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Abstract

Let L be a finite-dimensional Lie algebra over the field F. The Ado-Iwasawa Theorem asserts the
existence of a finite-dimensional L-module which gives a faithful representation p of L. Let 5 be a
subnormal subalgebra of L, let 5 be a saturated formation of soluble Lie algebras and suppose that 5 € ff.
1 show that there exists a module V with the extra property that it is 3-hypercentral as 5-module. Further,
there exists a module V which has this extra property simultaneously for every such 5 and 3, along with
the Hochschild extra that p(x) is nilpotent for every x € L with ad(x) nilpotent. In particular, if L is
supersoluble, then it has a faithful representation by upper triangular matrices.

2000 Mathematics subject classification: primary 17B30,17B56; secondary 17B50,17B55.
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1. Introduction

Let L be a finite-dimensional Lie algebra over the field F, which may be of any
characteristic. The Ado-Iwasawa Theorem asserts that there exists a faithful finite-
dimensional L-module V. In this paper, I consider some extra properties which we
may require of V and of the representation p given by V. Harish-Chandra [6] and
Jacobson [9, Remark, page 203] have proved the characteristic 0 case with the extra
property that p(x) is nilpotent for all x in the nil radical N(L). Hochschild [7] proved,
for any characteristic, that there is a module V with the stronger extra property that
p(x) is nilpotent for all x e L for which ad(x) is nilpotent.

The theory of saturated formations, set out in Barnes and Gastineau-Hills [5] and of
^-hypercentral modules, set out in Barnes [1], provides a means of generalising this.
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408 Donald W. Barnes [2]

A saturated formation of soluble Lie algebras over F is a class # of finite-dimensional
soluble Lie algebras over F such that

(1) ifL e#andA<L, thenL/A e £;
(2) if A, B < L and L/A, L/B e tf, then L/(A n B) e £; and
(3) if L/<D(L) e&thenL e $,

where O(L) is the Frattini subalgebra of L. An irreducible finite-dimensional L-
module V is called ^-central if the split extension of V by L /^ t ( V) is in $, where
^(V) denotes the centraliser of V in L. Otherwise, it is called ^-excentric. An
L-module V is called J-hypercentral if every composition factor of V is ^-central, it
is called ^-hyperexcentric if every composition factor is 5-excentric.

If 5 is an ideal of L, we write S<L. A subalgebra 5 of L is called subnormal in L,
written 5<w L, if there exists a chain of subalgebras S = SQ < S\ < • • • < Sr = L, each
an ideal in the next. Let 5 be a subnormal subalgebra of L. Any L-module V can be
regarded as an 5-module. To simplify terminology, we say that V is SJ-hypercentral
if it is 3"-hypercentral as 5-module and 5#-hyperexcentric if it is 3-hyperexcentric as
5-module.

For any field F, the class 9t of nilpotent algebras is a saturated formation. If N is a
nilpotent Lie algebra, an Af-module V is 9t-hypercentral if and only if every element
of N acts nilpotently on V. Thus the Harish-Chandra extension of Ado's Theorem
asserts, for a finite-dimensional Lie algebra L over a field of characteristic 0, that
there exists a faithful, finite-dimensional L-module which is ̂ t-hypercentral as N(L)-
module, where N(L) denotes the nil radical of L. We shall generalise this to arbitrary
saturated formations 5. with arbitrary subnormal subalgebras 5 6 $ in place of N(L).
A special case of some interest is that of the saturated formation il of supersoluble Lie
algebras, that is, of algebras all of whose chief factors are 1-dimensional.

An essential tool for this investigation is the following easy generalisation of Barnes
[1, Theorem 4.4].

LEMMA 1.1. Let F be any field and let L be a Lie algebra over F. Let 5 be
a saturated formation of soluble Lie algebras over F. Suppose 5 « L and that
5 6 5- Let V be a finite-dimensional L-module. Then V is the L-module direct sum
V = VQ © Vi, where VQ is Sfi-hypercentral and V\ is S^-hyperexcentric.

PROOF. Since 5<w L, there exists a chain of subalgebras 5 = 50 < S\ < • • • < Sr = L.
By Bames [1, Theorem 4.4], V has an 5-module direct decomposition V = Vo © Vj
with Vo 5-hypercentral and Vi ^-hyperexcentric. We prove by induction over j that
Vo and Vj are 5,-submodules of V.

