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ABSTRACT. We present a new algorithm for a fast iterative improvement of the shallow-ice
approximation (SIA) for the modeling of glacier flow. Based on the traditional SIA scaling assumptions,
the solution of the Stokes problem is found by an operator-splitting iterative technique. The SIA solution
obtained in the first step is successively improved to obtain a higher-order approximation. Each iterative
step has computational demands comparable to solving the SIA, which makes the algorithm substantially
faster than other higher-order or full-Stokes solvers. The performance of the algorithm is tested on a
model example taken from the ISMIP-HOM intercomparison project.

INTRODUCTION
Increasing demands on the accuracy of solutions for glacier
flow and improving computational possibilities are push-
ing the glaciological community to abandon the traditional
shallow-ice approximation (SIA) (Hutter, 1983) and include
the computation of longitudinal stresses in numerical mod-
els. This is essential when the scaling assumptions of the
SIA approach (Greve, 1997) are violated, such as for small
alpine glaciers, ice streams, floating ice shelves, grounding-
line dynamics and other, usually small-scale, examples of ice
dynamics.
A number of theoretical and numerical approaches have

been proposed and tested, including several higher-order ap-
proximations of the Stokes problem by ’multilayer’ methods
(Blatter, 1995; Pattyn, 2003; Saito and others, 2003). For
their classification and discussion see Hindmarsh (2004).
Also, a number of exact full-Stokes solvers have been de-
veloped, based on various numerical techniques such as
finite-difference (e.g. Pattyn, 2003), spectral (Hindmarsh,
2004), finite-volume (Price and others, 2007) and finite-
element methods (Le Meur and others, 2004; Zwinger, 2007;
Gagliardini and Zwinger, 2008).
However, making the jump from the SIA approach to more

advanced models substantially increases computational de-
mands, which subsequently complicates the embedding of
these techniques into large-scale models. In this paper, we
present a computational algorithm that provides an approxi-
mate solution to the Stokes problem that is more accurate
than the SIA solution, but still applies the traditional SIA
scaling assumption on the aspect ratio of a glacier. The pri-
mary criterion for the construction of the new algorithm is
computational efficiency.

THE STOKES PROBLEM FOR FLOW
Our aim is to solve the boundary-value problem that allows
us to model an incompressible Stokes flow with non-linear
viscous rheology in a Cartesian geometry.
We are looking for the solution to the Stokes equation

with the acceleration term neglected, that is, the linear
momentum equation of the form

divτ + ρ�g = �0 , (1)

where ρ is the ice density, �g is the gravity acceleration at the

Earth’s surface and the stress tensor, τ , is given by

τ = −pI +σ , (2)

where p and σ are the isotropic and deviatoric parts of τ ,
respectively, and I is the identity tensor. Since the ice flow is
assumed to be incompressible and ice density homogeneous,
the divergence-free constraint on the ice velocity, �v , is to be
satisfied:

div�v = 0 . (3)

A glacier is bounded by two continuously differentiable
surfaces

x3 = fs(x1, x2) (free surface) (4)

x3 = fb(x1, x2) (bed) , (5)

where x1, x2, x3 are the Cartesian coordinates. Considering
the typical horizontal, [L], and vertical, [H], dimensions of
a glacier, and typical horizontal, [V↔], and vertical, [V�],
velocities of the glacier flow with the aspect ratio

ε =
[H]
[L]

=
[V�]
[V↔]

, (6)

the following scaling is introduced

(x1, x2, x3) = ([L]x̃1, [L]x̃2, [H]x̃3) , (7)

(v1, v2, v3) =
(
[V↔]ṽ1, [V↔]ṽ2, [V�]ṽ3

)
, (8)

(
fs (x1, x2) , fb (x1, x2)

)
= [H]

(
f̃s (x̃1, x̃2) , ˜fb (x̃1, x̃2)

)
, (9)

where the scaling of the stress tensor is chosen as

(p,σij ) = ρg[H](p̃, σ̃ij ) i, j = 1, 2, 3. (10)

Such a scaling only non-dimensionalizes the stresses, with-
out requiring the scaled quantities to be of the order of unity,
in which case a more appropriate scaling would be that
suggested by Greve (1997).
The Stokes equation (1) for the scaled quantities reads as

0 = − ∂p̃
∂x̃1

ε+
∂σ̃11

∂x̃1
ε+

∂σ̃12

∂x̃2
ε+

∂σ̃13

∂x̃3
, (11)

