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Abstract. The approximation of Banach space valued non-absolutely integrable
functions by step functions is studied. It is proved that a Henstock integrable function
can be approximated by a sequence of step functions in the Alexiewicz norm, while
a Henstock–Kurzweil–Pettis and a Denjoy–Khintchine–Pettis integrable function can
be only scalarly approximated in the Alexiewicz norm by a sequence of step functions.
In case of Henstock–Kurzweil–Pettis and Denjoy–Khintchine–Pettis integrals the full
approximation can be done if and only if the range of the integral is norm relatively
compact.

2000 Mathematics Subject Classification. Primary 28B20; Secondary 26A39,
28B05, 46G10, 54C60.

1. Introduction. It is known that each Pettis integrable function can be ‘scalarly
approximated’ by a sequence of simple functions if and only if the range of its indefinite
Pettis integral is a separable subset of the Banach space containing the range of the
function (see [14], [15, Theorem 10.1], [16, Theorem 6.8] and [19]). The approximation
can be done in the Pettis norm if and only if the range of the indefinite Pettis integral
is norm relatively compact (see [13], [15, Theorem 9.1] and [16, Theorem 6.2]).

It is the objective of this paper to investigate how Henstock–Kurzweil–Pettis,
Denjoy–Khintchine-Pettis and Henstock integrable functions behave when we take
into account approximation by a sequence of step functions and what can be said
about the ranges of the integrals. We prove that in the general case we can always
find a sequence of step functions approximating the integrable function scalarly in the
Alexiewicz norm (see Theorems 2 and 3 below).
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We show that a Henstock integrable function can always be approximated by a
sequence of step functions in the Alexiewicz norm (see Proposition 1), that corresponds
to the Pettis norm in the case of Pettis integrable functions. In case of Henstock–
Kurzweil–Pettis and Denjoy–Khintchine–Pettis integrals such an approximation may
be done only when the range of the integral is norm relatively compact (see Theorem
4). Thus the situation here is similar to that of the Pettis integral. The methods however
are completely different.

Now let us consider the ranges of the non-absolute integrals which are under
consideration. It is well known that the range of the Pettis integral of a strongly
measurable Banach space valued function is always norm relatively compact (cf. [7]).
In case of Pettis integrable functions with values in a non-separable Banach space the
range of the integral may not be norm relatively compact (see [9]). However, if the
measure is perfect (what is true in case of the Lebesgue measure), then Stegall proved
that the range of the Pettis integral is always norm relatively compact ([9]). When
the Henstock–Kurzweil–Pettis or Denjoy–Khintchine–Pettis integral is examined,
the situation becomes complicated. Even in case of separable Banach spaces (and
consequently for strongly measurable functions) the range of the Henstock–Kurzweil–
Pettis integral may not be norm relatively compact (see Example 2).

This paper can be considered as a continuation of our study of non-absolute vector
valued integrals, started in [3–6].

2. Notations and preliminaries. Let [0, 1] be the unit interval of the real line
equipped with the usual topology and the Lebesgue measure λ. We denote by L the
family of all Lebesgue measurable subsets of [0, 1] and by I the family of all non-trivial
closed subintervals of [0, 1].

If E ∈ L, then we denote by |E| its Lebesgue measure. Throughout this paper X is
a Banach space with dual X∗. The closed unit ball of X∗ is denoted by B(X∗).

A partition in [0, 1] is a finite collection π = {I1, . . . , Ip} of non-overlapping
subintervals I1, . . . , Ip of [0, 1]. If ∪ p

i=1Ii = [0, 1] we say that π is a partition of [0, 1].
The mesh of a partition π is the number mesh(π ) =: sup{|I| : I ∈ π}.

A Perron partition of [0, 1] is a finite collection of pairs P = {(I1, t1), . . . , (Ip, tp)},
where I1, . . . , Ip are non-overlapping subintervals of [0, 1], ∪p

i=1Ii = [0, 1] and ti ∈ Ii,
i = 1, . . . , p.