Let W be any 5,-submodule of V. For s e 5,, x e Si+i and w e W, we have
s(xw) = x(sw) + (sx)w 6 x W + W. Thus x W + W is also an 5,-submodule of
V, and (xW + W)/ W is a homomorphic image of W. If W is 55-hypercentral, then
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[3] Ado-Iwasawa extras 409

so is x W + W. In particular, for W = Vo, this implies that x Vo c Vo. Thus Vo is
invariant under the action of S,+i and, by induction, under the action of L. Similarly,
V\ is invariant under the action of L. •

Also of use are the following two lemmas proved in Hochschild [7] in the course
of proving his main result.

LEMMA 1.2. Let F be any field and let L be a Lie algebra over F whose derived
algebra L' is nilpotent. Suppose x e L and that ad(x) is nilpotent. Then x is in the
nilpotent radical N(L).

LEMMA 1.3. Suppose char(F) = 0. Let Vbe a finite-dimensional L-module giving
representation p. Suppose N (L) acts nilpotently on V. Letx e L with ad(jc) nilpotent.
Then p(x) is nilpotent.

If L is a soluble Lie algebra over a field F of characteristic 0, then L' is nilpotent.
Every subalgebra of a nilpotent Lie algebra is subnormal, so x e N(L) implies that
the subspace (x) spanned by x is a subnormal subalgebra of L. Even in non-zero
characteristic, the following weak form of Lemma 1.2 holds.

LEMMA 1.4. Let L be a soluble Lie algebra over any field F. Suppose x e L and
that ad(x) is nilpotent. Then {x)«i L.

PROOF. Suppose the result holds for algebras of smaller dimension than L. Let
A be a minimal ideal of L. Then Ax = {x} + A« L. But A is abelian and x acts
nilpotently on A. Thus At is nilpotent and {x)«A\«i L. •

It follows that, for a module V giving representation p of a soluble Lie algebra L,
the condition that p(x) be nilpotent for all x e L with ad(x) nilpotent is equivalent to
the condition that V be S^t-hypercentral for every nilpotent subnormal subalgebra S
ofL.

Suppose 5«i L and that S € $. A straightforward approach to proving the existence
of a faithful finite-dimensional L-module which is S^-hypercentral easily reduces to
the case where L has a unique minimal ideal. We take a faithful finite-dimensional
L-module V. By Lemma 1.1, this is the direct sum of an Stf-hypercentral L-module
Vo and an SS-hyperexcentric L-module Vi. One (at least) of these must be faithful.
Unfortunately, it need not be Vo- That this difficulty is a serious obstruction to the
straightforward approach is shown by the results of Section 2.
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410 Donald W. Barnes [4]

2. Faithful J-hyperexcentric modules

To construct faithful ^-hyperexcentric modules, we will use tensor products. The
following lemma will help to determine the kernel of a tensor product.

LEMMA 2.1. Let L be a Lie algebra over any field F. Suppose V, W are finite-
dimensional L-modules and that x is in the kernel of V <8> W. Then there exists k € F
such thatxv = kv and xw = —kw for all v e V and w 6 W.

PROOF. Let v, w be any non-zero elements of V and W. Take bases v = v0,..., vm

and w = w0, ..., wn of V and W. Then xv = £A.,v, and xw — ^2HJWJ. Now
0 = x(v <g> w) = £ ^-ivt ® ^o + X] My uo ® W; • Therefore A., = 0 for i ^0, fj,j = 0
fory 5«̂  0 and A.o + Mo = 0. Since every non-zero element of V is an eigenvector, A.o
is independent of the choice of v. •

COROLLARY 2.2. Supposex is in the kernel of(W® V) 0 (W<g> V ® V). 77ie« JC
« m ffte kernel of V.

PROOF. For v e V and iu e W, we have xv = kv and xiu = — kw. Then
;c(tu <8> v <8) u) = X(u> ig) u ® v). Therefore k = 0. •

If char(F) = 0, then, by Barnes [2, Theorem 2], for some normal F-subspace A
of the algebraic closure F of F, $ is the class of all soluble finite-dimensional Lie
algebras S over F with the property that for all x e S, the eigenvalues of ad(x) all lie
in A. It follows that, if the degree of F over F is finite, there exist Lie algebras L for
which the smallest saturated formation 5 containing L is the formation of all soluble
Lie algebras.

THEOREM 2.3. Let $bea saturated formation of soluble Lie algebras over the field
F of characteristic 0. Suppose $ is not the formation of all soluble Lie algebras.
Let S e ^ be a non-nilpotent soluble subnormal subalgebra of L. Then L has a
faithful, finite-dimensional S^-hyperexcentric module giving representation p with
p(x) nilpotentfor all x e Lfor which ad(x) is nilpotent.