0 = − ∂p̃
∂x̃2

ε+
∂σ̃12

∂x̃1
ε+

∂σ̃22

∂x̃2
ε+

∂σ̃23

∂x̃3
, (12)

1 = − ∂p̃
∂x̃3

+
∂σ̃13

∂x̃1
ε+

∂σ̃23

∂x̃2
ε− ∂ (σ̃11 + σ̃22)

∂x̃3
, (13)
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where the symmetry of the deviatoric stresses, σij , was used
and σ33 was eliminated from the system of equations by
making use of the trace-free constraint on the deviatoric
stresses in such a way that only six independent stress
unknowns are considered. The incompressibility condition
(3) for scaled quantities then reads as

∂ṽ1
∂x̃1

+
∂ṽ2
∂x̃2

+
∂ṽ3
∂x̃3

= 0 . (14)

Boundary conditions
We assume stress-free conditions at the surface, i.e.

τ · �n = �0 , at x3 = fs(x1, x2) , (15)

where �n is the unit outer normal. In the scaled form, we have

0 = p̃
(

∂ f̃s
∂x̃1

)
ε− σ̃11

(
∂ f̃s
∂x̃1

)
ε− σ̃12

(
∂ f̃s
∂x̃2

)
ε+ σ̃13 ,

(16)

0 = p̃
(

∂ f̃s
∂x̃2

)
ε− σ̃12

(
∂ f̃s
∂x̃1

)
ε− σ̃22

(
∂ f̃s
∂x̃2

)
ε+ σ̃23 ,

(17)

0 = p̃ + σ̃11 + σ̃22 + σ̃13

(
∂ f̃s
∂x̃1

)
ε+ σ̃23

(
∂ f̃s
∂x̃2

)
ε , (18)

at x̃3 = f̃ s (x̃1, x̃2) .
At the glacier bed, we assume no-slip conditions, i.e.

�v = �0, at x3 = fb(x1, x2) (19)

or, in the scaled form,

�̃v = �0, at x̃3 = ˜fb(x̃1, x̃2) . (20)

Rheology
The connection between the deviatoric stress and the
velocity is made by a rheological equation. Here we
consider Glen’s flow law (e.g. Paterson, 1981) (the Einstein’s
summation convention is used if not otherwise stated):

σij = 2ηε̇ij , η =
1
2
A−1/n ε̇(1−n)/nII , n = 3, (21)

where A is an ice flow parameter and ε̇II is given by

ε̇II =

√
ε̇ij ε̇ij

2
, (22)

and

ε̇ij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (23)

Applying the scaling, Equations (7–9), the rheology equation
becomes

σ̃13 = η̃

(
∂ṽ1
∂x̃3

+ ε2
∂ṽ3
∂x̃1

)
, (24)

σ̃23 = η̃

(
∂ṽ2
∂x̃3

+ ε2
∂ṽ3
∂x̃2

)
, (25)

σ̃12 = εη̃

(
∂ṽ1
∂x̃2

+
∂ṽ2
∂x̃1

)
, (26)

σ̃11 = 2εη̃
∂ṽ1
∂x̃1

, (27)

σ̃22 = 2εη̃
∂ṽ2
∂x̃2

, (28)

η̃ =
(
2ε−1CV

)− 1
3
, (29)

C =
A(ρg )3[H]5

[V↔][L]
, (30)

V =
(

∂ṽ1
∂x̃3

+ ε2
∂ṽ3
∂x̃1

)2
+

(
∂ṽ2
∂x̃3

+ ε2
∂ṽ3
∂x̃2

)2

+ ε2
(

∂ṽ1
∂x̃2

+
∂ṽ2
∂x̃1

)2
+ 4ε2

(
∂ṽ1
∂x̃1

)2

+ 4ε2
(

∂ṽ2
∂x̃2

)2
+ 4ε2

(
∂ṽ1
∂x̃1

)(
∂ṽ2
∂x̃2

)
. (31)

Inversely, the strain-rate tensor may be expressed in terms
of the stress tensor as

ε̇ij = Aσn−1II σij , (32)

where

σII =

√
σklσkl

2
, (33)

which, in the scaled quantities, reads as

∂ṽ1
∂x̃1

= ε−2CSσ̃11 , (34)

∂ṽ2
∂x̃2

= ε−2CSσ̃22 , (35)

∂ṽ1
∂x̃2

+
∂ṽ2
∂x̃1

= 2ε−2CSσ̃12 , (36)

∂ṽ1
∂x̃3

+ ε2
∂ṽ3
∂x̃1

= 2ε−1CSσ̃13 , (37)

∂ṽ2
∂x̃3

+ ε2
∂ṽ3
∂x̃2

= 2ε−1CSσ̃23 , (38)

S = σ̃2
11 + σ̃2

22 + σ̃11σ̃22 + σ̃2
12 + σ̃2

13 + σ̃2
23 .