A gauge on [0, 1] is a positive function on [0, 1]. For a given gauge δ, we say that a
Perron partition {(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti − δ(xi), ti + δ(xi)), i = 1, . . . , p.

We recall that a function f : [0, 1] → X is said to be a step function if there is a
partition π of [0, 1] such that f is constant on the interior of each I ∈ I.

DEFINITION 1. A function f : [0, 1] → X is said to be Henstock integrable, or simply
H-integrable, on [0, 1] if there exists w ∈ X with the following property: for every ε > 0
there exists a gauge δ on [0, 1] such that

∣∣∣∣∣
∣∣∣∣∣

p∑
i=1

f (ti)|Ii| − w

∣∣∣∣∣
∣∣∣∣∣ < ε,

for each δ-fine Perron partition P = {(I1, t1), . . . , (Ip, tp)} of [0, 1].

We set w := (H)
∫ 1

0 f dλ.
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It is known that if f : [0, 1] → X is H-integrable on [0, 1] and I ∈ I, then f χI is also
H-integrable on [0, 1]. We say in such a case that f is H-integrable on I . We call the
additive interval function F(I) := (H)

∫
I f dλ the H-primitive of f .

By H([0, 1], X) we denote the set of all H-integrable functions f : [0, 1] → X . In case
of X = � we will rather use the name of Henstock–Kurzweil instead of Henstock only
and we will denote by HK [0, 1] the space of all HK-integrable functions f : [0, 1] → �.

DEFINITION 2. A function f : [0, 1] → X is said to be scalarly measurable (resp.
scalarly integrable) if for every x∗ ∈ X∗ the function x∗f is Lebesgue measurable (resp.
integrable). A scalarly integrable function f : [0, 1] → X is said to be Pettis integrable if
for each set A ∈ L there exists a vector wA ∈ X such that

〈x∗, wA〉 =
∫

A
x∗f dλ , for every x∗ ∈ X∗.

We call wA the Pettis integral of f over A and we write wA : = (P)
∫

A f dλ.

DEFINITION 3. A function f : [0, 1] → X is said to be scalarly Henstock–Kurzweil
integrable if for each x∗ ∈ X∗ the function x∗f is Henstock–Kurzweil integrable. A
scalarly Henstock–Kurzweil integrable function f is said to be Henstock–Kurzweil–
Pettis integrable (or simply HKP-integrable) if for each I ∈ I there exists wI ∈ X such
that

〈x∗, wI 〉 = (HK)
∫

I
x∗f dλ , for every x∗ ∈ X∗.

We call wI the Henstock–Kurzweil–Pettis integral of f over I and we write wI :=
(HKP)

∫
I f dλ. If I = [a, b], then we write (HKP)

∫ b
a f dλ instead of (HKP)

∫
[a,b] f dλ. We

call the additive interval function F(I) := (HKP)
∫

I f dλ the HKP-primitive of f .

We denote by HKP([0, 1], X) the set of all X-valued Henstock–Kurzweil–Pettis
integrable functions on [0, 1] (functions that are scalarly equivalent are identified).

It is known that the HK-primitive (resp. HKP-primitive) F of a function f is
continuous (resp. weakly continuous, i.e. x∗F is continuous for every x∗ ∈ X∗).

In the following, given a function F : [0, 1] → X we identify F with the additive
function F : I → X defined by F(I) = F(b) − F(a), if I = [a, b]. And conversely, any
additive F : I → X is identified with F : [0, 1] → X , defined by F(t) = F [0, t].

DEFINITION 4. A function f : [0, 1] → � is said to be Denjoy–Khintchine integrable
on [0, 1] (or simply DK-integrable) if there exists an ACG function F : [0, 1] → � such
that its approximate derivative F ′

a p coincides with f almost everywhere. A function f
is said to be DK-integrable on I ∈ I if f χI is DK-integrable on [0, 1]. It is known that
each DK-integrable function on [0, 1] is DK-integrable on every I ∈ I.

