Solution by J. W. Moon, University of Alberta, Edmonton

It is clear that $n \ge k+2$. We may suppose that G has some vertex x of valence at most k, for otherwise the result is certainly true. Then the graph obtained from G by removing x and its incident edges has n-1 vertices and more than $k(n-k)+\binom{k}{2}-k=k[(n-1)-k]+\binom{k}{2}$ edges. The result now follows immediately by induction, since it is trivially true when n=k+2.

Also solved by W.G. Brown and the proposer.

Editor's comment. The result is vacuously true for n = k, k + 1 since then no graph has as many edges as the problem requires; but as stated, it is false for n < k, the complete graph furnishing a counter-example.

 \underline{P} 90. Let $\log_s x$ be the log function iterated s times, and let m be the smallest positive integer such that $\log_4 m > 1$. Then show that the sum

$$\Sigma_{k=m}^{\infty} \frac{1}{k(\log k) (\log_2 k) (\log_3 k) (\log_4 k)^2}$$

is approximately 1 - correct to more than one million decimal places!

John D. Dixon, California Institute of Technology

Solution by S. Spital, California State Poly. College.

Since the series in question

$$S = \sum_{k=m}^{\infty} u(k) = \sum_{k=m}^{\infty} \frac{1}{k \log_{2} \log_{2} k \log_{3} k (\log_{4} k)^{2}}$$

is composed of positive decreasing terms, and since

$$\int_{m}^{\infty} u(t)dt = \int_{m}^{\infty} \frac{d(\log_4 t)}{(\log_4 t)^2} = \frac{1}{\log_4 m}$$

is convergent, the integral test demands that S be convergent and bounded by

$$\frac{1}{\log_4 m} < S < \frac{1}{\log_4 m} + u(m).$$

Defining $\log_4 t_0 = 1$ and recalling that m is an integer such that $\log_4 m > 1$, we can bound u(m):

Noting that $u(t) = -\frac{d}{dt} \left(\frac{1}{\log_4 t} \right)$ we use the mean value theorem to begin the bounding of $1/\log_4 m$:

$$\frac{1}{\log_4 t_0} - \frac{1}{\log_4 m} = (m-t_0)u(\tau), t_0 < \tau < m.$$

From the monotonicity of u, $u(t) < u(t_0)$ and since m is the smallest integer greater than t, $(m-t_0) < 1$; therefore

$$0 < 1 - \frac{1}{\log_A m} < u(t_0) < 10^{-1.5 \times 10^6}$$

or

$$1 - 10^{-1.5 \times 10^6} < \frac{1}{\log_4 m} < 1$$
.

Thus, combining the two bounds,

$$1 - 10^{-1.5 \times 10^6} < S < 1 + 10^{-1.5 \times 10^6}$$
.

Also solved by the proposer.