PROOF. Let N = N(L) be the nil radical of L. By Lemma 1.3, the condition on
an L-module V giving representation p that p(x) be nilpotent for all x e L with
ad(x) nilpotent is equivalent to V being NCR-hypercentral. By Hochschild [7], L has
a faithful finite-dimensional A/91-hypercentral module V.

Let R be the soluble radical of L. Since R/N is abelian and 5 ^ N, there exists
a maximal ideal M > N of R not containing 5. Since LR < N, M < L. Let K be
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the sum of M and a Levy factor of L. Then K is an ideal of L of codimension 1 and
K + S = L.

Let # be the saturated formation given by the normal subspace A of F. Then
A ^ F, so there exists a e F - A. For the 1-dimensional Lie algebra L/K = (x),
we can construct an irreducible module W on which x has a as an eigenvalue. Then
the L -module W is N CR-hypercentral and S#-excentric.

Let Vo and Vj be the S3-hypercentral and S^-hyperexcentric components of V.
Put V* = (W® Vo)® (W® Vo® Vo) © Vi. Then V* is N9Urypercentral and
SJ-hyperexcentric by Barnes [1, Theorem 2.1] and [4, Theorem 2.3]. If x is in the
kernel of V*, then x is in the kernel of Vj and of (W ® Vo) © (W <g> Vo ® Vo). By
Corollary 2.2, x is also in the kernel of Vo, so x = 0. Thus V* is faithful. •

The situation in non-zero characteristic is different. The Lie algebras of nilpotent
length at most n form a saturated formation W . Thus it is not possible for the smallest
saturated formation containing L to be the formation of all soluble Lie algebras. If
L e W , then every irreducible L-module is W + 1 -central. Thus L has no 9t"+1-
hyperexcentric modules. Even when # is the smallest saturated formation containing
the non-nilpotent algebra L, there may not be 3"-hyperexcentric L-modules with the
Hochschild property. For example, if L = (x,y) with xy = y and F is algebraically
closed, any irreducible module on which y acts nilpotently is 1-dimensional and so
il-central.

THEOREM 2.4. Suppose char(F) ^ 0. Let S be a soluble subnormal subalgebra of
the Lie algebra L over F. Let $ be the smallest saturated formation containing S.
Then L has a faithful finite-dimensional S^-hyperexcentric module.

PROOF. Let V be a faithful finite-dimensional L-module with Vo and VI its SJ-
hypercentral and S^-hyperexcentric components. Let K be a minimal ideal of L.
Let 5o be the smallest saturated formation containing (S + K)/K. If #0 = 5, then
by induction, there exists an irreducible L/K-modu\e W which is (5 + K/K)$-
hyperexcentric. If not, then S is not nilpotent, and since, by Schenkman [10, Theo-
rem 3], S°° < L, we can take K c S°°. Since 5<M L, the S-composition factors of
K are isomorphic. As S g 3o> K is S^o-hyperexcentric. Let #1 be the saturated
formation locally defined by Jo- that is, the class of all soluble Lie algebras M with
M/N(M) e do- (See [5, Theorem 4.6].) Then X e ? , , Since by Jacobson [9,
Theorem VI.2, page 205], L has a faithful completely reducible module, there exists
an irreducible L-module W on which K acts faithfully. The S-composition factors
of W are all isomorphic. Thus K acts non-trivially on each S-composition factor Wit

Sf&siWj) & 3o and W is SJi-hyperexcentric. Hence, in either case, we have an irre-
ducible SS-hyperexcentric L-module W. Put V* = (W <g> Vo) © (W (g> Vo <g> Vo) © V,.
Then V* is S5"-hyperexcentric. By Corollary 2.2, V* is faithful. •
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3. Splitting algebras

To get around the difficulty pointed out above, we follow Iwasawa's use of a
splitting module in the construction of the desired faithful module.

DEFINITION 3.1. Let A be an abelian ideal of the Lie algebra L. A splitting algebra
for L relative to A is a Lie algebra M together with an abelian ideal B of M such that
L < M, L + B = M, L n B = A and such that M splits over B.