We say that a function f : [0, 1] → X is Denjoy–Khintchine–Pettis integrable (or
simply DKP-integrable) on [0, 1] if for every x∗ ∈ X∗ the function x∗f is DK-integrable
and for each I ∈ I there exists a vector wI ∈ X such that 〈x∗, wI 〉 = (DK)

∫
I x∗f dλ

(where (DK) stands for Denjoy–Khintchine), for every x∗ ∈ X∗. The vector wI is
called the Denjoy–Khintchine–Pettis integral of f over I and we set wI := (DKP)

∫
I f dλ.

The interval function F(I) := wI is called the Denjoy–Khintchine–Pettis primitive of f .
Gordon [11] and Gamez and Mendoza [10] used the name of Denjoy–Pettis in that
context.
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Denote by DK [0, 1] the linear space of all real valued Denjoy–Khintchine
integrable functions on [0, 1] (we identify functions that are equal a.e.) and endow
it with the Alexiewicz norm

‖f ‖A = sup
0<t≤1

∣∣∣∣(DK)
∫ t

0
f dλ

∣∣∣∣ .

The space HK [0, 1] is dense in DK [0, 1] in the Alexiewicz norm, the completion
of DK [0, 1] coincides with the completion of HK [0, 1], and the conjugate spaces
DK∗[0, 1] and HK∗[0, 1] are linearly isometric to the space BV [0, 1] of functions
of bounded variation (cf. [1]). The weak topology of HK [0, 1] and DK[0, 1] will be
denoted by σ (HK, BV ) and σ (DK, BV ), respectively. We will denote by τm the topology
of convergence in measure in the space of Lebesgue measurable functions.

A function f : [0, 1] → � is said to be Denjoy–Perron integrable on [0, 1] if there
exists an ACG∗ function F : [0, 1] → � such that F ′ = f a.e.

We refer to [17] for the definitions of ACG and ACG∗ functions and for the
definition of Denjoy–Khintchine integral.

It is known that a function f : [0, 1] → � is Denjoy–Perron integrable on [0, 1] if
and only if it is HK-integrable on [0, 1] (cf. [12]).

By DKP([0, 1], X) we will denote the space of all Denjoy–Khintchine–Pettis
integrable X-valued functions (functions that are scalarly equivalent are identified).
We equip the space DKP([0, 1], X) with the Alexiewicz norm

||f ||A = sup0<t≤1

∣∣∣∣
∣∣∣∣(DKP)

∫ t

0
f dλ

∣∣∣∣
∣∣∣∣ .

As

H([0, 1], X) ⊂ HKP([0, 1], X) ⊂ DKP([0, 1], X),

we endow also the spaces H([0, 1], X) and HKP([0, 1], X) with the Alexiewicz norm.
In the following, when no confusion may be generated, we will use the simple

symbol
∫

f dλ instead of (H)
∫

f dλ, (DK)
∫

f dλ, (HKP)
∫

f dλ, (DKP)
∫

f dλ.

3. Approximation. Given an additive function F : I → X and a partition π of
[0, 1], we set

Fπ =
∑
I∈π

F(I)
|I| χI .

PROPOSITION 1. Let 
 be a directed set of partitions such that limπ mesh(π ) = 0.
If F : I → X is a continuous additive function, then 〈Fπ 〉π∈
 is Cauchy in the

Alexiewicz norm of H([0, 1], X).
If F is weakly continuous, then 〈x∗Fπ 〉π∈
 is Cauchy in the Alexiewicz norm of

HK [0, 1], for every x∗ ∈ X∗.
If f : [0, 1] → X is Henstock integrable or f : [0, 1] → � is Denjoy–Khintchine

integrable and F is its primitive, then limπ ‖Fπ − f ‖A = 0. In particular F(I) is norm
relatively compact and there exists a sequence of step functions fn : [0, 1] → X such that
limn ‖f − fn‖A = 0.
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If f : [0, 1] → X is Henstock–Kurzweil–Pettis or Denjoy–Khintchine–Pettis
integrable with primitive F, then limπ ‖x∗Fπ − x∗f ‖A = 0, for every x∗ ∈ X∗.

