ADO-IWASAWA EXTRAS

DONALD W. BARNES

(Received 22 November 2003; revised 17 March 2004)

Communicated by E. A. O'Brien

Abstract

Let L be a finite-dimensional Lie algebra over the field F. The Ado-Iwasawa Theorem asserts the existence of a finite-dimensional L-module which gives a faithful representation ρ of L. Let S be a subnormal subalgebra of L, let $\mathfrak F$ be a saturated formation of soluble Lie algebras and suppose that $S \in \mathfrak F$. I show that there exists a module V with the extra property that it is $\mathfrak F$ -hypercentral as S-module. Further, there exists a module V which has this extra property simultaneously for every such S and S, along with the Hochschild extra that $\rho(x)$ is nilpotent for every $x \in L$ with $\operatorname{ad}(x)$ nilpotent. In particular, if L is supersoluble, then it has a faithful representation by upper triangular matrices.

2000 Mathematics subject classification: primary 17B30, 17B56; secondary 17B50, 17B55. Keywords and phrases: Lie algebras, faithful representations, saturated formations.

1. Introduction

Let L be a finite-dimensional Lie algebra over the field F, which may be of any characteristic. The Ado-Iwasawa Theorem asserts that there exists a faithful finite-dimensional L-module V. In this paper, I consider some extra properties which we may require of V and of the representation ρ given by V. Harish-Chandra [6] and Jacobson [9, Remark, page 203] have proved the characteristic 0 case with the extra property that $\rho(x)$ is nilpotent for all x in the nil radical N(L). Hochschild [7] proved, for any characteristic, that there is a module V with the stronger extra property that $\rho(x)$ is nilpotent for all $x \in L$ for which $\mathrm{ad}(x)$ is nilpotent.

The theory of saturated formations, set out in Barnes and Gastineau-Hills [5] and of \mathfrak{F} -hypercentral modules, set out in Barnes [1], provides a means of generalising this.

This work was done while the author was an Honorary Associate of the School of Mathematics and Statistics, University of Sydney.

^{© 2005} Australian Mathematical Society 1446-7887/05 \$A2.00 + 0.00

A saturated formation of soluble Lie algebras over F is a class \mathfrak{F} of finite-dimensional soluble Lie algebras over F such that

- (1) if $L \in \mathfrak{F}$ and $A \triangleleft L$, then $L/A \in \mathfrak{F}$;
- (2) if $A, B \triangleleft L$ and $L/A, L/B \in \mathfrak{F}$, then $L/(A \cap B) \in \mathfrak{F}$; and
- (3) if $L/\Phi(L) \in \mathfrak{F}$, then $L \in \mathfrak{F}$,

where $\Phi(L)$ is the Frattini subalgebra of L. An irreducible finite-dimensional L-module V is called \mathfrak{F} -central if the split extension of V by $L/\mathscr{C}_L(V)$ is in \mathfrak{F} , where $\mathscr{C}_L(V)$ denotes the centraliser of V in L. Otherwise, it is called \mathfrak{F} -excentric. An L-module V is called \mathfrak{F} -hypercentral if every composition factor of V is \mathfrak{F} -central. It is called \mathfrak{F} -hyperexcentric if every composition factor is \mathfrak{F} -excentric.

If S is an ideal of L, we write $S \triangleleft L$. A subalgebra S of L is called subnormal in L, written $S \triangleleft L$, if there exists a chain of subalgebras $S = S_0 \triangleleft S_1 \triangleleft \cdots \triangleleft S_r = L$, each an ideal in the next. Let S be a subnormal subalgebra of L. Any L-module V can be regarded as an S-module. To simplify terminology, we say that V is $S_{\mathfrak{F}}$ -hypercentral if it is \mathfrak{F} -hypercentral as S-module and $S_{\mathfrak{F}}$ -hyperexcentric if it is \mathfrak{F} -hyperexcentric as S-module.

For any field F, the class $\mathfrak N$ of nilpotent algebras is a saturated formation. If N is a nilpotent Lie algebra, an N-module V is $\mathfrak N$ -hypercentral if and only if every element of N acts nilpotently on V. Thus the Harish-Chandra extension of Ado's Theorem asserts, for a finite-dimensional Lie algebra L over a field of characteristic 0, that there exists a faithful, finite-dimensional L-module which is $\mathfrak N$ -hypercentral as N(L)-module, where N(L) denotes the nil radical of L. We shall generalise this to arbitrary saturated formations $\mathfrak F$, with arbitrary subnormal subalgebras $S \in \mathfrak F$ in place of N(L). A special case of some interest is that of the saturated formation $\mathfrak U$ of supersoluble Lie algebras, that is, of algebras all of whose chief factors are 1-dimensional.

An essential tool for this investigation is the following easy generalisation of Barnes [1, Theorem 4.4].

LEMMA 1.1. Let F be any field and let L be a Lie algebra over F. Let \mathfrak{F} be a saturated formation of soluble Lie algebras over F. Suppose $S \triangleleft L$ and that $S \in \mathfrak{F}$. Let V be a finite-dimensional L-module. Then V is the L-module direct sum $V = V_0 \oplus V_1$, where V_0 is $S\mathfrak{F}$ -hypercentral and V_1 is $S\mathfrak{F}$ -hyperexcentric.

PROOF. Since $S \triangleleft A$, there exists a chain of subalgebras $S = S_0 \triangleleft S_1 \triangleleft \cdots \triangleleft S_r = L$. By Barnes [1, Theorem 4.4], V has an S-module direct decomposition $V = V_0 \oplus V_1$ with V_0 \mathfrak{F} -hypercentral and V_1 \mathfrak{F} -hyperexcentric. We prove by induction over i that V_0 and V_1 are S_i -submodules of V.

