv(t, s), Xv(t
′, s′)), (t, s), (t ′, s′) ∈ [0, λ1] × [0, λ2], v > 0 satisfy the

following two conditions.

Condition 5.1. There exist constants D > 0, α ∈ (0, 2], and a positive function f (·) defined
in (0,∞) such that

lim
v→∞(f (v))2(1− rv(t, s, t

′, s′)) = D|s + t − s′ − t ′|α

holds for any (t, s), (t ′, s′) ∈ [0, λ1] × [0, λ2].
Condition 5.2. There exist constants C > 0, v0 > 0, γ ∈ (0, 2] such that for any v > v0 with
f (·) given in Condition 5.1,

(f (v))2(1− rv(t, s, t
′, s′)) ≤ C(|s − s′|γ + |t − t ′|γ )

holds uniformly with respect to (t, s), (t ′, s′) ∈ [0, λ1] × [0, λ2].
Lemma 5.1. Let {Xv(t, s), (t, s) ∈ [0, λ1]× [0, λ2]}, v > 0 be the family of centred Gaussian
random fields with variance equal to 1, defined above. If both Condition 5.1 and Condition 5.2
hold, then for any positive function θ(·) satisfying limv→∞ f (v)/θ(v) = 1, we have

P

{
sup

t∈[0,λ1]
inf

s∈[0,λ2]
Xv(t, s) > θ(v)

}

= Hα(D1/αλ1, D
1/αλ2)(1+ o(1))

1√
2πθ(v)

exp

(
− (θ(v))2

2

)
as u→∞,

where

Hα(λ1, λ2) = E

(
exp

(
sup

t∈[0,λ1]
inf

s∈[0,λ2]
(
√

2Bα(t + s)− (t + s)α)
))
∈ (0,∞).

Proof. Note that the sup-inf functional satisfies [13, Conditions F1 and F2]. The proof
follows by similar arguments as the proof of Lemma 1 therein, and, therefore, we omit the
technical details.

The next result plays an important role in the proof of Theorem 3.1; see [27] for its proof.

Lemma 5.2. Let {Z(t), t ≥ 0} be defined as in (2.1) and set v(u) = u1−H/β . If c > 0 and
β > H , then for any G > t0, we have

P{τu <∞} = P

{
sup

t∈[0,G]
(XH (t)− ctβ) > u

}
(1+ o(1))

= P

{
sup

t∈[t0−ln v(u)/v(u),t0+ln v(u)/v(u)]
Z(t) > v(u)

}
(1+ o(1)) as u→∞. (5.1)

Furthermore,

P

{
sup

|t−t0|>ln v(u)/v(u)

Z(t) > v(u)
}
= o

(
P

{
sup
t≥0

Z(t) > v(u)
})

as u→∞. (5.2)
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5.1. Proof of Theorem 2.1

We shall provide only the proof for the∞ > x2 > 0 > −x1 > −∞ case. The other cases
can be established by similar arguments. Since our approach is of an asymptotic nature, we
assume in the following that v is sufficiently large so that xi(v) > 0, i = 1, 2. Let S > 2λ be
any positive constant. With q = q(v) defined in (2.6), we denote


k = [kSq, (k + 1)Sq] for k ∈ Z, Ni(v) = �S−1xi(v)q−1v−1� for i = 1, 2,

where �·� is the ceiling function. For any small ε0 > 0, denote λ+ε0
= λ + ε0 and λ−ε0

=
max(0, λ− ε0). It follows by Bonferroni’s inequality that

N2(v)+1∑
k=−N1(v)−1

Q+k (v) ≥ P

{
sup

t∈	x1,x2 (v)

inf
s∈[0,λ(v)q]Z(t + s) > v

}

≥
N2(v)∑

k=−N1(v)

Q−k (v)−�1(v) (5.3)

for large enough u, where

Q+k (v) = P

{
sup
t∈
k

inf
s∈[0,λ−ε0 q]

Z(t0 + t + s) > v
}
, k ∈ Z,

Q−k (v) = P

{
sup
t∈
k

inf
s∈[0,λ+ε0 q]

Z(t0 + t + s) > v
}
, k ∈ Z,

and

�1(v) =
∑

−N1(v)≤k<l≤N2(v)

P

{
sup
t∈
k

inf
s∈[0,λ+ε0 q]

Z(t0 + t + s) > v,

sup
t∈
l

inf
s∈[0,λ+ε0 q]

Z(t0 + t + s) > v
}
.