Proof. Let ε > 0. Since F is continuous there exists δ > 0 such that ‖F(I)‖ < ε/3
for each interval I ∈ I with |I| < δ. Now let π1 < π2 be two partitions with mesh less
than δ. For any t ∈ [0, 1], let [a1, b1] ∈ π1 and [a2, b2] ∈ π2 be the unique intervals such
that a1 ≤ a2 ≤ t ≤ b2 ≤ b1. Then∥∥∥∥∥

∫ t

0

∑
I∈π1

F(I)
|I| χI −

∫ t

0

∑
I∈π2

F(I)
|I| χI

∥∥∥∥∥
≤

∥∥∥∥F([a1, b1])
b1 − a1

(t − a1) − F([a1, a2]) − F([a2, b2])
b2 − a2

(t − a2)

∥∥∥∥ ≤ ε.

Consequently,

‖Fπ1 − Fπ2‖A < ε.

In case F is only weakly continuous we apply the above property to each set function
x∗F : I → � separately.

Let f : [0, 1] → X be Henstock integrable or let f : [0, 1] → � be Denjoy–
Khintchine integrable, and let F denote its primitive. Then we have for each π ∈ 
∥∥∥∥

∫ t

0
(f − Fπ )dλ

∥∥∥∥ =
∥∥∥∥F([a1, t]) − F([a1, b1])

b1 − a1
(t − a1)

∥∥∥∥
≤ ‖F([a1, t])‖ + ‖F([a1, b1])‖,

where [a1, b1] ∈ π1 contains the point t ∈ [0, 1] and a1 < t.
Since the primitive of an H-integrable or a DK-integrable function is continuous,

we get

lim
π

‖f − Fπ‖A = 0.

Now it is enough to choose any directed sequence 〈πn〉n of partitions with
limn mesh(πn) = 0 to obtain limn ‖f − fn‖A = 0, where fn = Fπn .

In case f is only HKP-integrable (resp. DKP-integrable), we apply the above
property to each set function x∗F : I → � separately. �

THEOREM 1. Let f : [0, 1] → X be a Denjoy–Khintchine–Pettis integrable function
and let F be its primitive. Then

(i) F(I) is a separable and relatively weakly compact subset of X;
(ii) there exists a sequence of step functions fn : [0, 1] → X such that limn ‖x∗f −

x∗fn‖A = 0, for every x∗ ∈ X∗.
If moreover, f is HKP-integrable, then we have also limn x∗fn = x∗f a.e., for every
x∗ ∈ X∗;

(iii) the topology of convergence in measure and the weak topology of DK[0, 1] (resp.
of HK [0, 1] if f is HKP-integrable) coincide on the set {x∗f : ‖x∗‖ ≤ 1};

(iv) {x∗f : ‖x∗‖ ≤ 1} is a weakly compact subset of DK [0, 1] (resp. of HK [0, 1] if f
is HKP-integrable) and it is compact in the topology of convergence in measure.

Proof. Since f is Denjoy–Khintchine–Pettis integrable, its primitive F is weakly
continuous. The collection J of all subintervals of [0, 1] with rational end points is
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countable and each element F(I) is the weak limit of a sequence (F(Jn))n, with all Jn ∈
J . This proves the separability of F(I). The weak relative compactness of F(I) follows
from the weak continuity of F and the inclusion F(I) ⊂ {F(t) − F(s) : s, t ∈ [0, 1]}.