Let W be any S_i -submodule of V. For $s \in S_i$, $x \in S_{i+1}$ and $w \in W$, we have $s(xw) = x(sw) + (sx)w \in xW + W$. Thus xW + W is also an S_i -submodule of V, and (xW + W)/W is a homomorphic image of W. If W is $S_{\mathfrak{F}}$ -hypercentral, then

so is x W + W. In particular, for $W = V_0$, this implies that $x V_0 \subseteq V_0$. Thus V_0 is invariant under the action of S_{i+1} and, by induction, under the action of L. Similarly, V_1 is invariant under the action of L.

Also of use are the following two lemmas proved in Hochschild [7] in the course of proving his main result.

LEMMA 1.2. Let F be any field and let L be a Lie algebra over F whose derived algebra L' is nilpotent. Suppose $x \in L$ and that ad(x) is nilpotent. Then x is in the nilpotent radical N(L).

LEMMA 1.3. Suppose $\operatorname{char}(F) = 0$. Let V be a finite-dimensional L-module giving representation ρ . Suppose N(L) acts nilpotently on V. Let $x \in L$ with $\operatorname{ad}(x)$ nilpotent. Then $\rho(x)$ is nilpotent.

If L is a soluble Lie algebra over a field F of characteristic 0, then L' is nilpotent. Every subalgebra of a nilpotent Lie algebra is subnormal, so $x \in N(L)$ implies that the subspace $\langle x \rangle$ spanned by x is a subnormal subalgebra of L. Even in non-zero characteristic, the following weak form of Lemma 1.2 holds.

LEMMA 1.4. Let L be a soluble Lie algebra over any field F. Suppose $x \in L$ and that ad(x) is nilpotent. Then $\langle x \rangle \triangleleft L$.

PROOF. Suppose the result holds for algebras of smaller dimension than L. Let A be a minimal ideal of L. Then $A_1 = \langle x \rangle + A \bowtie L$. But A is abelian and x acts nilpotently on A. Thus A_1 is nilpotent and $\langle x \rangle \bowtie A_1 \bowtie L$.

It follows that, for a module V giving representation ρ of a soluble Lie algebra L, the condition that $\rho(x)$ be nilpotent for all $x \in L$ with $\operatorname{ad}(x)$ nilpotent is equivalent to the condition that V be $S\mathfrak{N}$ -hypercentral for every nilpotent subnormal subalgebra S of L.

Suppose $S \bowtie L$ and that $S \in \mathfrak{F}$. A straightforward approach to proving the existence of a faithful finite-dimensional L-module which is $S\mathfrak{F}$ -hypercentral easily reduces to the case where L has a unique minimal ideal. We take a faithful finite-dimensional L-module V. By Lemma 1.1, this is the direct sum of an $S\mathfrak{F}$ -hypercentral L-module V_0 and an $S\mathfrak{F}$ -hyperexcentric L-module V_1 . One (at least) of these must be faithful. Unfortunately, it need not be V_0 . That this difficulty is a serious obstruction to the straightforward approach is shown by the results of Section 2.

2. Faithful F-hyperexcentric modules

To construct faithful \(\mathcal{F}\)-hyperexcentric modules, we will use tensor products. The following lemma will help to determine the kernel of a tensor product.

LEMMA 2.1. Let L be a Lie algebra over any field F. Suppose V, W are finitedimensional L-modules and that x is in the kernel of $V \otimes W$. Then there exists $\lambda \in F$ such that $xv = \lambda v$ and $xw = -\lambda w$ for all $v \in V$ and $w \in W$.

PROOF. Let v, w be any non-zero elements of V and W. Take bases $v = v_0, \ldots, v_m$ and $w = w_0, \ldots, w_n$ of V and W. Then $xv = \sum \lambda_i v_i$ and $xw = \sum \mu_j w_j$. Now $0 = x(v \otimes w) = \sum \lambda_i v_i \otimes w_0 + \sum \mu_j v_0 \otimes w_j$. Therefore $\lambda_i = 0$ for $i \neq 0$, $\mu_j = 0$ for $j \neq 0$ and $\lambda_0 + \mu_0 = 0$. Since every non-zero element of V is an eigenvector, λ_0 is independent of the choice of v.

COROLLARY 2.2. Suppose x is in the kernel of $(W \otimes V) \oplus (W \otimes V \otimes V)$. Then x is in the kernel of V.

PROOF. For $v \in V$ and $w \in W$, we have $xv = \lambda v$ and $xw = -\lambda w$. Then $x(w \otimes v \otimes v) = \lambda(w \otimes v \otimes v)$. Therefore $\lambda = 0$.

If char(F) = 0, then, by Barnes [2, Theorem 2], for some normal F-subspace Λ of the algebraic closure \bar{F} of F, \mathfrak{F} is the class of all soluble finite-dimensional Lie algebras S over F with the property that for all $x \in S$, the eigenvalues of $\mathrm{ad}(x)$ all lie in Λ . It follows that, if the degree of \bar{F} over F is finite, there exist Lie algebras L for which the smallest saturated formation \mathfrak{F} containing L is the formation of all soluble Lie algebras.

THEOREM 2.3. Let \mathfrak{F} be a saturated formation of soluble Lie algebras over the field F of characteristic 0. Suppose \mathfrak{F} is not the formation of all soluble Lie algebras. Let $S \in \mathfrak{F}$ be a non-nilpotent soluble subnormal subalgebra of L. Then L has a faithful, finite-dimensional $S\mathfrak{F}$ -hyperexcentric module giving representation ρ with $\rho(x)$ nilpotent for all $x \in L$ for which $\mathrm{ad}(x)$ is nilpotent.

PROOF. Let N = N(L) be the nil radical of L. By Lemma 1.3, the condition on an L-module V giving representation ρ that $\rho(x)$ be nilpotent for all $x \in L$ with $\mathrm{ad}(x)$ nilpotent is equivalent to V being $N\mathfrak{N}$ -hypercentral. By Hochschild [7], L has a faithful finite-dimensional $N\mathfrak{N}$ -hypercentral module V.