In the above, we can regard both A and B as L/A-modules. Choosing coset
representatives in L for the elements of L — L/A by a linear map u : L —• L, we can
identify L with L x A, identifying (x, a) with the element u(x) + a € L for x € L
and a € A. We then have the multiplication given by

(xu at)(x2, a2) = (xlx2,x1a2-x2ai + f(xux2)),

where/ (x\, x2) = u{x\)u{x2) — u(xxx2). Then/ : L A L -» A is a 2-cocycle. Let h
be the cohomology class o f / . Let j * : / / 2 (L, A) - • H2(L, B) be the map induced
by the module inclusion j : A —> B. Then M is the extension of B by L constructed
using the cocycle jf, that is, M = L x B with multiplication given by

(xi,bi)(x2,b2) = (xxx2,x\b2-x2bx +f(xux2)),

forx\ ,x2 e L and &i, £2 £ B. The requirement that M splits over B is equivalent to
j*(h) = O.

Since the development of homological algebra, the existence of a splitting algebra
has become a triviality. Any L-module A has an embedding j : A -> ZJ in an
injective module B and we then have H2(L, B) = 0. Except in the trivial case where
L — 0, the splitting algebra so obtained is infinite-dimensional. The original existence
proof constructed the module B from A and the universal enveloping algebra of L,
also giving an infinite-dimensional splitting algebra. In [8], Iwasawa modified this
construction to obtain the following result which was the key to his proof of the
Ado-Iwasawa Theorem.

THEOREM 3.2. Let A be an abelian ideal of the finite-dimensional Lie algebra L
over any field F. Then there exists a finite-dimensional splitting algebra for L relative
to A.

This result can be strengthened in the special case where we have a soluble sub-
normal subalgebra S of L with 5 e 5 for some saturated formation J of soluble Lie
algebras.
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LEMMA 3.3. Let Lbea Lie algebra over any field F. Suppose S« L and that S € 5
where 5 is a saturated formation of soluble Lie algebras. Let A be an abelian ideal
of L which is S^-hypercentral. Let h be the cohomology class of L as an extension
of A. Then

(1) there exists a finite-dimensional splitting algebra (M, B)for L relative to A with
B S^-hypercentral;
(2) there exists an embedding j : A -> B of A in a finite-dimensional L/A-module

B which is S^-hypercentral and such that j*(h) = 0.

PROOF. The two assertions are equivalent. By Iwasawa's Theorem 3.2, there exists
a finite-dimensional splitting algebra M with ideal B. For the L/A-module inclusion
; : A -> B, we havej*(ft) = 0. By Lemma 1.1, B = Bx © B[ where Bx is S#-
hypercentral and B[ is SS'-hyperexcentric. As A is 55'-hypercentral, j (A) c B\ and
j is the composite of the inclusion j x : A —>• Bx and the inclusion ix : Bx -*• B. As
the induced map i* of cohomology is injective, it follows that y'* (ft) = 0. Replacing B
by B\ gives the result. •

The condition that A be S3'-hypercentral is automatically satisfied if 5 2 A or if
A is central. As the results about splitting algebras will only be needed in the case
where A is central, I simplify the statements by assuming this from here on.

We can iterate this reduction of the splitting module. If (52, fo) is another pair
satisfying the conditions of Lemma 3.3, we can decompose the above module B\ =
B2 © B'2 where Bz is 525

r2-hypercentral and B'2 is ^fo-hyperexcentric. This reduction
process must terminate since B is finite-dimensional. We thus have

THEOREM 3.4. Let A be a central ideal of the finite-dimensional Lie algebra L
over any field F. Then there exists a finite-dimensional splitting algebra (M, B) for
L relative to A such that, for every saturated formation J and subnormal subalgebra
S € $, B is S$-hypercentral.

4. The Hochschild extra

In this section, I show that, if A is central, then there exists a splitting algebra
(M, B) as in Theorem 3.4 with the Hochschild extra property that, for all x e L, if
ad(jc) is nilpotent, then so is the action \fr(x) of* on B. For N = N(L) and the
saturated formation 91 of nilpotent algebras, by Theorem 3.4, we may suppose that B
is N9Wiypercentral. Thus f{x) is nilpotent for all x e N. By Lemma 1.3, we now
have
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LEMMA 4.1. Let A be a central ideal of the finite-dimensional Lie algebra L over
a field of characteristic 0. Then there exists a finite-dimensional splitting algebra
(M, B) for L with respect to A which satisfies the extra conditions

(1) B is S^-hypercentral for every saturated formation J and every S« L with

(2) the action VK*) ofx on B is nilpotentfor every x e L with ad(jt) nilpotent.