To prove (ii) let πn be the partition of [0, 1] generated by {Ink := [k/2n, (k + 1)/2n] :
k = 0, 1 . . . , 2n − 1} and let

fn =
2n−1∑
k=0

F(Ink)
|Ink| χInk . (1)

Applying Proposition 1 to 
 = ⋃
n πn, we see that

lim
n

‖x∗f − x∗fn‖A = 0, for every x∗ ∈ X∗.

Moreover, if f : [0, 1] → X is KHP-integrable then (x∗F)′ = x∗f a.e., for each x∗ ∈ X∗.
So if t0 is a point such that (x∗F)′(t0) = x∗f (t0) and t0 is not an end point for the
intervals of the partitions πn, then we have

lim
n

x∗fn(t0) = lim
n

x∗F(In0 )
|In0 |

= x∗f (t0),

where by In0 we denote the unique interval of πn containing t0. Therefore x∗fn → x∗f
a.e.

The coincidence of the two topologies on the set {x∗f : ‖x∗‖ ≤ 1} follows from [5,
Proposition 2 and Remark 4] (resp. [5, Proposition 2]).

The weak compactness of {x∗f : ‖x∗‖ ≤ 1} follows from [5, Theorem 2 and Remark
4] (resp. [5, Theorem 2]) where it is proved that for each DKP-integrable (resp. HKP-
integrable) function f : [0, 1] → X the operator X∗ 
 x∗ → x∗f ∈ DK [0, 1] (resp. X∗ 

x∗ → x∗f ∈ HK [0, 1]) is weak∗-weakly continuous. �

With the help of the above theorem we obtain the following characterizations of
HKP-integrable and DKP-integrable functions:

THEOREM 2. A scalarly HK-integrable function f : [0, 1] → X is HKP-integrable if
and only if the topology of convergence in measure and the weak topology of HK [0, 1]
coincide on the set {x∗f : ‖x∗‖ ≤ 1} and there exists a sequence of step functions fn :
[0, 1] → X such that

(i) limn ‖x∗f − x∗fn‖A = 0, for every x∗ ∈ X∗.
The condition (i) may be replaced by the condition

(ii) x∗fn → x∗f weakly in HK [0, 1], for every x∗ ∈ X∗,
or by the condition

(iii) limn x∗fn = x∗f , a.e. on [0, 1], for every x∗ ∈ X∗.

Proof. The ‘only if ’ part follows by Theorem 1 and by [5, Theorem 3]. According
to [5, Theorem 3], concerning the ‘if ’ part we only need to show that f is determined
by a separable space Y ⊂ X . So let Y ⊆ X be the closed linear span of the set {fn(t) :
t ∈ [0, 1], n ∈ �}. If x∗ ∈ Y⊥, then x∗fn(t) = 0, for every t ∈ [0, 1] and n ∈ �. Hence,
if (iii) is fulfilled, it follows at once that x∗f = 0, a.e. In case (i) or (ii) are fulfilled
then (HK)

∫
I x∗f = 0, for each I ∈ I. So by applying [5, Lemma 1], we obtain again

x∗f = 0, a.e.. Thus f is determined by a separable space. �
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We remark that even if all the three conditions (i), (ii) and (iii) in the claim of the
above theorem are satisfied by a function f : [0, 1] → X , it may not be HKP-integrable,
as the following example shows.

EXAMPLE 1. Let f : [0, 1] → c0 be defined by

f (t) = (
χ(0,1](t), 2χ(0, 1

2 ](t), . . . , nχ(0, 1
n ](t), . . .

)
for t ∈ [0, 1] (see [7, Example 3]).

The function f is scalarly integrable and hence also scalarly HK-integrable. Now
let us consider the sequence of step functions

fn(t) = (
χ(0,1](t), . . . , nχ(0, 1

n ](t), 0, 0, . . .
)
.