Let R be the soluble radical of L. Since R/N is abelian and $S \not\leq N$, there exists a maximal ideal $M \geq N$ of R not containing S. Since $LR \leq N$, $M \triangleleft L$. Let K be

the sum of M and a Levy factor of L. Then K is an ideal of L of codimension 1 and K + S = L.

Let \mathfrak{F} be the saturated formation given by the normal subspace Λ of \bar{F} . Then $\Lambda \neq \bar{F}$, so there exists $\alpha \in \bar{F} - \Lambda$. For the 1-dimensional Lie algebra $L/K = \langle \bar{x} \rangle$, we can construct an irreducible module W on which \bar{x} has α as an eigenvalue. Then the L-module W is $N\mathfrak{N}$ -hypercentral and $S\mathfrak{F}$ -excentric.

Let V_0 and V_1 be the $S\mathfrak{F}$ -hypercentral and $S\mathfrak{F}$ -hyperexcentric components of V. Put $V^* = (W \otimes V_0) \oplus (W \otimes V_0 \otimes V_0) \oplus V_1$. Then V^* is $N\mathfrak{N}$ -hypercentral and $S\mathfrak{F}$ -hyperexcentric by Barnes [1, Theorem 2.1] and [4, Theorem 2.3]. If x is in the kernel of V^* , then x is in the kernel of V_1 and of $(W \otimes V_0) \oplus (W \otimes V_0 \otimes V_0)$. By Corollary 2.2, x is also in the kernel of V_0 , so x = 0. Thus V^* is faithful. \square

The situation in non-zero characteristic is different. The Lie algebras of nilpotent length at most n form a saturated formation \mathfrak{N}^n . Thus it is not possible for the smallest saturated formation containing L to be the formation of all soluble Lie algebras. If $L \in \mathfrak{N}^n$, then every irreducible L-module is \mathfrak{N}^{n+1} -central. Thus L has no \mathfrak{N}^{n+1} -hyperexcentric modules. Even when \mathfrak{F} is the smallest saturated formation containing the non-nilpotent algebra L, there may not be \mathfrak{F} -hyperexcentric L-modules with the Hochschild property. For example, if $L = \langle x, y \rangle$ with xy = y and F is algebraically closed, any irreducible module on which y acts nilpotently is 1-dimensional and so \mathfrak{U} -central.

THEOREM 2.4. Suppose $char(F) \neq 0$. Let S be a soluble subnormal subalgebra of the Lie algebra L over F. Let \mathfrak{F} be the smallest saturated formation containing S. Then L has a faithful finite-dimensional $S\mathfrak{F}$ -hyperexcentric module.

PROOF. Let V be a faithful finite-dimensional L-module with V_0 and V_1 its $S_{\mathfrak{F}}^{\infty}$ -hypercentral and $S_{\mathfrak{F}}^{\infty}$ -hyperexcentric components. Let K be a minimal ideal of L. Let \mathfrak{F}_0 be the smallest saturated formation containing (S+K)/K. If $\mathfrak{F}_0=\mathfrak{F}$, then by induction, there exists an irreducible L/K-module W which is $(S+K/K)\mathfrak{F}$ -hyperexcentric. If not, then S is not nilpotent, and since, by Schenkman [10, Theorem 3], $S^{\infty} \triangleleft L$, we can take $K \subseteq S^{\infty}$. Since $S \triangleleft L$, the S-composition factors of K are isomorphic. As $S \notin \mathfrak{F}_0$, K is $S_{\mathfrak{F}_0}$ -hyperexcentric. Let \mathfrak{F}_1 be the saturated formation locally defined by \mathfrak{F}_0 , that is, the class of all soluble Lie algebras M with $M/N(M) \in \mathfrak{F}_0$. (See [5, Theorem 4.6].) Then $S \in \mathfrak{F}_1$. Since by Jacobson [9, Theorem VI.2, page 205], L has a faithful completely reducible module, there exists an irreducible L-module W on which K acts faithfully. The S-composition factors of W are all isomorphic. Thus K acts non-trivially on each S-composition factor W_i , $S/\mathscr{C}_S(W_i) \notin \mathfrak{F}_0$ and W is $S_{\mathfrak{F}_0}$ -hyperexcentric. Hence, in either case, we have an irreducible $S_{\mathfrak{F}_0}$ -hyperexcentric L-module W. Put $V^* = (W \otimes V_0) \oplus (W \otimes V_0 \otimes V_0) \oplus V_1$. Then V^* is $S_{\mathfrak{F}_0}$ -hyperexcentric. By Corollary 2.2, V^* is faithful.

3. Splitting algebras

To get around the difficulty pointed out above, we follow Iwasawa's use of a splitting module in the construction of the desired faithful module.

DEFINITION 3.1. Let A be an abelian ideal of the Lie algebra L. A splitting algebra for L relative to A is a Lie algebra M together with an abelian ideal B of M such that $L \leq M$, L + B = M, $L \cap B = A$ and such that M splits over B.

In the above, we can regard both A and B as L/A-modules. Choosing coset representatives in L for the elements of $\bar{L}=L/A$ by a linear map $u:\bar{L}\to L$, we can identify L with $\bar{L}\times A$, identifying (\bar{x},a) with the element $u(\bar{x})+a\in L$ for $\bar{x}\in\bar{L}$ and $a\in A$. We then have the multiplication given by

$$(\bar{x}_1, a_1)(\bar{x}_2, a_2) = (\bar{x}_1\bar{x}_2, \bar{x}_1a_2 - \bar{x}_2a_1 + f(\bar{x}_1, \bar{x}_2)),$$

where $f(\bar{x}_1, \bar{x}_2) = u(\bar{x}_1)u(\bar{x}_2) - u(\bar{x}_1\bar{x}_2)$. Then $f: \bar{L} \wedge \bar{L} \to A$ is a 2-cocycle. Let h be the cohomology class of f. Let $j^*: H^2(\bar{L}, A) \to H^2(\bar{L}, B)$ be the map induced by the module inclusion $j: A \to B$. Then M is the extension of B by \bar{L} constructed using the cocycle jf, that is, $M = \bar{L} \times B$ with multiplication given by

$$(\bar{x}_1, b_1)(\bar{x}_2, b_2) = (\bar{x}_1\bar{x}_2, \bar{x}_1b_2 - \bar{x}_2b_1 + f(\bar{x}_1, \bar{x}_2)),$$

for $\bar{x}_1, \bar{x}_2 \in \bar{L}$ and $b_1, b_2 \in B$. The requirement that M splits over B is equivalent to $j^*(h) = 0$.