Now suppose char(F) = p ^ 0. Then L has a finite-dimensional p -envelope L
by Strade and Farnsteiner [11, Proposition 5.3, page 93]. The [p] operation may be
chosen such that z1*"1 = 0 for all z in the centre of L. Let A be a central ideal of L.
Then A is a central p -ideal of L. If 5 « L, then S<w L. If B is a finite-dimensional
p-module of L which is a splitting module for L, and so for L, with respect to A,
then it follows as in the proof of Strade and Farnsteiner [11, Theorem 5.4, page 94],
that the action x(r(x) of x on B is nilpotent for every x e L with ad(;c) nilpotent. The
following lemma enables us to prove the existence of such a splitting module.

LEMMA 4.2. Let L be a restricted Lie algebra over the field F of characteristic
p. Let V be an L-module of dimension n giving the representation p. Put a{x) =•
p(x)p -pix^). Then V - Vlp] © V^j, where Vlp] = f\eL keraOc)" is a submodule,
all of whose composition factors are p-representations, and V^\ = X^ei <*(*)" V "
a submodule, none of whose composition factors are p-representations.

PROOF. Let xu ..., xr be a basis of L. Put V = F <g>F V. We take the character
decomposition V = £ , V̂  corresponding to the characters S, with So = 0. The only
eigenvalue of a(x) on Vt is Sj(x)p. If this is non-zero, then a(x) acts invertibly on V̂ .
For all x el, a(x)n Vo = 0. For each / > 0, 5, £ 0 so S,-(JC;.) ^ 0 for some xh. We
thus have

i>o i>o

It follows that

= P|kera(jc)" =
xeL

The result follows by linearity. D

THEOREM 4.3. Let A be a central ideal of the finite-dimensional Lie algebra L over
any field F. Then there exists a finite-dimensional splitting algebra (M, B)for L with
respect to A which satisfies the extra conditions

(1) B is S$-hypercentral for every saturated formation $ and every S« L with

s € ^ ;

https://doi.org/10.1017/S1446788700008600 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008600


[9] Ado-Iwasawa extras 415

(2) the action ir(x) ofx on B is nilpotentfor every x e L with ad(x) nilpotent.

PROOF. We already have the result if char(F) = 0, so suppose char(F) = p ^ 0.
We embed L in a finite-dimensional p-envelope L with z^ = 0 for all z 6 Z(L).
By Iwasawa's Theorem 3.2, there exists a finite dimensional splitting module B for L
relative to A. Since A is a p-module, A c 5^,, and it follows that B^ is a splitting
module with the property (2). Proceeding as in the proof of Theorem 3.4, we obtain
a direct summand of B^ which also has the property (1). •

5. The main result

THEOREM 5.1. Let L be a finite-dimensional Lie algebra over any field F. Then L
has a faithful finite-dimensional module V which has the extra properties

(1) V is S'S-hypercentral for every saturated formation 3" and every S« L with

(2) the action p(x) ofx on V is nilpotentfor every x G L with ad(jc) nilpotent.

PROOF. The representation of the 1-dimensional algebra by matrices (J g) with
k e F satisfies all the requirements. By induction, we may suppose that the result
holds for algebras of smaller dimension than dim(L). If A x and A2 are distinct minimal
ideals of L, then there exist L/A,-modules V; which satisfy the requirements with
respect to L/At. The L-module VI © V2 then has all the required properties. Thus we
may suppose that L has a unique minimal ideal A.

Since L is an SJ'-hypercentral module for every pair 5 6 #, L/Z has a faithful
simultaneously S^-hypercentral module, where Z is the centre of L. Thus the result
holds if Z = 0. Hence we may suppose that Z ^ 0 and is the unique minimal ideal
of L. By Theorem 4.3, there exists a finite-dimensional splitting algebra (M, B) in
which B and the representation \Jr given by B have the properties (1) and (2). Let Lx

be a complement to B in M. Following Iwasawa, we put V = (e) © B as vector space
with action of M on V given by (x + b)e — b and (x + b)b' = xb', (the product of x
and V in M) forx e Lx and b, V € B. Then

(JC, + bi)((x2 + bi)(ke, b')) = (JC, + i,)(0, Xb2 + x2b') = (0, Xx,b2 + xx{x2b')).