By definition the sequence (fn)n converges pointwise in norm to f . Since c∗
0 = l1, for x∗ =

(α1, α2, . . . , αn, . . .) ∈ l1 we have x∗f = ∑∞
n=1 αnnχ(0, 1

n ], x∗fn = ∑n
k=1 αkkχ(0, 1

k ] and, for
each t ∈ [0, 1],∣∣∣∣

∫ t

0
x∗[f (s) − fn(s)]dλ

∣∣∣∣ =
∣∣∣∣∣
∫ t

0

( ∞∑
k=n+1

αkkχ(0, 1
k ]

)
dλ

∣∣∣∣∣ ≤
∞∑

k=n+1

|αk|.

Consequently limn ‖x∗f − x∗fn‖A = 0. Now we prove that the function f is not HKP-

integrable. Indeed, if (en)n is the canonical base in l1, then
∫ 1

0 〈en, f 〉dλ = ∫ 1
n

0 ndλ = 1.

So
∫ 1

0 f dλ = (1, 1, . . . , 1, . . .) /∈ c0.

THEOREM 3. A scalarly DK-integrable function f : [0, 1] → X is DKP-integrable if
and only if the topology of convergence in measure and the weak topology of DK [0, 1]
coincide on the set {x∗f : ‖x∗‖ ≤ 1} and there exists a sequence of step functions fn :
[0, 1] → X such that

(i) limn ‖x∗f − x∗fn‖A = 0, for every x∗ ∈ X∗.
The condition (i) may be replaced by the condition

(ii) x∗fn → x∗f weakly in DK [0, 1], for every x∗ ∈ X∗.

Proof. The proof follows as in Theorem 2 but this time we have to apply Theorem
3 and [5, Remark 4] and the Denjoy–Khintchine version of Lemma 1 in [5]. �

QUESTION 1. Let f : [0, 1] → X be DKP-integrable. Does there exist a sequence
(fn)n of step functions such that for each x∗ ∈ X∗ the equality limn x∗fn = x∗f a.e. holds
true?

Ene [8] proved that the answer is positive in case of real-valued functions, but the
provided sequence is not of the form (1).

We recall that a family A ⊂ H([0, 1], X) is Henstock equi-integrable (Henstock-
Kurzweil equi-integrable in case of X = �) (or simply H-equi-integrable) on [0, 1] if for
every ε > 0 there exists a gauge δ on [0, 1] such that

sup
f ∈A

∥∥∥∥∥
p∑

i=1

f (ti)|Ii| − (H)
∫ 1

0
f dλ

∥∥∥∥∥ < ε ,

for each δ-fine Perron partition {(I1, t1), . . . , (Ip, tp)} of [0, 1].
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REMARK 1. In general, as the following example shows, if a Henstock integrable
function f is the limit in the norm topology of H([0, 1], X) of a sequence (fn)n of step
functions, then it may happen that the sequence (fn)n does not converge a.e. to f or
that the functions of the sequence are not Henstock equi-integrable.

Let α > 3 be arbitrary and let Cα be the Cantor set in [0, 1] with its measure
equal to α−3

α−2 . Denote by ρn
k = (an

k, bn
k), k = 1, . . . , 2n−1, n = 1, 2, . . . , the contiguous

intervals of the set Cα. Then |ρn
k | = α−n.

Define for every n ∈ �

fn(t) =
{−21−nαi, if t ∈ ρ i

s, i = 1, . . . , n, s = 1, . . . , 2i−1,

2
(

1 − 1
α

∑n−1
p=0( 2

α
)p

)−1
, if t �∈ ∪n

i=1 ∪2i−1

s=1 ρ i
s ;

ρ i
s being the closure of ρ i

s. It can be easily seen that (fn(t)) converges to 2(α − 2)(α − 3)−1

on Cα and to zero on the complement of Cα.
We denote the limit function by f . In [2] (see also [5]) it is proved that the sequence