Since the development of homological algebra, the existence of a splitting algebra has become a triviality. Any \bar{L} -module A has an embedding $j:A\to B$ in an injective module B and we then have $H^2(\bar{L},B)=0$. Except in the trivial case where $\bar{L}=0$, the splitting algebra so obtained is infinite-dimensional. The original existence proof constructed the module B from A and the universal enveloping algebra of \bar{L} , also giving an infinite-dimensional splitting algebra. In [8], Iwasawa modified this construction to obtain the following result which was the key to his proof of the Ado-Iwasawa Theorem.

THEOREM 3.2. Let A be an abelian ideal of the finite-dimensional Lie algebra L over any field F. Then there exists a finite-dimensional splitting algebra for L relative to A.

This result can be strengthened in the special case where we have a soluble subnormal subalgebra S of L with $S \in \mathfrak{F}$ for some saturated formation \mathfrak{F} of soluble Lie algebras. LEMMA 3.3. Let L be a Lie algebra over any field F. Suppose $S \triangleleft L$ and that $S \in \mathfrak{F}$ where \mathfrak{F} is a saturated formation of soluble Lie algebras. Let A be an abelian ideal of L which is $S\mathfrak{F}$ -hypercentral. Let h be the cohomology class of L as an extension of A. Then

- (1) there exists a finite-dimensional splitting algebra (M, B) for L relative to A with B $S_{\mathfrak{F}}$ -hypercentral;
- (2) there exists an embedding $j: A \to B$ of A in a finite-dimensional L/A-module B which is S\F3-hypercentral and such that $j^*(h) = 0$.

PROOF. The two assertions are equivalent. By Iwasawa's Theorem 3.2, there exists a finite-dimensional splitting algebra M with ideal B. For the L/A-module inclusion $j:A\to B$, we have $j^*(h)=0$. By Lemma 1.1, $B=B_1\oplus B_1'$ where B_1 is $S\mathfrak{F}$ -hypercentral and B_1' is $S\mathfrak{F}$ -hyperexcentric. As A is $S\mathfrak{F}$ -hypercentral, $j(A)\subseteq B_1$ and j is the composite of the inclusion $j_1:A\to B_1$ and the inclusion $i_1:B_1\to B$. As the induced map i_1^* of cohomology is injective, it follows that $j_1^*(h)=0$. Replacing B by B_1 gives the result.

The condition that A be $S\mathfrak{F}$ -hypercentral is automatically satisfied if $S \supseteq A$ or if A is central. As the results about splitting algebras will only be needed in the case where A is central, I simplify the statements by assuming this from here on.

We can iterate this reduction of the splitting module. If (S_2, \mathfrak{F}_2) is another pair satisfying the conditions of Lemma 3.3, we can decompose the above module $B_1 = B_2 \oplus B'_2$ where B_2 is $S_2\mathfrak{F}_2$ -hypercentral and B'_2 is $S_2\mathfrak{F}_2$ -hyperexcentric. This reduction process must terminate since B is finite-dimensional. We thus have

THEOREM 3.4. Let A be a central ideal of the finite-dimensional Lie algebra L over any field F. Then there exists a finite-dimensional splitting algebra (M, B) for L relative to A such that, for every saturated formation \mathfrak{F} and subnormal subalgebra $S \in \mathfrak{F}$, B is $S\mathfrak{F}$ -hypercentral.

4. The Hochschild extra

In this section, I show that, if A is central, then there exists a splitting algebra (M, B) as in Theorem 3.4 with the Hochschild extra property that, for all $x \in L$, if ad(x) is nilpotent, then so is the action $\psi(x)$ of x on B. For N = N(L) and the saturated formation $\mathfrak N$ of nilpotent algebras, by Theorem 3.4, we may suppose that B is $N\mathfrak N$ -hypercentral. Thus $\psi(x)$ is nilpotent for all $x \in N$. By Lemma 1.3, we now have

LEMMA 4.1. Let A be a central ideal of the finite-dimensional Lie algebra L over a field of characteristic 0. Then there exists a finite-dimensional splitting algebra (M, B) for L with respect to A which satisfies the extra conditions

- (1) B is $S\mathfrak{F}$ -hypercentral for every saturated formation \mathfrak{F} and every $S \bowtie L$ with $S \in \mathfrak{F}$;
- (2) the action $\psi(x)$ of x on B is nilpotent for every $x \in L$ with ad(x) nilpotent.

Now suppose char(F) = $p \neq 0$. Then L has a finite-dimensional p-envelope \bar{L} by Strade and Farnsteiner [11, Proposition 5.3, page 93]. The [p] operation may be chosen such that $z^{[p]} = 0$ for all z in the centre of \bar{L} . Let A be a central ideal of L. Then A is a central p-ideal of \bar{L} . If $S \bowtie L$, then $S \bowtie \bar{L}$. If B is a finite-dimensional p-module of \bar{L} which is a splitting module for \bar{L} , and so for L, with respect to A, then it follows as in the proof of Strade and Farnsteiner [11, Theorem 5.4, page 94], that the action $\psi(x)$ of x on B is nilpotent for every $x \in L$ with ad(x) nilpotent. The following lemma enables us to prove the existence of such a splitting module.