(39)

THE SIA-I ALGORITHM
In this section, we derive an iterative algorithm for updating
velocity and stress fields based on the application of the
Banach fixed-point theorem (e.g. Granas, 2003) for the
ice-flow problem. The iterations start with the SIA-derived
stress and velocity fields, which are then updated by
solving an approximate problem that has more convenient
numerical properties than the original setting. A crucial issue,
convergence of the iterative algorithm, is ensured if the
contractivity of the iterations holds. A detailed theoretical
analysis of this question is not the subject of this paper,
but the numerical examples presented in the following
indicate that the algorithm converges for a wide range of ice-
model parameters if the projection parameters controlling the
iterations are chosen to be sufficiently small.
To derive the algorithm, let us consider the system of

Equations (11–13) and assume there is an approximate
solution in the k th iterative step, i.e. the field

�uk ≡
(
p̃k , σ̃k

11, σ̃
k
12, σ̃

k
22, σ̃

k
13, σ̃

k
23

)
. (40)

The solution in the (k+1)th iteration is constructed in a two-
step procedure. In the first half-step, we find �uk+

1
2 as follows.
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814 Souček and Martinec: Iterative improvement of the shallow-ice approximation

Denoting the exact solution of Equations (11–13) by �u and
defining the increment δ�uk+

1
2 as

δ�uk+
1
2 = �u − �uk , (41)

the system of Equations (11–13) for �u may be rewritten as a
system of equations for the increment δuk+

1
2 , assuming that

�uk is known. We therefore obtain

−∂δp̃k+
1
2

∂x̃1
ε +

∂δσ̃
k+1

2
11

∂x̃1
ε+

∂δσ̃
k+ 1

2
12

∂x̃2
ε+

∂δσ̃
k+1

2
13

∂x̃3

=
∂p̃k

∂x̃1
ε− ∂σ̃k

11
∂x̃1

ε− ∂σ̃k
12

∂x̃2
ε− ∂σ̃k

13
∂x̃3

, (42)

−∂δp̃k+
1
2

∂x̃2
ε+

∂δσ̃
k+1

2
12

∂x̃1
ε+

∂δσ̃
k+1

2
22

∂x̃2
ε+

∂δσ̃
k+ 1

2
23

∂x̃3

=
∂p̃k

∂x̃2
ε− ∂σ̃k

12
∂x̃1

ε− ∂σ̃k
22

∂x̃2
ε− ∂σ̃k

23
∂x̃3

, (43)

∂δp̃k+
1
2

∂x̃3
ε− ∂δσ̃

k+ 1
2

13
∂x̃1

ε− ∂δσ̃
k+ 1

2
23

∂x̃2
ε+

∂
(
δσ̃

k+1
2

11 + δσ̃
k+1

2
22

)
∂x̃3

= −1− ∂p̃k

∂x̃3
ε+

∂σ̃k
13

∂x̃1
ε+

∂σ̃k
23

∂x̃2
ε

−
∂
(
σ̃k
11 + σ̃k

22

)
∂x̃3

. (44)

We now retain only the stresses δp̃k+
1
2 , δσ̃

k+1
2

13 and δσ̃
k+1

2
23

in Equations (42) and (43) and the stress δp̃k+
1
2 in Equation

(44), and neglect all other terms on the lefthand sides of the
equations. This approximation exactly corresponds to the
traditional SIA approach, assuming that only the retaining
stress components are dominant. Here, this approach is
applied to the stress increments, δ�u, only, instead of the
complete stress field as in the SIA (e.g. Greve, 1997). Hence,
none of the stress components from the previous k th iterative
step are omitted on the righthand sides of Equations (42–44).
The SIA-like approximation results in the equations for the
stress increments as follows

−∂δp̃k+
1
2

∂x̃1
ε+

∂δσ̃
k+1

2
13

∂x̃3
=

∂p̃k

∂x̃1
ε− ∂σ̃k

11
∂x̃1

ε

− ∂σ̃k
12

∂x̃2
ε− ∂σ̃k

13
∂x̃3

, (45)

−∂δp̃k+
1
2

∂x̃2
ε+

∂δσ̃
k+1

2
23

∂x̃3
=

∂p̃k

∂x̃2
ε− ∂σ̃k

12
∂x̃1

ε

− ∂σ̃k
22

∂x̃2
ε− ∂σ̃k

23
∂x̃3

, (46)

∂δp̃k+
1
2

∂x̃3
= −1− ∂p̃k

∂x̃3
+

∂σ̃k
13

∂x̃1
ε

+
∂σ̃k

23
∂x̃2

ε− ∂(σ̃k
11 − σ̃k

22)
∂x̃3

.