Denoting the commutator of the actions of {x\ +b\) and (x2 + b2) on Vby [x\ + b\,
*2 + b2], we have

[JC, +bux2 + b2](ke, b') = (0, kxxb2 - kx2bx + (xxx2)b')

= (xxx2+xxb2-x2bx)(ke, b')
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Thus this action makes V an M-module which is clearly finite-dimensional. As L
is a subalgebra of M, V is an L-module. As the unique minimal ideal of L is
contained in B which is clearly represented faithfully, V is a faithful L-module. B is
a submodule of V and is S^-hypercentral while V/B is the trivial module. Thus V
is S^-nypercentral for every pair (5, #). As p{x)V c B for all x e L, if \[r{x) is
nilpotent on B, then p(x) is nilpotent on V. •

6. 3-hypercentrality of p-modules

Comparison of Lemma 1.1 and Lemma 4.2 suggests a possible link between p-
modules and J-hypercentral modules which would make the non-zero characteristic
case of Theorem 5.1 an immediate consequence of Strade and Farnsteiner [11, Theo-
rem 5.4, page 94].

In the following, F is a field of characteristic p ^ 0, IF,, denotes the field of p
elements and F the algebraic closure of F. A polynomial fix) over F is called
Fp-linear if the function f : F —*• F given by f(x) is Fp-linear. Note that to prove a
polynomial fix) to be Fp-linear, it is sufficient to prove f(a + b) = f(a) + f(b) for
all a, b e F, as then fka) = kf (a) for A e F p follows. Note also that a polynomial
of the form f(x) = aox 4- a,xp + a2*

p2 H h a**''" is Fp-linear.

LEMMA 6.1. If fix) is $p-linear, then all roots of f(x) have the same multiplicity.

PROOF. Let a i , . . . , an be the (not necessarily distinct) roots of f(x). Then f(x) —
a f]"=i (x — aj). For any root fi,

fix) = f(x) + /(/?) = f(x + $) = a Y[(x + P- «.•)•
1=1

Thus (x: - aj) and (^ + )8 — a,) occur as factors of fix) with the same multiplicity.
But every root a ; is a, — y3 for some root /5. •

LEMMA 6.2. Suppose fix) is $p-linear and that the coefficient ofx in fix) is not
zero. Then all roots of fix) are simple.

PROOF. Since /(0) = 0, there is no constant term. If the roots have multiplicity
r, then fix) — gix)r and the lowest term of fix) has degree at least r. Hence
r=\. •

LEMMA 6.3. Let fix) be an IFp-linearpolynomial. Then fix) has the form

fix) =aox+alx
p + a2x

p~ +•••+ anx
p".
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PROOF. We use induction over the degree of / (x). The result holds if the degree
is 1. By replacing f (x) with / (x) + x if necessary, we may suppose that all roots of
f (x) are simple. The roots of / (x) form a vector space V of some finite dimension
n over Fp. The number of roots is p" and as all roots are simple, the degree of / (JC)
is p". If the leading coefficient is a, then g(x) = f (x) — axp" is Fp-linear of lower
degree. Therefore g(x) has the asserted form and the result follows. •

THEOREM 6.4. Let (L, [/?]) be a restricted Lie algebra over the field F of char-
acteristic p ^ 0 and suppose that z[p] = 0 for all z in the centre of L. Let $ be a
saturated formation and suppose S« L, S ^ 0 and S 6 5- ^ ? V be an irreducible
p-module of L. Then V is S^-hypercentral.

PROOF. Let L, S, V be a counterexample with L of least possible dimension. We
now choose V such that the kernel K of the representation p of L on V has the
least possible codimension. Let Z = Z(L) be the centre of L. Suppose Z / 0.
Then Z acts nilpotently on V and as V is irreducible, Z V = 0. But Z is a p-ideal
of L, so V is an irreducible p-module for the restricted Lie algebra L/Z. As V is
(S + Z/Z)3r-hyperexcentric, L/Z must have a central element z with z[p] ^ 0, that
is, we have z e L with ad(z)2 = 0 and z^1 £ Z. Therefore Z = 0.

If A < B < Z,, then the p-closure Ap < Bp by Strade and Farnsteiner [11, Proposi-
tion 1.3, page 66]. Therefore Sp« L. If Sp ^ L, then there exists a p-ideal M such
that Sp < M < L. If z € Z(M), then ad(z)2 = 0, so z^1 e Z(L) = 0. Thus M, 5
and any M-composition factor of V form a counterexample. Therefore Sp = L, L is
soluble and S < L.