LEMMA 4.2. Let L be a restricted Lie algebra over the field F of characteristic p. Let V be an L-module of dimension n giving the representation ρ . Put $\alpha(x) = \rho(x)^p - \rho(x^{\lfloor p \rfloor})$. Then $V = V_{\lfloor p \rfloor} \oplus V_{\lfloor p' \rfloor}$, where $V_{\lfloor p \rfloor} = \bigcap_{x \in L} \ker \alpha(x)^n$ is a submodule, all of whose composition factors are p-representations, and $V_{\lfloor p' \rfloor} = \sum_{x \in L} \alpha(x)^n V$ is a submodule, none of whose composition factors are p-representations.

PROOF. Let x_1, \ldots, x_r be a basis of L. Put $\bar{V} = \bar{F} \otimes_F V$. We take the character decomposition $\bar{V} = \sum_i \bar{V}_i$ corresponding to the characters S_i with $S_0 = 0$. The only eigenvalue of $\alpha(x)$ on \bar{V}_i is $S_i(x)^p$. If this is non-zero, then $\alpha(x)$ acts invertibly on \bar{V}_i . For all $x \in \bar{L}$, $\alpha(x)^n \bar{V}_0 = 0$. For each i > 0, $S_i \neq 0$ so $S_i(x_{j_i}) \neq 0$ for some x_{j_i} . We thus have

$$\sum_{i>0} \bar{V}_i = \sum_{i>0} \alpha(x_{j_i})^n \bar{V} = \sum_j \alpha(x_j)^n \bar{V}.$$

It follows that

$$\bar{V}_0 = \bigcap_{x \in \bar{L}} \ker \alpha(x)^n = \bigcap_j \ker \alpha(x_j)^n.$$

The result follows by linearity.

THEOREM 4.3. Let A be a central ideal of the finite-dimensional Lie algebra L over any field F. Then there exists a finite-dimensional splitting algebra (M, B) for L with respect to A which satisfies the extra conditions

(1) B is $S\mathfrak{F}$ -hypercentral for every saturated formation \mathfrak{F} and every $S \bowtie L$ with $S \in \mathfrak{F}$;

(2) the action $\psi(x)$ of x on B is nilpotent for every $x \in L$ with ad(x) nilpotent.

PROOF. We already have the result if $\operatorname{char}(F) = 0$, so suppose $\operatorname{char}(F) = p \neq 0$. We embed L in a finite-dimensional p-envelope \bar{L} with $z^{[p]} = 0$ for all $z \in Z(\bar{L})$. By Iwasawa's Theorem 3.2, there exists a finite dimensional splitting module B for \bar{L} relative to A. Since A is a p-module, $A \subseteq B_{[p]}$, and it follows that $B_{[p]}$ is a splitting module with the property (2). Proceeding as in the proof of Theorem 3.4, we obtain a direct summand of $B_{[p]}$ which also has the property (1).

5. The main result

THEOREM 5.1. Let L be a finite-dimensional Lie algebra over any field F. Then L has a faithful finite-dimensional module V which has the extra properties

- (1) V is $S\mathfrak{F}$ -hypercentral for every saturated formation \mathfrak{F} and every $S \bowtie L$ with $S \in \mathfrak{F}$;
- (2) the action $\rho(x)$ of x on V is nilpotent for every $x \in L$ with ad(x) nilpotent.

PROOF. The representation of the 1-dimensional algebra by matrices $\begin{pmatrix} 0 & 0 \\ \lambda & 0 \end{pmatrix}$ with $\lambda \in F$ satisfies all the requirements. By induction, we may suppose that the result holds for algebras of smaller dimension than $\dim(L)$. If A_1 and A_2 are distinct minimal ideals of L, then there exist L/A_i -modules V_i which satisfy the requirements with respect to L/A_i . The L-module $V_1 \oplus V_2$ then has all the required properties. Thus we may suppose that L has a unique minimal ideal A.

Since L is an $S\mathfrak{F}$ -hypercentral module for every pair $S \in \mathfrak{F}$, L/Z has a faithful simultaneously $S\mathfrak{F}$ -hypercentral module, where Z is the centre of L. Thus the result holds if Z=0. Hence we may suppose that $Z \neq 0$ and is the unique minimal ideal of L. By Theorem 4.3, there exists a finite-dimensional splitting algebra (M, B) in which B and the representation ψ given by B have the properties (1) and (2). Let L_1 be a complement to B in M. Following Iwasawa, we put $V=\langle e \rangle \oplus B$ as vector space with action of M on V given by (x+b)e=b and (x+b)b'=xb', (the product of x and x and x in x in

$$(x_1+b_1)\big((x_2+b_2)(\lambda e,b')\big)=(x_1+b_1)(0,\lambda b_2+x_2b')=\big(0,\lambda x_1b_2+x_1(x_2b')\big).$$

Denoting the commutator of the actions of $(x_1 + b_1)$ and $(x_2 + b_2)$ on V by $[x_1 + b_1, x_2 + b_2]$, we have

$$[x_1 + b_1, x_2 + b_2](\lambda e, b') = (0, \lambda x_1 b_2 - \lambda x_2 b_1 + (x_1 x_2) b')$$

= $(x_1 x_2 + x_1 b_2 - x_2 b_1)(\lambda e, b')$
= $((x_1 + b_1)(x_2 + b_2))(\lambda e, b')$.

Thus this action makes V an M-module which is clearly finite-dimensional. As L is a subalgebra of M, V is an L-module. As the unique minimal ideal of L is contained in B which is clearly represented faithfully, V is a faithful L-module. B is a submodule of V and is $S\mathfrak{F}$ -hypercentral while V/B is the trivial module. Thus V is $S\mathfrak{F}$ -hypercentral for every pair (S,\mathfrak{F}) . As $\rho(x)V\subseteq B$ for all $x\in L$, if $\psi(x)$ is nilpotent on B, then $\rho(x)$ is nilpotent on V.

6. \mathfrak{F} -hypercentrality of p-modules

Comparison of Lemma 1.1 and Lemma 4.2 suggests a possible link between p-modules and \mathfrak{F} -hypercentral modules which would make the non-zero characteristic case of Theorem 5.1 an immediate consequence of Strade and Farnsteiner [11, Theorem 5.4, page 94].