(47)

Equation (47) is now integrated along the vertical coord-
inate x̃3, from the computation point x̃3 to the boundary
point f̃ s which yields the pressure increment δp̃k+

1
2 at the

computation point x̃3. This result is then substituted into
Equations (45) and (46) which, after integration along the

vertical coordinate, x̃3, gives the increments δσ̃
k+1

2
13 ,δσ̃

k+ 1
2

23
at the computation point x̃3. The values of the integrands
at f̃ s are determined from the boundary conditions, Equa-
tions (16–18). To find them, the same procedure as before
is applied. The exact solution is decomposed into the
k th iterative-step solution, �uk , and the increment δ�uk+

1
2 , and

only increments in p̃, σ̃13 and σ̃23 are retained to
compensate for the discrepancy in adjusting the boundary
conditions in the k th iterative step. After some algebraic
manipulation, we obtain the boundary conditions for the
increments in the form

δp̃k+
1
2 = −p̃k − σ̃k

11 − σ̃k
22 + ε2 , (48)

δσ̃
k+ 1

2
13 = −σ̃k

13 + 2σ̃
k
11

(
∂ f̃ s
∂x̃1

)
ε+ σ̃k

12

(
∂ f̃ s
∂x̃2

)
ε

+ σ̃k
22

(
∂ f̃ s
∂x̃1

)
ε+ ε2 , (49)

δσ̃
k+ 1

2
23 = −σ̃k

23 + σ̃k
11

(
∂ f̃ s
∂x̃2

)
ε+ σ̃k

12

(
∂ f̃ s
∂x̃1

)
ε

+ 2σ̃k
22

(
∂ f̃ s
∂x̃2

)
ε+ ε2 , (50)

that are evaluated at x̃3 = f̃ s(x̃1, x̃2) and we do not explicitly
write the terms with ε2, because they will be excluded from
the computations in the algorithm. Strictly speaking, this
cannot be justified by the introduced scaling because we do
not assume the scaled quantities and their spatial derivatives
to be of order unity. What we present may hence be viewed
as merely a formal procedure, which will be justified only
by the final performance of the algorithm.
To sum up, the integration of Equation (47), followed by

the integration of Equations (45) and (46), with the use of
Equations (48–50), now results in the following formulae for

the stress increments δp̃k+
1
2 , δσ̃

k+1
2

13 and δσ̃
k+1

2
23 :

δp̃k+
1
2 (·, x̃3) = −p̃k (·, x̃3)− σ̃k

11 (·, x̃3)− σ̃k
22 (·, x̃3)

+
(
f̃ s(·)− x̃3

)

− ε
∂

∂x̃1

∫ f̃ s (·)

x̃3
σ̃k
13

(·, x̃ ′3)dx̃ ′3
− ε

∂

∂x̃2

∫ f̃ s (·)

x̃3
σ̃k
23

(·, x̃ ′3)dx̃ ′3
+ εσ̃k

13

(
·, f̃ s(·)

)
∂ f̃ s(·)
∂x̃1

+ εσ̃k
23

(
·, f̃ s(·)

)
∂ f̃ s(·)
∂x̃2

+ ε2 , (51)

δσ̃
k+1

2
13 (·, x̃3) = −σ̃k

13 (·, x̃3)− ε
∂ f̃ s(·)
∂x̃1

(
f̃ s(·)− x̃3

)

+ 2ε
∂

∂x̃1

∫ f̃ s (·)

x̃3
σ̃k
11

(·, x̃ ′3) dx̃ ′3
+ ε

∂

∂x̃2

∫ f̃ s (·)

x̃3
σ̃k
12

(·, x̃ ′3) dx̃ ′3
+ ε

∂

∂x̃1

∫ f̃ s (·)

x̃3
σ̃k
22

(·, x̃ ′3) dx̃ ′3 + ε2 ,

(52)
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δσ̃
k+1

2
23 (·, x̃3) = −σ̃k

23 (·, x̃3)− ε
∂ f̃ s (·)
∂x̃2

(
f̃ s(·)− x̃3

)