Next, we shall derive upper bounds for Q+k (v) and lower bounds for Q−k (v). First, note that

Q+k (v) ≤ P

{
sup
t∈
k

inf
s∈[0,λ−ε0 q]

Z̄(t0 + t + s) >
v

σ+Z (k, v)

}
,

Q−k (v) ≥ P

{
sup
t∈
k

inf
s∈[0,λ+ε0 q]

Z̄(t0 + t + s) >
v

σ−Z (k, v)

}
,

where Z̄(t) := Z(t)/σZ(t), t ≥ 0 and

σ−Z (k, v) = inf
t∈
k

inf
s∈[0,λ+ε0 q]

σZ(t0 + t + s), σ+Z (k, v) = sup
t∈
k

sup
s∈[0,λ−ε0 q]

σZ(t0 + t + s).

Furthermore, since

σZ(t) = A− A2B

2
(t − t0)

2(1+ o(1)) as t → t0 (5.4)
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for any small ε1 > 0, there exists v0 such that for any v > v0 (where we set B± = B(1± ε1)),

1

σ−Z (k, v)
≤ 1

A
+ B+

2
(((k + 1)S + λ+ε0

)q)2,
1

σ+Z (k, v)
≥ 1

A
+ B−

2
(kSq)2

hold for k = 0, . . . , N2(v)+ 1, and also

1

σ−Z (k, v)
≤ 1

A
+ B+

2
(kSq)2,

1

σ+Z (k, v)
≥ 1

A
+ B−

2
(((k + 1)S + λ−ε0

)q)2

hold for k = −N1(v) − 1, . . . ,−1. Moreover, for any k = −N1(v) − 1, . . . , N2(v) + 1, set
Z̄k,v(t, s) = Z̄(t0 + kSq + tq + sq), (t, s) ∈ [0, S] × [0, λ+ε0

]. It follows from (2.4) that for
the correlation function rZ̄k,v

(·, ·, ·, ·) of Z̄k,v ,

lim
v→∞ 2v2(1− rZ̄k,v

(t, s, t ′, s′)) = Q|s + t − s′ − t ′|α

holds for any (t, s), (t ′, s′) ∈ [0, S] × [0, λ+ε0
]. Furthermore, for sufficiently large v,

2v2(1− rZ̄k,v
(t, s, t ′, s′)) ≤ G0

K2(q|s + t − s′ − t ′|)
K2(q)

for all (t, s), (t ′, s′) ∈ [0, S] × [0, λ+ε0
], with some positive constant G0. Set

Smax = max{|s + t − s′ − t ′| : (t, s), (t ′, s′) ∈ [0, S] × [0, λ+ε0
]}.

Using Potter bounds (cf. [20]) for any small δ > 0, we have, when v is sufficiently large,

K2(q|s + t − s′ − t ′|)
K2(q)

≤ G1 max(Sα−δ
max , Sα+δ

max )

( |s + t − s′ − t ′|
Smax

)α−δ

≤ G2(|t − t ′|α−δ + |s − s′|α−δ)

holds uniformly with respect to (t, s), (t ′, s′) ∈ [0, S]×[0, λ+ε0
], where G1, G2 are two positive

constants. Hence, by an application of Lemma 5.1, where we set

f (v) = v

A
, θk(v) =

(
1

A
+ B+

2
(((k + 1)S + λ+ε0

)q)2
)

v, D = Q

2A2 ,

we obtain, for any k = 0, . . . , N2(v)+ 1,

Qk(v) ≥ Hα(D0S, D0λ
+
ε0

)
1√

2πθk(v)
exp

(
− (θk(v))2

2

)
(1+ o(1)) as u→∞,

where D0 = D1/α = 2−1/αA−2/αQ1/α. Therefore, as v→∞ (set ζ(v) = v−2q−1e−v2/2A2
),