In the following, F is a field of characteristic $p \neq 0$, \mathbb{F}_p denotes the field of p elements and \bar{F} the algebraic closure of F. A polynomial f(x) over \bar{F} is called \mathbb{F}_p -linear if the function $f: \bar{F} \to \bar{F}$ given by f(x) is \mathbb{F}_p -linear. Note that to prove a polynomial f(x) to be \mathbb{F}_p -linear, it is sufficient to prove f(a+b) = f(a) + f(b) for all $a, b \in \bar{F}$, as then $f(x) = \lambda f(a)$ for $\lambda \in \mathbb{F}_p$ follows. Note also that a polynomial of the form $f(x) = a_0x + a_1x^p + a_2x^{p^2} + \cdots + a_nx^{p^n}$ is \mathbb{F}_p -linear.

LEMMA 6.1. If f(x) is \mathbb{F}_p -linear, then all roots of f(x) have the same multiplicity.

PROOF. Let $\alpha_1, \ldots, \alpha_n$ be the (not necessarily distinct) roots of f(x). Then $f(x) = a \prod_{i=1}^{n} (x - \alpha_i)$. For any root β ,

$$f(x) = f(x) + f(\beta) = f(x+\beta) = a \prod_{i=1}^{n} (x+\beta - \alpha_i).$$

Thus $(x - \alpha_i)$ and $(x + \beta - \alpha_i)$ occur as factors of f(x) with the same multiplicity. But every root α_i is $\alpha_i - \beta$ for some root β .

LEMMA 6.2. Suppose f(x) is \mathbb{F}_p -linear and that the coefficient of x in f(x) is not zero. Then all roots of f(x) are simple.

PROOF. Since f(0) = 0, there is no constant term. If the roots have multiplicity r, then $f(x) = g(x)^r$ and the lowest term of f(x) has degree at least r. Hence r = 1.

LEMMA 6.3. Let f(x) be an \mathbb{F}_p -linear polynomial. Then f(x) has the form

$$f(x) = a_0x + a_1x^p + a_2x^{p^2} + \dots + a_nx^{p^n}.$$

PROOF. We use induction over the degree of f(x). The result holds if the degree is 1. By replacing f(x) with f(x) + x if necessary, we may suppose that all roots of f(x) are simple. The roots of f(x) form a vector space V of some finite dimension n over \mathbb{F}_p . The number of roots is p^n and as all roots are simple, the degree of f(x) is p^n . If the leading coefficient is a, then $g(x) = f(x) - ax^{p^n}$ is \mathbb{F}_p -linear of lower degree. Therefore g(x) has the asserted form and the result follows.

THEOREM 6.4. Let (L, [p]) be a restricted Lie algebra over the field F of characteristic $p \neq 0$ and suppose that $z^{\{p\}} = 0$ for all z in the centre of L. Let \mathfrak{F} be a saturated formation and suppose $S \triangleleft L$, $S \neq 0$ and $S \in \mathfrak{F}$. Let V be an irreducible p-module of L. Then V is $S\mathfrak{F}$ -hypercentral.

PROOF. Let L, S, V be a counterexample with L of least possible dimension. We now choose V such that the kernel K of the representation ρ of L on V has the least possible codimension. Let Z=Z(L) be the centre of L. Suppose $Z\neq 0$. Then Z acts nilpotently on V and as V is irreducible, ZV=0. But Z is a p-ideal of L, so V is an irreducible p-module for the restricted Lie algebra L/Z. As V is $(S+Z/Z)\mathfrak{F}$ -hyperexcentric, L/Z must have a central element \bar{z} with $\bar{z}^{(p)}\neq 0$, that is, we have $z\in L$ with $\mathrm{ad}(z)^2=0$ and $z^{(p)}\notin Z$. Therefore Z=0.

If $A \triangleleft B < L$, then the *p*-closure $A_p \triangleleft B_p$ by Strade and Farnsteiner [11, Proposition 1.3, page 66]. Therefore $S_p \bowtie L$. If $S_p \neq L$, then there exists a *p*-ideal *M* such that $S_p \leq M < L$. If $z \in Z(M)$, then $\mathrm{ad}(z)^2 = 0$, so $z^{[p]} \in Z(L) = 0$. Thus M, S and any *M*-composition factor of *V* form a counterexample. Therefore $S_p = L, L$ is soluble and $S \triangleleft L$.

Let A be a minimal ideal of S. Since $L = S_p$, $A \triangleleft L$. If $a \in A$, then $ad(a)^2 = 0$, so $a^{[p]} \in Z$. But Z = 0. Thus A is a p-ideal and AV = 0 since V is an irreducible p-module. There exists an element z such that $zL \le A$, but $z^{[p]} \notin A$. As Z = 0, we cannot have zA = 0, so z acts invertibly on A. By Barnes [3, Theorem 2.2], $H^n(L/A; A) = 0$ for all n and there exists a subalgebra M < L which complements A. If $x \in Z(M)$ and xA = 0, then $x \in Z(L) = 0$. Thus $Z(M) \simeq Z(L/A)$ acts faithfully on A.

There exists a p-mapping [p]' on L/A which is zero on $\bar{Z} = Z(L/A)$. For any $\bar{x} \in \bar{L} = L/A$, $\bar{x}^{[p]} - \bar{x}^{[p]'} \in \bar{Z}$. Thus any representation of \bar{L} whose kernel contains \bar{Z} which is a p-representation with respect to [p] is also a p-representation with respect to [p]'. If $\bar{Z} \subseteq \bar{K} = K/A$, then $(\bar{L}, [p]')$, \bar{S} , V is a counterexample of smaller dimension. Therefore $\bar{Z} \not\subseteq \bar{K}$.