+ ε
∂

∂x̃2

∫ f̃ s (·)

x̃3
σ̃k
11

(·, x̃ ′3) dx̃ ′3
+ ε

∂

∂x̃1

∫ f̃ s (·)

x̃3
σ̃k
12

(·, x̃ ′3) dx̃ ′3
+ 2ε

∂

∂x̃2

∫ f̃ s (·)

x̃3
σ̃k
22

(·, x̃ ′3) dx̃ ′3 + ε2 ,

(53)

where the dot in (·) stands for the pair (x̃1, x̃2) for brevity and
again terms with ε2 are not considered further and therefore
not explicitly written.
We now define the updated solution in the

(
k + 1

2

)
step

as

�uk+
1
2 = �uk + θ1δ�uk+

1
2 , (54)

where θ1 ∈ (0, 1) is the first projection parameter of the
iterative scheme. Note that, by the previous derivations, we
consider

δ�uk+
1
2 =

(
δp̃k+

1
2 , 0, 0, 0,δσ̃

k+1
2

13 ,δσ̃
k+1

2
23

)
, (55)

that is, only these three stress components are updated in the
first half-step.
In the second half-step, the consistency of the stress

field with the velocity field must be ensured, that is, the
rheological equation must be adjusted.
First, the terms with ε2 on the lefthand sides of Equa-

tions (37) and (38) are neglected and the result is integrated
along the vertical coordinate x̃3 from the glacier bed f̃ b to the
computation point x̃3. Making use of the no-slip boundary
condition, Equation (20), and considering the updated stress

field σ
k+1

2
ij , we obtain

ṽ
k+1

2
1 (·, x̃3) = 2ε−1C

∫ x̃3

f̃ b(·)
Sk+

1
2 (·, x̃ ′3)σ̃k+1

2
13 (·, x̃ ′3) dx̃ ′3 , (56)

ṽ
k+1

2
2 (·, x̃3) = 2ε−1C

∫ x̃3

f̃ b(·)
Sk+

1
2 (·, x̃ ′3)σ̃k+1

2
23 (·, x̃ ′3) dx̃ ′3 . (57)

The velocity, ṽ
k+1

2
3 , is then obtained by integration of the

incompressibility condition, Equation (14), from f̃ b to x̃3.
Making use of the no-slip boundary condition, Equation (20),
we obtain

ṽ
k+1

2
3 (·, x̃3) = −

∫ x̃3

f̃ b(·)

(
∂ṽ

k+1
2

1
∂x̃1

+
∂ṽ

k+ 1
2

2
∂x̃2

)
(·, x̃ ′3) dx̃ ′3 . (58)

This completes the determination of the velocity field �vk+
1
2 .

This field is now used to update the stress components
from the rheological equation, that consequently reduces
the inconsistency of the updated velocity field with stresses.
The substitution of the velocity, �vk+

1
2 , into the rheological

equations (24–31) yields the stress components that form
a stress vector denoted by �u�k+1

2 . The new �uk+1 is finally
defined as a convex combination of the previous solution
given by Equation (54) and the rheologically consistent
solution �u�k+1

2 , i.e. we define

�uk+1 = �uk+
1
2 (1− θ2) + θ2�u

�n+1
2 , (59)

Table 1. Values of physical parameters

Symbol Constant Value Unit

A Ice-flow parameter 10−16 Pa a−1
ρ Ice density 910 kgm−3
g Gravitational acceleration 9.81 m s−2

where θ2 ∈ (0, 1) is the second projection parameter of the
iterative scheme.
We call the presented approach that iteratively improves

the SIA solution the SIA-I algorithm. Its computational steps
may symbolically be depicted by the following scheme,
starting from uk :

�uk �� (51–53) �� δp̃k+
1
2 ,δσ̃

k+1
2

13 ,δσ̃
k+1

2
23

��
�uk+

1
2

��

(54)��

�uk+1

��

(56–58) �� �vk+
1
2

��
(59)

��

�u�n+ 1
2

�� (24–31)��

NUMERICAL SIMULATION
In this section, we present numerical results obtained by
the SIA-I approach for the ISMIP-HOM (Ice Sheet Model
Intercomparison Project–Higher-Order ice-sheet Model) ex-
periment (http://homepages.ulb.ac.be/∼fpattyn/ismip/).
Our approach has been incorporated into experiments A

and B (model oso1) (see Pattyn and others, 2008, for a
discussion of results and model outputs). Here, we present
the results for experiment A where the no-slip condition
is considered at the glacier base. We also discuss the
performance of the SIA-I algorithm for experiment C, where
basal sliding with a prescribed sliding law is considered.