N2(v)∑
k=0

Qk(v) ≥ Hα(D0S, D0λ
+
ε0

)
A√
2πv

N2(v)∑
k=0

exp

(
− (θk(v))2

2

)
(1+ o(1))

= 1

S
Hα(D0S, D0λ

+
ε0

)
A√
2π

ζ(v)

∫ x2

0
exp

(
− B+

2A
x2

)
dx(1+ o(1)), (5.5)
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where we used the fact that

lim
v→∞ vq = lim

v→∞ vK←
(

1

v

)
= 0, lim

v→∞ x2(v)v−1/2 = 0.

Similarly, as v→∞,

−1∑
k=−N1(v)

Qk(v) ≥ 1

S
Hα(D0S, D0λ

+
ε0

)
A√
2π

ζ(v)

∫ 0

−x1

exp

(
− B+

2A
x2

)
dx(1+ o(1)). (5.6)

Furthermore, with the same arguments as above for any S1 > 2λ,

N2(v)+1∑
k=−N1(v)−1

Qk(v) ≤ 1

S1
Hα(D0S1, D0λ

−
ε0

)
A√
2π

ζ(v)

×
∫ x2

−x1

exp

(
− B−

2A
x2

)
dx(1+ o(1)). (5.7)

Consequently, (5.3) and (5.5)–(5.7) imply that (set ζ̄ (v) := D0A
3/2ζ(v)/

√
B+),

1

D0S1
Hα(D0S1, D0λ

−
ε0

)

(
�

((
B−

A

)1/2

x2

)
−�

(
−

(
B−

A

)1/2

x1

))

≥
lim supv→∞ P{supt∈	x1,x2 (v) infs∈[0,λ−ε0 q] Z(t + s) > v}

ζ̄ (v)

≥
lim supv→∞ P{supt∈	x1,x2 (v) infs∈[0,λ(v)q] Z(t + s) > v}

ζ̄ (v)

≥
lim infv→∞ P{supt∈	x1,x2 (v) infs∈[0,λ(v)q] Z(t + s) > v}

ζ̄ (v)

≥
lim infv→∞ P{supt∈	x1,x2 (v) infs∈[0,λ+ε0 q] Z(t + s) > v}

ζ̄ (v)
(5.8)

≥ 1

D0S
Hα(D0S, D0λ

+
ε0

)

(
�

((
B+

A

)1/2

x2

)
−�

(
−

(
B+

A

)1/2

x1

))

− lim supv→∞�1(v)

ζ̄ (v)
.

Moreover, since

�1(v) ≤
∑

−N1(v)≤k<l≤N2(v)

P

{
sup
t∈
k

Z(t0 + t) > v, sup
t∈
l

Z(t0 + t) > v
}
,

similar arguments as in the proof of [23, Equations (31) and (32)] imply that

limS→∞ lim supv→∞�1(v)

ζ̄ (v)
= 0.

Let us assume for the moment that

lim sup
S→∞

1

S
Hα(S, D0λ) > 0. (5.9)
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First, letting ε0, ε1 → 0 and then S, S1 →∞, we obtain from (5.8) and the definition of Hα ,

∞ > Hα ≥ lim inf
S→∞

1

S
Hα(S, D0λ) ≥ lim sup

S→∞
1

S
Hα(S, D0λ) > 0.

Furthermore, in light of (3.1) and (5.1), we have

P

{
sup
t≥0

Z(t) > v
}
= D0A

3/2B−1/2Hαζ(v)(1+ o(1)) as v→∞.