Take $\bar{z} \in \bar{Z}$, $\bar{z} \notin \bar{K}$. Since \bar{z} is not nilpotent on V, for all $r, \bar{z}^{[p]'} \notin \bar{K}$. By replacing \bar{z} with $\bar{z}^{[p]'}$ for some r, we obtain $\bar{z} \in \langle \bar{z}^{[p]}, \bar{z}^{[p]^2}, \bar{z}^{[p]^3}, \ldots \rangle$. Put $\bar{T} = \langle \bar{z}, \bar{z}^{[p]}, \bar{z}^{[p]^2}, \ldots \rangle$. Let $\psi : A \to A$ be the linear transformation of A given by \bar{z} .

Let $r = \dim(\bar{T})$. Then there exists a polynomial $f(x) = x^{p'} + a_1 x^{p'^{-1}} + \cdots + a_r x^{p'}$

over F such that $f(\psi) = 0$. Note that the roots of f(x) in the algebraic closure \overline{F} are distinct and form a vector space Λ of dimension r over the prime field \mathbb{F}_p of p elements. Let Λ_0 be the \mathbb{F}_p -subspace of \overline{F} spanned by the eigenvalues of ψ . Let m(x) be the minimum polynomial of ψ and $\alpha_1, \ldots, \alpha_n$ its roots. Then $\Lambda_0 = \langle \alpha_1, \ldots, \alpha_n \rangle_{\mathbb{F}_p} \subseteq \Lambda$. Let $s = \dim \Lambda_0$.

Put $g(x) = \prod_{\lambda \in \Lambda_0} (x - \lambda)$. Then g(x) has degree p^s . Take any $a \in \bar{F}$ and set $h_a(x) = g(x + a) - g(x) - g(a)$. Since $g(x) = x^{p^s}$ + terms of lower degree, $g(x + a) = (x + a)^{p^s}$ + lower degree terms $= x^{p^s}$ + terms of lower degree in x and so $h_a(x)$ is a polynomial of degree less than p^s . If a is a root of g(x), then so is $\lambda + a$ for all $\lambda \in \Lambda_0$ and $h_a(\lambda) = 0$. Thus $h_a(x)$ has at least p^s roots and so must be the zero polynomial. Hence g(x + a) = g(x) + g(a) if g(a) = 0. Now consider general a. For $\lambda \in \Lambda_0$, $g(a + \lambda) = g(a) + g(\lambda)$, so $h_a(\lambda) = g(a + \lambda) - g(\lambda) - g(a) = 0$, so again $h_a(x)$ has at least p^s roots and must be the zero polynomial. Thus g(x) is \mathbb{F}_p -linear. Note also that every automorphism of \bar{F} which fixes F pointwise fixes g(x) which is therefore a polynomial over F since $F(\Lambda)$ is a separable extension of F.

Now f(x) is the \mathbb{F}_p -linear polynomial over F of least degree for which $f(\psi) = 0$. But $g(\psi) = 0$, so $s \ge r$. But Λ_0 is an s-dimensional subspace of the r-dimensional space Λ . Therefore $\Lambda_0 = \Lambda$.

We now consider the linear transformation $\rho(z): V \to V$. Since ρ is a prepresentation, $f(\rho(z)) = 0$. Thus if μ is an eigenvalue of $\rho(z)$, then $\mu \in \Lambda = \Lambda_0$. Thus $\mu = \alpha_1 + \cdots + \alpha_k$ for some eigenvalues α_i (not necessarily distinct) of ψ . Let W be the L-module $Hom(A^{\otimes k}, V)$ and let θ be the representation given by W. Then 0 is an eigenvalue of $\theta(z)$.

Since A is $S_{\mathfrak{F}}$ -hypercentral and V is $S_{\mathfrak{F}}$ -hyperexcentric, we have by Barnes [1, Theorem 2.1] and [4, Theorem 2.3], that W is $S_{\mathfrak{F}}$ -hyperexcentric. But for some composition factor W_0 of W, the action of z on W_0 has 0 as an eigenvalue. Thus z is in the kernel of the representation of L on W_0 , contrary to the choice of V as giving a representation with kernel of least possible codimension.

Any Lie algebra L over a field of characteristic p can be embedded as an ideal in a restricted Lie algebra $(\bar{L}, [p])$ with $z^{[p]} = 0$ for all z in the centre of \bar{L} . By Strade and Farnsteiner [11, Theorem 5.4, page 94], \bar{L} has a faithful finite-dimensional p-module. As $S \bowtie L$ implies $S \bowtie \bar{L}$, the characteristic p case of Theorem 5.1 follows by Theorem 6.4.

7. Special cases

We now consider the significance of Theorem 5.1 for supersoluble algebras. A Lie algebra S is supersoluble if it has a sequence $0 = A_0 < A_1 < \cdots < A_n = S$ of ideals of S with A_i/A_{i-1} of dimension 1 for all i. Let \mathfrak{U} be the saturated formation

of supersoluble algebras. An S-module V is \mathfrak{U} -hypercentral if it has a composition series with all quotients 1-dimensional.

THEOREM 7.1. Let L be a finite-dimensional Lie algebra over any field F and let $S \triangleleft L$ be supersoluble. Then L has a faithful finite-dimensional representation in which S is represented by upper triangular matrices.

PROOF. By Theorem 5.1, L has a faithful $S\mathfrak{U}$ -hypercentral module V. It follows that S fixes a flag in V and for suitable choice of basis, is represented by upper triangular matrices.

If $S_i \bowtie L$ are supersoluble, then by Theorem 5.1, there exists a faithful L-module V which is simultaneously $S_i \mathfrak{U}$ -hypercentral. It does not follow in general that all S_i simultaneously can be represented by upper triangular matrices. Each S_i fixes some flag but there need not be any flag fixed by them all. However this does hold in characteristic 0.

LEMMA 7.2. Let L be a Lie algebra over a field F of characteristic 0 and let \mathfrak{F} be a saturated formation. Let $\{S_i \mid i \in I\}$ be the set of all subnormal subalgebras $S_i \bowtie L$ which are in \mathfrak{F} . Put $S = \sum_{i \in I} S_i$. Then $S \triangleleft L$ and $S \in \mathfrak{F}$.