ISMIP-HOM experiment A
The problem is set up as follows. The experiment involves a
Stokes flow problem, no slip at the bed, stress-free conditions
at the surface and the ice is considered isothermal. The values
of the physical parameters used are given in Table 1.
The glacier has a square base of size [L] × [L]. The upper

and lower surfaces are given (in meters) by

fs(x1, x2) = −x1 tanα , α = 0.5◦, (60)

fb(x1, x2) = fs(x1, x2)− 1000 + 500 sin (ωx1) sin (ωx2) ,
with

ω =
2π
[L]

.

At the sides, the periodic boundary conditions are prescribed:

∀x1 ∈ 〈0, L〉,∀x3 ∈ 〈fb(·), fs(·)〉 : �v (x1, 0, x3) = �v (x1, [L], x3) ,

(61)
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Fig. 1. Comparison of the surface velocity fields (ma−1), and stress components, σ13, σ23, and the pressure difference, Δp = p − Hρg
at the bottom (kPa), obtained by the SIA-I solver (full line labeled diagonally) and the full-Stokes solver (dotted line labeled horizontally),
respectively, for the aspect ratio ε = 1

20 .

∀x2 ∈ 〈0, L〉, ∀x3 ∈ 〈fb(·), fs(·)〉 : �v (0, x2, x3) = �v ([L], x2, x3) .

(62)

The plotted quantities are the velocities v1, v2, v3 at the upper
surface (in m a−1) and stress components σ13, σ23, Δp =
p −Hρg at the bottom (in kPa), H = fs − fb. All quantities
are mapped onto the scaled domain 〈0, 1〉 × 〈0, 1〉. The
numerical implementation includes the transformation of the
problem into stretched coordinates, as usual in glaciology
(e.g. Pattyn, 2003). The glacier flow computed by the SIA-
I approach is checked against a finite-difference full-Stokes
solver (see Appendix). For a more detailed comparison with
other solvers, see the results of the ISMIP-HOM experiment A
(Pattyn and others, 2008).

RESULTS
Results for ε = 1

20

The SIA-I solution is computed with the projection param-
eters θ1 = 0.2 and θ2 = 0.05. The results are stored in
a staggered grid of dimensions 41 × 41 × 41, where one
type of node contains the velocity components ṽ1, ṽ2, ṽ3,
while the other nodes contain the stress-tensor components
σ̃11, σ̃22, σ̃12, σ̃13, σ̃23 and pressure p̃. The SIA-I solution,
obtained after 60 iterations, is shown in Figure 1 (full lines).
The computation was performed on an Intel Pentium 4,
3.2GHz computer and took∼52 s. More details on the com-
putational costs of the SIA-I are given below.
The full-Stokes solution (dotted lines in Fig. 1) was

obtained by the standard finite-difference method (see
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Fig. 2. As for Figure 1 but for ε = 1
10 .

Appendix). It was started from the SIA-I solution on a
staggered 20 × 20 × 20 grid. The iterative updating of
viscosity was stopped after 40 iterations, when the results
were not changing within a specified tolerance. Figure 1
shows an almost perfect agreement between the SIA-I and
finite-difference resulting surface velocities and a minor
quantitative mismatch for the bottom stress components σ13
and σ23. The main difference appears, however, in the
bottom-pressure difference, Δp.

Results for ε = 1
10

The SIA-I solution is computed with the projection param-
eters θ1 = 0.2 and θ2 = 0.02. The resolution of the com-
putational domain for both solutions was the same as in
the previous case. The SIA-I solution, obtained now after
100 iterations to achieve the required tolerance (Fig. 2, full

lines), is again compared with the full-Stokes solution (dotted
lines) which was obtained by the finite-difference approach
for 40 iterative updates of viscosity.
Inspecting Figure 2, we see rather good agreement be-

tween both the solutions, in particular for the velocities.
Again, the largest difference appears in the pressure differ-
ence, Δp. It is noted that the SIA-I solution is smoother
than the finite-difference solution, indicating possibly some
numerical instabilities in the finite-difference solver.
To estimate the order of improvement of the SIA-I solution

compared to the SIA solution, Figure 3 plots the SIA solution
for v1 and v3 at the surface (v2 is identically zero) and σ13
at the bottom (σ23 and Δp are identically zero). Comparing
Figure 2 with Figure 3, we see that the SIA-I solution differs
significantly from the SIA solution, demonstrating that the
SIA-I approach is capable of providing a more accurate
solution of glacier flow.
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Fig. 3. The SIA solution for the aspect ratio ε = 1
10 . Note that the

field quantities not shown here (v2 at fs and Δp, σ23, at fb) are
identically equal to zero in this case.