(fn) is weakly convergent to zero in HK [0, 1]. Applying the Mazur Theorem we get the
existence of a sequence (hn) of convex combinations of the step functions fn such that
(hn) converges to zero in the Alexiewicz norm and to the function f a.e. The sequence
(hn) cannot be Henstock equi-integrable. Indeed, if (hn) were Henstock equi-integrable,
then (hn) would converge to f in the Alexiewicz norm (see [18]) and so also weakly in
HK [0, 1]. �

4. Integrals with norm relatively compact range. We begin with an easy lemma
(cf. [15, Lemma 9.3.]).

LEMMA 1. Let Pi be a directed set of partitions such that limπ mesh(π ) = 0.
Moreover, let Y be a normed space and Uπ : Y → Y be a bounded linear operator, for each
π ∈ 
. If supπ ‖Uπ‖ < ∞ and limπ Uπ (y) = y for every y ∈ Y, then the convergence is
uniform on each relatively compact subset of Y.

LEMMA 2. Let 
 be a directed set of partitions such that limπ mesh(π ) = 0 and
let Uπ : DK [0, 1] → DK [0, 1] (resp. Uπ : HK [0, 1] → HK [0, 1]) be given by Uπ (g) =∑

I∈π
G(I)
|I | χI , where G is the primitive of g. Then ‖Uπ (g)‖A ≤ ‖g‖A.

Proof. Since G is continuous, given ε > 0 there is δ > 0 such that G(I) < ε for
|I| < δ. If we take a partition with intervals of length less than δ, then we have, for each
0 < t ≤ 1,

∣∣∣∣∣
∫ t

0

∑
I∈π

G(I)
|I| χI dλ

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

I⊂[0,t]

G(I) + G(J)
|J ∩ [0, t]|

|J|

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

I⊂[0,t]

G(I) + G(J ∩ [0, t])

∣∣∣∣∣∣ +
∣∣∣∣−G(J ∩ [0, t]) + G(J)

|J ∩ [0, t]|
|J|

∣∣∣∣
<

∣∣∣∣
∫ t

0
g dλ

∣∣∣∣ + 2ε ,

where J is the only interval containing t with J ∩ (t, 1] �= ∅. Consequently, we have
‖Uπ (g)‖A ≤ ‖g‖A. �
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PROPOSITION 2. Let F : [0, 1] → X be a weakly continuous function such that
x∗F is, for each x∗, almost everywhere approximately differentiable (resp. almost
everywhere differentiable) and (x∗F)′a p ∈ DK [0, 1] (resp. (x∗F)′ ∈ HK [0, 1]). If the
set WF = {(x∗F)′a p : ‖x∗‖ ≤ 1} (resp. WF = {(x∗F)′ : ‖x∗‖ ≤ 1}) is a norm relatively
compact subset of DK[0, 1] (resp. of HK [0, 1]), then for each ε > 0 there exists an
X-valued step function h : [0, 1] → X such that

sup
I∈I

∥∥∥∥F(I) −
∫

I
h dλ

∥∥∥∥ ≤ ε.

Proof. We will present the proof only in case of Denjoy–Khintchine integrability.
The HK case can be obtained in a similar way. Let 
 be a directed set of partitions of
[0, 1] such that limπ mesh(π ) = 0. For each π ∈ 
 we define Uπ : DK [0, 1] → DK [0, 1]
by Uπ (g) : = Gπ = ∑

I∈π
G(I)
|I | χI , where G is the primitive of g.

Applying Proposition 1 and Lemma 2 we infer limπ Uπ (g) = g for every g ∈
DK [0, 1], and ‖Uπ‖A ≤ 1. Thus, for each x∗ we have

lim
π

‖Uπ [(x∗F)′a p] − (x∗F)′a p‖A = 0 ,

uniformly on WF . Let us fix ε > 0 and π0 such that

‖(x∗F)′a p − Uπ [(x∗F)′a p]‖A < ε/2,

for every π ≥ π0 and every x∗ ∈ B(X∗).
So we have, for each 0 < t ≤ 1 and each x∗ ∈ B(X∗),∣∣∣∣x∗F [0, t] − (DK)

∫ t

0
x∗Fπ0 dλ

∣∣∣∣
=

∣∣∣∣(DK)
∫ t

0
(x∗F)′a p dλ − (DK)

∫ t

0
Uπ0 [(x∗F)′a p] dλ

∣∣∣∣ < ε/2.