PROOF. Let R be the radical of L. Then LR is a nilpotent ideal of R. Since $\mathfrak{N} \subseteq \mathfrak{F}$, $LR \in \mathfrak{F}$. Since S_i is soluble and $S_i \bowtie L$, $S_i \leq R$.

Let S_1 be any ideal of L which is in \mathfrak{F} and contains LR. Let S_2 be any subnormal subalgebra of L which is in \mathfrak{F} . Then $S_1 + S_2 \triangleleft L$. We have to prove $S_1 + S_2 \in \mathfrak{F}$. The result then follows.

By Barnes [2, Theorem 2], for some normal F-subspace Λ of the algebraic closure \overline{F} of F, \mathfrak{F} is the class of all soluble finite-dimensional Lie algebras S over F with the property that for all $x \in S$, the eigenvalues of $\operatorname{ad}(x)$ all lie in Λ .

We may suppose $L = S_1 + S_2$. Then L is soluble. Consider any chief factor V of L. Then L' is in the kernel of the representation ρ of L on V. We have a set $\rho(S_1) \cup \rho(S_2)$ of commuting linear transformations of V, all of whose eigenvalues lie in Λ . They therefore fix a flag in $\bar{F} \otimes V$. For $s_1 \in S_1$ and $s_2 \in S_2$, it follows that the eigenvalues of $\rho(s_1 + s_2)$ are sums of an eigenvalue of $\rho(s_1)$ and an eigenvalue of s_2 , thus all in Λ .

COROLLARY 7.3. Let L be a finite-dimensional Lie algebra over a field F of characteristic 0. Then L has a faithful finite-dimensional representation in which every supersoluble subnormal subalgebra of L is represented by upper triangular matrices.

PROOF. By Lemma 7.2, there exists a supersoluble ideal S of L which contains every supersoluble subnormal subalgebra. Let V be a faithful SU-hypercentral L-module. A flag in V fixed by S is fixed by every supersoluble subnormal subalgebra. \square

EXAMPLE 7.4. Lemma 7.2 and Corollary, 7.3 do not hold in characteristic p. Let $V = \langle v_0, \ldots, v_{p-1} \rangle$ where the subscripts are integers mod p and let $L = \langle x, y, z, V \rangle$ with multiplication given by xy = z, $xz = yz = v_iv_j = 0$, $xv_i = iv_{i-1}$, $yv_i = v_{i+1}$ and $zv_i = v_i$. Then $S_1 = \langle x, z, V \rangle$ and $S_2 = \langle y, z, V \rangle$ are supersoluble ideals of L but $S_1 + S_2$ is not supersoluble. A representation with both S_1 and S_2 upper triangular would have $S_1 + S_2$ upper triangular, which would imply $S_1 + S_2$ supersoluble.

Over the field \mathbb{R} of real numbers, there is another saturated formation, \mathfrak{I} consisting of those soluble Lie algebras S such that, for all $s \in S$, all eigenvalues of ad(s) are pure imaginary.

THEOREM 7.5. Suppose $S \in \mathcal{I}$ is an ideal of the finite-dimensional Lie algebra L over \mathbb{R} . Then L has a faithful finite-dimensional representation in which S is represented by matrices which are block upper triangular, and with the diagonal blocks either 0 or of the form $\begin{pmatrix} 0 & r & 0 \\ -r & 0 & 0 \end{pmatrix}$ for some $r \in \mathbb{R}$.

PROOF. For any soluble Lie algebra S over a field of characteristic 0, the derived subalgebra S' is in the kernel of any irreducible representation. Let V be an \mathfrak{I} -central irreducible module for S and suppose $s_1 \in S$ acts non-trivially. Let $s_2 \in S$. The actions of s_1 and s_2 commute, so in the complexification of V, they have a common eigenvector. Since the eigenvalues are pure imaginary, for some $r \in \mathbb{R}$, $s_2 - rs_1$ has an eigenvalue 0, thus an eigenvector in V. These eigenvectors form a submodule, so by the irreducibility of V, $s_2 - rs_1$ acts trivially. It follows that the kernel of the representation has codimension 1 and that V is 2-dimensional with the action of s_1 given by $\binom{0}{-r}\binom{r}{0}$ for some $r \in \mathbb{R}$. The result follows.

References

- [1] D. W. Barnes, 'On F-hypercentral modules for Lie algebras', Arch. Math. 30 (1978), 1-7.
- [2] ——, 'Saturated formations of soluble Lie algebras in characteristic 0', Arch. Math. 30 (1978), 477–480.
- [3] —, 'Finitely sorting Lie algebras', J. Austral. Math. Soc. 49 (1990), 354–363.
- [4] ——, 'On \(\frac{3}{5}\)-hyperexcentric modules for Lie algebras', J. Austral. Math. Soc. 74 (2003), 235–238.
- [5] D. W. Barnes and H. M. Gastineau-Hills, 'On the theory of soluble Lie algebras', Math. Z. 106 (1968), 343-354.
- [6] Harish-Chandra, 'Faithful representations of Lie algebras', Ann. of Math. (2) 50 (1949), 68-76.
- [7] G. Hochschild, 'An addition to Ado's Theorem', Proc. Amer. Math. Soc. 17 (1966), 531-533.

- [8] K. Iwasawa, 'On the representation of Lie algebras', Japan J. Math. 19 (1948), 405-426.
- [9] N. Jacobson, Lie algebras (Interscience, New York, 1962).
- [10] E. Schenkman, 'A theory of subinvariant Lie algebras', Amer. J. Math. 73 (1951), 453-474.
- [11] H. Strade and R. Farnsteiner, Modular Lie algebras and their representations (Marcel Dekker, New York, 1988).

1 Little Wonga Road Cremorne NSW 2090 Australia e-mail: donwb@iprimus.com.au