As demonstrated in the following section, the convergence
of the SIA-I algorithm worsens with increasing aspect ratio,
ε. This can be overcome, to some extent, by choosing suf-
ficiently small projection parameters θ1, θ2, but a threshold
aspect-ratio value appears to exist for the practical usability
of our method. For the current geometry setting from the
ISMIP-HOM experiment A, this value is 1

10 .

Convergence of the SIA-I algorithm
In this section, we demonstrate how convergence is affected
by varying the aspect ratio, ε, and the magnitudes of the
projection parameters, θ1, θ2. We perform all runs with the
ISMIP-HOM experiment A set-up.
The convergence rate is inspected by checking the

evolution of errors of linear momentum balances, rheology
equations and equation of continuity, respectively. These

a

b

c

Fig. 4. The evolution of the averaged relative error of (a) linear
momentum balances, (b) rheology equations and (c) equation of
continuity, for various combinations of the projection parameters
θ1 and θ2. The labels read as, for example, ‘0.2-0.05’: θ1 = 0.2,
θ2 = 0.05. The results apply to the case of a spatial resolution
31× 31 × 31 and aspect ratio 1

80 .

errors are defined as follows. All the equations are evaluated
at the nodes using the discretization of spatial derivatives
by two-point symmetric finite differences. If we had an
analytical solution, i.e. a solution satisfying the equations
exactly in the limit of an infinitesimally small discretization,
such a procedure would provide the so-called discretization
error. In the case of the SIA-I solution, there is an additional
approximation error, resulting from the fact that only an
approximation to the full-Stokes problem is solved at each
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SIA-I iteration. We divide the error by the magnitude of
the largest term in each particular equation and obtain the
relative error at each node. For conciseness we first average
these errors over the nodes and then compute one average
value from the three linear momentum balance errors, one
from the five rheology equations’ errors and finally one
continuity equation error.
In Figure 4 we plot the total (discretization plus approxi-

mation) errors of the SIA-I solution for various combina-
tions of the projection parameters θ1 = 0.2, 0.5, 0.8, θ2 =
0.2, 0.1, 0.05, a fixed aspect ratio, ε = 1

80 , and spatial reso-
lution 31× 31× 31. For all cases the overall error decreases
and eventually reaches a limit (except for the uppermost
curves in the middle and bottom panels, where more iter-
ations would be needed to reach the limit). As documented
for θ1 = 0.8 and θ2 = 0.2 (black triangles), when the pro-
jection parameters are chosen to be too large, the solution
is scattered by a persistent high-frequency noise preventing
the error from dropping below a certain value.
Observe that for, for example, θ1 = 0.5 and θ2 = 0.2, the

error decreases relatively quickly and a sufficiently accurate
solution is obtained after 20 iterations. We also see that
below a certain critical value of the projection parameters,
the convergence speeds up with their increase, while above
the critical threshold the too-large projection parameters
induce high-frequency scattering of the output. This may be
connected to the spatial resolution since the sequence of
successive iterative solutions may formally be viewed as a
time-discretized evolution, and as the spatial dependency of
field variables is also discretized by finite differences, one
may expect a criterion, analogous to the Courant criterion
(Press and others, 1992), to be fulfilled to ensure stability of
the algorithm. For a given spatial resolution, this criterion
would constrain the maximum values of the projection
parameters, θ1 and θ2, that control the evolution in ’time’.
Next, in Figure 5, we inspect the role of the aspect ratio, ε.

Since the derivation of the SIA-I approach requires ε be
sufficiently small, there is a threshold value of ε above which
the SIA-I algorithmwill not converge. Figure 5 plots the errors
for aspect ratios ε = 1

5 ,
1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160 and a fixed spatial

resolution 31×31×31. The projection parameters are chosen
as θ1 = 0.2 and θ2 = 0.02, for all computations. Figure 5
clearly demonstrates the key role of the aspect ratio, ε, for
convergence of the SIA-I algorithm. For the chosen projection
parameters, θ1, θ2, the value ε = 1

10 is the threshold and for
larger aspect ratios the algorithm fails to converge.
In summary, whether the SIA-I algorithm converges and

how fast it does so is a matter of several coupled factors.
For a sufficiently small aspect ratio, ε, (less than 1

10 for
the ISMIP-HOM A experiment), the algorithm converges
by choosing projection parameters, θ1, θ2, below certain
threshold values, dependent on both the aspect ratio and
the spatial resolution, and the convergence of the algorithm
improves by approaching these critical values from below.
Moreover, the critical values decrease with increasing aspect
ratio, ε; as a result, for ε > 1

10 it is impossible to reach
convergence within the ISMIP-HOM A experimental set-up.