Therefore, the claim of Theorem 2.1 follows with Fα(λ) ∈ (0,∞).
Next, we prove (5.9). Define

Ev =
⋃
k

(
2k ∩	x1,x2(v)), N∗(v) = �{k ∈ Z : 
2k ∩	x1,x2(v) �= ∅}.

For any positive v,

P

{
sup

t∈	x1,x2 (v)

inf
s∈[0,λ+ε0 q]

Z(t, s) > v
}
≥ P

{
sup
t∈Ev

inf
s∈[0,λ+ε0 q]

Z(t, s) > v
}
. (5.10)

Using Bonferroni’s inequality and the same arguments as in the derivation of (5.5) yields

P

{
sup
t∈Ev

inf
s∈[0,λ+ε0 q]

Z(t, s) > v
}

≥ 1

2S
Hα(D0S, D0λ

+
ε0

)
A√
2π

ζ(v)

∫ x2

−x1

exp

(
− B+

2A
x2

)
dx −�2(v), (5.11)

where

�2(v) =
∑

k,l∈N∗(v),k>l

P

{
sup

t∈
2k

inf
s∈[0,λ+ε0 q]

Z(t0 + t + s) > v,

sup
t∈
2l

inf
s∈[0,λ+ε0 q]

Z(t0 + t + s) > v
}

≤
∑

k,l∈N∗(v),k>l

P

{
sup

t∈
2k

Z(t0 + t) > v, sup
t∈
2l

Z(t0 + t) > v
}
.

Similar arguments as in the proof of [23, Equation (32)] show that

lim supv→∞�2(v)

ζ̄ (v)
≤ G3S

∑
k≥1

exp(−G4(kS)α) (5.12)

for some positive constants G3, G4. Therefore, combining (5.8) and (5.10)–(5.12), we conclude
that

lim inf
S1→∞

1

S1
Hα(S1, D0λ) ≥ 1

S

(
1

2D0
Hα(D0S, D0λ)−G5S

2
∑
k≥1

exp(−G4(kS)α
)

),

with some positive constant G5. Since Hα(D0S, D0λ) is positive and increasing as S increases,
then for sufficiently large S, the right-hand side in the last equation is strictly positive, thus
implying (5.9). This completes the proof.
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5.2. Proof of Theorem 3.1

The proof is based on an application of Theorem 2.1. From (2.2), we have

P{τ ∗u <∞} = P

{
sup
t≥0

inf
s∈[0,Sv]

Z(t + s) > v
}

with
v = v(u) = u1−H/β, Sv = Sv(u) = Tuu

−1/β for u > 0.

Furthermore, (3.2) implies limv→∞ Sv/q = T ∈ [0,∞), and

�(v) ≤ P

{
sup
t≥0

inf
s∈[0,Sv]

Z(t + s) > v
}
≤ �(v)+�(v),

where

�(v) = P

{
sup

t∈[t0−ln v/v,t0+ln v/v]
inf

s∈[0,Sv]
Z(t + s) > v

}
, �(v) = P

{
sup

|t−t0|≥ln v/v

Z(t) > v
}
.

Taking x1(v) = x2(v) = ln v and λ(v) = Sv/q in Theorem 2.1, we conclude that

�(v) = Fα(D0T )

Hα

P{sup
t≥0

Z(t) > v}(1+ o(1))

= Fα(D0T )

Hα

P{τu <∞}(1+ o(1)) as u→∞.

Moreover, from (5.2) we have �(v) = o(�(v)) as u→∞, thus establishing the proof.

5.3. Proof of Corollary 3.2

For any u > 0, we have

P

{
sup
t≥0

inf
s∈[t,t+T ](XH (s)− csβ) > u

}
≤ P

{
sup
t≥0

(XH (s)− csβ) > u
}

= P{τu <∞}.
Furthermore, for any small positive ε ∈ (0, 2H +α− 2β), by the independence of T and XH ,

P

{
sup
t≥0

inf
s∈[t,t+T ](XH (s)− csβ) > u

}
≥ P

{
sup
t≥0

inf
s∈[t,t+T ](XH (s)− csβ) > u, T < u(2H+α−2β−ε)/αβ

}
≥ P

{
sup
t≥0

inf
s∈[t,t+u(2H+α−2β−ε)/αβ ]

(XH (s)− csβ) > u
}
P

{
T < u(2H+α−2β−ε)/αβ

}
.