Let A be a minimal ideal of 5. Since L = 5 P , A < L . If a e A, then ad (a)2 = 0,
so a^ e Z. But Z = 0. Thus A is a p-ideal and AV = 0 since V is an irreducible
p-module. There exists an element z such that zL < A, but z^1 £ A. As Z = 0,
we cannot have zA = 0, so z acts invertibly on A. By Barnes [3, Theorem 2.2],
Hn(L/A;A) = 0 for all n and there exists a subalgebra M < L which complements
A. If x e Z(M) and JCA = 0, then x e Z(L) = 0. Thus Z(W) ~ Z(L/A) acts
faithfully on A.

There exists a p-mapping [p]' on L/A which is zero on Z = Z(L/A). For any
x e L = L/A, i1*"1 — ilp1 ' e Z. Thus any representation of L whose kernel contains
Z which is a p-representation with respect to [p] is also a p-representation with
respect to [p]'. If Z c ^ = A"/A, then (L, [p]'), 5, V is a counterexample of smaller
dimension. Therefore Z £ K.

Take z € Z, z £ ^ . Since z is not nilpotent on V, for all r, z w <£ K. By replacing
z with l^Y for some r, we obtain z 6 (zlpl, z^'2, z l p ) 3 , . . . ) . Put f = (z, z[p], z[p]\ ...).
Let ^ : A —>• A be the linear transformation of A given by z.

Let r = dim(7"). Then there exists a polynomial/ (*) = xp' + a\xp' ' + • —I- arx
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over F such tha t / (VO = 0. Note that the roots of/ (x) in the algebraic closure F are
distinct and form a vector space A of dimension r over the prime field Fp of p elements.
Let Ao be the Fp-subspace of F spanned by the eigenvalues of \jr. Let m(x) be the
minimum polynomial of rjs and a \, . . . , an its roots. Then Ao = ( « i , . . . , an) $p c A.
Let s = dim Ao.

Put g(x) = FTxeAoC* — ^)- Then g(x) has degree ps. Take any a e F and
set /ia(;t) = g(x + a) — g(x) — g(a). Since g(x) = xp' + terms of lower degree,
g(x + a) = (x + a ) p ' + lower degree terms = xp' + terms of lower degree in x and
so ha(x) is a polynomial of degree less thanpJ . If a is a root of g(x), then so is X + a
for all A. e Ao and ha(X) — 0. Thus ha{x) has at least p 1 roots and so must be the zero
polynomial. Hence g{x + a) = g(x) + g(a) if g(a) — 0. Now consider general a. For
X e Ao, g(a + k) = g(a) + g(X), so ha(k) = g(a + X) - g(X) - g(a) = 0, so again
ha(x) has at least ps roots and must be the zero polynomial. Thus g(x) is Fp-linear.
Note also that every automorphism of F which fixes F pointwise fixes g{x) which is
therefore a polynomial over F since F{A.) is a separable extension of F.

Now / (x) is the Fp-linear polynomial over F of least degree for which / (ijf) = 0.
But g(i]f) = 0, so s > r. But Ao is an s-dimensional subspace of the r-dimensional
space A. Therefore Ao = A.

We now consider the linear transformation p(z) : V —*• V. Since p is a p-
representation, / (p(z)) = 0. Thus if /x is an eigenvalue of p(z), then /j, e A = Ao.
Thus /x = at + • • • + ak for some eigenvalues a, (not necessarily distinct) of \J/. Let
W be the L-module Hom(A®*, V) and let 6 be the representation given by W. Then
0 is an eigenvalue of 0(z).

Since A is 5^-hypercentral and V is 55-hyperexcentric, we have by Barnes [1,
Theorem 2.1] and [4, Theorem 2.3], that W is SJ-hyperexcentric. But for some
composition factor Wo of W, the action of z on Wo has 0 as an eigenvalue. Thus z is
in the kernel of the representation of L on Wo, contrary to the choice of V as giving a
representation with kernel of least possible codimension. •

Any Lie algebra L over a field of characteristic p can be embedded as an ideal
in a restricted Lie algebra (L, [p]) with z[p] = 0 for all z in the centre of L. By
Strade and Farnsteiner [ 11, Theorem 5.4, page 94], L has a faithful finite-dimensional
p-module. As 5<w L implies 5 « L, the characteristic p case of Theorem 5.1 follows
by Theorem 6.4.

7. Special cases

We now consider the significance of Theorem 5.1 for supersoluble algebras. A
Lie algebra 5 is supersoluble if it has a sequence 0 = Ao < A\ < • • • < An = 5 of
ideals of S with A,/A,_! of dimension 1 for all i. Let i t be the saturated formation
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of supersoluble algebras. An S-module V is il-hypercentral if it has a composition
series with all quotients 1-dimensional.