In particular, we have

‖F(I) − (DKP)
∫

I
Fπ0 dλ‖ < ε, for every I ∈ I.

Then it is enough to take h = Fπ0 . �
LEMMA 3. Let f : [0, 1] → X be an HKP-integrable function (resp. DKP-integrable)

and let F : I → X be its primitive. Then F(I) is norm relatively compact if and only if
the set WF = {x∗f : ‖x∗‖ ≤ 1} is a norm (relatively) compact subset of HK[0, 1] (resp.
DK [0, 1]).

Proof. Let T : X∗ → HK [0, 1] be defined by T(x∗) = x∗f .Then T∗ : BV [0, 1] →
X∗∗ is such that

〈x∗, T∗χI〉 = 〈T(x∗), χI〉 = (HK)
∫

I
x∗f dλ = 〈x∗, (HKP)

∫
I

f dλ〉 = 〈x∗, F(I)〉.

It follows that T∗χI = F(I). But, according to the Schauder Theorem, T is compact if
and only if T∗ is compact and so the required equivalence follows. �
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COROLLARY 1. If f : [0, 1] → X is a DKP-integrable function and F(I) is norm
relatively compact, then the weak topology σ (HK, BV ), the norm topology and the
topology of convergence in measure coincide on WF .

THEOREM 4. Let f : [0, 1] → X be an HKP-integrable function (resp. Denjoy–
Khintchine–Pettis-integrable) and let F : I → X be its primitive. Then F(I) is norm
relatively compact if and only if there exists a sequence of step functions fn : [0, 1] → X
such that limn ‖f − fn‖A = 0.

Proof. If the range of F is norm relatively compact, then the approximation is a
consequence of Lemma 3 and Proposition 2.

Now assume that a sequence (fn)n of step functions is convergent to f in the
Alexiewicz norm. That is, given ε > 0 there is k ∈ � such that∥∥∥∥

∫
I

f (t) dt −
∫

I
fk(t) d(t)

∥∥∥∥ < ε , for every I ∈ I . (2)

If Fk is the primitive of fk, then Fk(I) is a relatively compact subset of a finitely
dimensional subspace of X . Together with (2) this fact yields the relative compactness
of F(I) in X . �

QUESTION 2. Can the sequence of step functions in Theorem 4 be chosen equi-
integrable in case of Henstock integrability?

We are going to present now an example of a HKP-integrable function without
norme relatively compact range of its integral.

EXAMPLE 2. We will use the function f : [0, 1] → c0 presented in [10].
It is constructed as follows. Consider a sequence of intervals Jn = [an, bn] ⊆ [0, 1]

such that a1 = 0, bn < an+1 for all n ∈ N and limn→∞ bn = 1 and define f : [0, 1] → c0

by

f (t) =
(

1
2|J2n−1|χJ2n−1 (t) − 1

2|J2n|χJ2n (t)
)∞

n=1
.

One could apply Theorem 2 to prove the HKP-integrability of f but the direct proof is
much simpler. It can be easily seen that

F(I) =
( |I ∩ J2n−1|

2|J2n−1| − |I ∩ J2n|
2|J2n|

)∞

n=1
∈ c0

is the HKP-integral of f on I ∈ I. It is obvious that the set {F(I) : I ∈ I} is not norm
relatively compact because the set {F(J2n−1) : n ∈ �} is discrete.

QUESTION 3. Assume that c0 cannot be embedded isomorphically into X , can the
range of each DKP (resp. HKP) integral be a norm relatively compact set?
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