Hence, the claim follows from Theorem 3.1 by letting u→∞.

5.4. Proof of Theorem 4.1

We use the same notation as in the proof of Theorem 3.1. For any x ∈ R and u > 0,

P{τ ∗u <∞}P
{ τ ∗u − t0u

1/β

A1/2B−1/2uH/β+1/β−1 ≤ x

∣∣∣ τ ∗u <∞
}

= P{τ ∗u ≤ t0u
1/β + A1/2B−1/2xuH/β+1/β−1}.
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Next, we focus on the asymptotics of

P

{
τ ∗u ≤ t0u

1/β + A1/2B−1/2xuH/β+1/β−1
}

= P

{
sup

t∈[0,t0u1/β+A1/2B−1/2xuH/β+1/β−1]
inf

s∈[t,t+Tu]
(XH (s)− csβ) > u

}

= P

{
sup

t∈[0,t0+A1/2B−1/2xv−1]
inf

s∈[0,Sv]
Z(t + s) > v

}
,

where

v = v(u) = u1−H/β, Sv = Sv(u) = Tuu
−1/β for u > 0.

Similarly to the proof of Theorem 3.1, we have

�0(v) ≤ P

{
sup

t∈[0,t0+A1/2B−1/2xv−1]
inf

s∈[0,Sv]
Z(t + s) > v

}
≤ �0(v)+�0(v),

where

�0(v) = P

{
sup

t∈[t0−ln v/v,t0+A1/2B−1/2xv−1]
inf

s∈[0,Sv]
Z(t + s) > v

}
,

�0(v) = P

{
sup

t∈[0,t0−ln v/v]
Z(t) > v

}
.

In light of Theorem 2.1 and (5.2), we conclude that

P{τ ∗u ≤ t0u
1/β + A1/2B−1/2xuH/β+1/β−1}

= (1+ o(1))
Fα(D0T )

Hα

P{τu <∞}�(x) as u→∞.

Therefore, the claim of (4.1) follows by applying Theorem 3.1. Moreover, as shown in [28,
Theorem 1],

τu − t0u
1/β

A1/2B−1/2uH/β+1/β−1

∣∣∣∣(τu <∞)
d−→ Ñ as u→∞,

with Ñ an N(0, 1) random variable. Consequently, by [23, Lemma 2.3], we have

(
τu − t0u

1/β

A1/2B−1/2uH/β+1/β−1 ,
τ ∗u − t0u

1/β

A1/2B−1/2uH/β+1/β−1

)∣∣∣∣(τ ∗u <∞)
d−→ (Ñ , Ñ ) as u→∞,

thus implying (4.2). This completes the proof.
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[15] Dȩbicki, K., Hashorva, E. and Ji, L. (2014). Tail asymptotics of supremum of certain Gaussian processes over

threshold dependent random intervals. Extremes 17, 411–429.
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702 K. DȨBICKI ET AL.

[32] Landriault, D., Renaud, J.-F. and Zhou, X. (2014). An insurance risk model with Parisian implementation
delays. Methodol. Comput. Appl. Prob. 16, 583–607.

[33] Loeffen, R., Czarna, I. and Palmowski, Z. (2013). Parisian ruin probability for spectrally negative Lévy
processes. Bernoulli 19, 599–609.

[34] Mandjes, M. (2007). Large Deviations for Gaussian Queues. John Wiley, Chichester.
[35] Michna, Z. (1998). Self-similar processes in collective risk theory. J. Appl. Math. Stoch. Analysis 11, 429–448.
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