THEOREM 7.1. Let L be a finite-dimensional Lie algebra over any field F and let
5<M L be supersoluble. Then L has a faithful finite-dimensional representation in
which S is represented by upper triangular matrices.

PROOF. By Theorem 5.1, L has a faithful Sil-hypercentral module V. It follows
that S fixes a flag in V and for suitable choice of basis, is represented by upper
triangular matrices. •

If 5,<KI L are supersoluble, then by Theorem 5.1, there exists a faithful L-module
V which is simultaneously 5,il-hypercentral. It does not follow in general that all 5,
simultaneously can be represented by upper triangular matrices. Each 5, fixes some
flag but there need not be any flag fixed by them all. However this does hold in
characteristic 0.

LEMMA 7.2. Let L be a Lie algebra over afield F of characteristic 0 and let 5 be
a saturated formation. Let {S,| i € /} be the set of all subnormal subalgebras 5,<M L
which are in $. Put S = ]T,e / 5,. Then S < L and S e $.

PROOF. Let/? be the radical of L. Then LR is a nilpotent ideal of R. Since 91 C £,
LR e$. Since S, is soluble and 5,«i L, S, < R.

Let 5i be any ideal of L which is in $ and contains LR. Let S2 be any subnormal
subalgebra of L which is in $. Then S\ + S2 < L. We have to prove S\ + Si e 5- The
result then follows.

By Barnes [2, Theorem 2], for some normal F-subspace A of the algebraic closure
F of F, J is the class of all soluble finite-dimensional Lie algebras S over F with the
property that for all x e S, the eigenvalues of ad(x) all lie in A.

We may suppose L = S\ + S2. Then L is soluble. Consider any chief factor V
of L. Then L' is in the kernel of the representation p of L on V. We have a set
p(5i) U p(S2) of commuting linear transformations of V, all of whose eigenvalues lie
in A. They therefore fix a flag in F ® V. For ^ € S\ and s2 e S2, it follows that the
eigenvalues of p(s^ + s2) are sums of an eigenvalue of p(s\) and an eigenvalue of s2,
thus all in A. •

COROLLARY 7.3. Let L be a finite-dimensional Lie algebra over afield F of char-
acteristic 0. Then L has a faithful finite-dimensional representation in which every
supersoluble subnormal subalgebra of L is represented by upper triangular matrices.

https://doi.org/10.1017/S1446788700008600 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008600


420 Donald W. Barnes [14]

PROOF. By Lemma 7.2, there exists a supersoluble ideal S of L which contains every
supersoluble subnormal subalgebra. Let V be a faithful Sil-hypercentral L -module.
A flag in V fixed by S is fixed by every supersoluble subnormal subalgebra. •

EXAMPLE 7.4. Lemma 7.2 and Corollary, 7.3 do not hold in characteristic p. Let
V = {v0 fp-i) where the subscripts are'integers mod p and let L = {x, y, z, V)
with multiplication given by xy = z, xz = yz = vtVj = 0, xvt = /u,-_i, vv, = vi+l

and zu, = u,. Then 5i = (x, z, V) and 52 = (y, z, V) are supersoluble ideals of L
but Si + S2 is not supersoluble. A representation with both S\ and S2 upper triangular
would have Si + S2 upper triangular, which would imply Si + S2 supersoluble.

Over the field R of real numbers, there is another saturated formation, 3 consisting
of those soluble Lie algebras 5 such that, for all s e S, all eigenvalues of ad(s) are
pure imaginary.

THEOREM 7.5. Suppose S e 3 is an ideal of the finite-dimensional Lie algebra
L over R. Then L has a faithful finite-dimensional representation in which S is
represented by matrices which are block upper triangular, and with the diagonal
blocks either 0 or of the form (?r

 r
0) for some r e l

PROOF. For any soluble Lie algebra 5 over a field of characteristic 0, the derived
subalgebra 5' is in the kernel of any irreducible representation. Let V be an 3-central
irreducible module for S and suppose sx e 5 acts non-trivially. Let s2 e S. The
actions of Si and s2 commute, so in the complexification of V, they have a common
eigenvector. Since the eigenvalues are pure imaginary, for some r e R, s2 — rst has
an eigenvalue 0, thus an eigenvector in V. These eigenvectors form a submodule,
so by the irreducibility of V, s2 — rs{ acts trivially. It follows that the kernel of the
representation has codimension 1 and that V is 2-dimensional with the action of Si
given by (_°, J) for some r e R. The result follows. •
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