Performance of the SIA-I for other than the no-slip
boundary condition, ISMIP-HOM experiment C
The SIA-I algorithm as described above may easily be
modified to allow a Dirichlet boundary condition on the
velocity at the glacier bed, that is the condition �v (·, fb(·)) =
�v0(·). We merely modify Equations (56–58) as follows:

a

b

c

Fig. 5. The evolution of averaged relative error of (a) linear
momentum balances, (b) rheology equations and (c) equation of
continuity, for various aspect ratios ε = 1

5 ,
1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160

and for a fixed spatial resolution 31× 31× 31. The results apply to
θ1 = 0.2 and θ2 = 0.02.

ṽ
k+1

2
1 (·, x̃3)
= ṽ01(·) + 2ε−1C

∫ x̃3

f̃ b(·)
Sk+

1
2
(·, x̃ ′3) σ̃

k+1
2

13

(·, x̃ ′3) dx̃ ′3 , (63)
ṽ
k+1

2
2 (·, x̃3)
= ṽ02(·) + 2ε−1C

∫ x̃3

f̃ b(·)
Sk+

1
2
(·, x̃ ′3) σ̃

k+1
2

23

(·, x̃ ′3) dx̃ ′3 , (64)
ṽ
k+1

2
3 (·, x̃3)
= ṽ03(·)−

∫ x̃3

f̃ b(·)

(
∂ṽ

k+ 1
2

1
∂x̃1

+
∂ṽ

k+1
2

2
∂x̃2

)(·, x̃ ′3) dx̃ ′3 . (65)
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Fig. 6. Comparison of the surface velocity fields, v1 and v3 (ma−1), obtained by the SIA-I solver (black points) and the full-Stokes solvers
oga1, rhi1 and fpa2 from the ISMIP-HOM C experiment, for the aspect ratio ε = 1

80 . The displayed results are taken at an intersection of
the scaled domain with the plane y = 0.25.

With this modification, the SIA-I algorithm was tested using
real data from the Antarctic region, considering, in addition,
temperature-dependent viscosity. Without presenting any
results, we only state that, for a reasonably smooth Dirichlet
condition on velocity at the glacier bed, the performance of
the SIA-I approach is comparable to the no-slip case. We
intend to publish details of this result in a future paper.
To involve the sliding at the glacier bed, it is, however,

necessary to change the Dirichlet boundary condition to
the Newton boundary condition. Although we have not
participated in the ISMIP-HOM C experiment, we are still
able to make a few remarks on the SIA-I performance for this
case, when basal sliding is concerned.
The problem is set up similarly to experiment A, but the

driving effect is, instead of bed-geometry undulations, spatial
inhomogeneities in the basal-friction coefficient. The upper
and lower surfaces are both inclined planes given (in meters)
by

fs(x1, x2) = −x1 tanα , α = 0.1◦, (66)

fb(x1, x2) = fs(x1, x2)− 1000 .

At the sides, periodic boundary conditions are again pre-
scribed for the velocity field. At the glacier bed, the following
sliding law is considered:

β2�t · �v =�t ·σ · �n , (67)

where �t and �n are the tangent and upward normal vectors
to the glacier base, fb, respectively. The sliding coefficient is
given by

β2(x1, x2) = 1000 + 1000 sin (ωx1) sin (ωx2) , (68)

with
ω =

2π
[L]

.

The Dirichlet condition on velocity, either in the form of
no-slip or a prescribed velocity, is essential for the SIA-I
algorithm since it allows a straightforward computation of the
velocities by integration along the vertical coordinate. That
is why the sliding law, Equation (67), has to be transformed
to a Dirichlet-type condition for velocity. This can be done
as follows. For β(·) �= 0, the stress field from the previous
half-step can be used as

�t · �v0 k+ 1
2 =

�t ·σk+1
2 · �n

β2
. (69)

The sliding velocity, �v0 k+
1
2 , is then substituted in Equa-

tions (63–65) for �v0. Evidently, this approach can only be
applied to the region with β �= 0 while, in the region where
β = 0, the algorithm fails. Such a situation occurs in the
experiment C setting, where β = 0 at two points. To avoid the
failure of the SIA-I approach, we add a small positive constant
to β and successively decrease it during the iterations.
The results are shown in Figures 6 and 7. The plotted

quantities are velocities v1, v3 at the upper surface (in ma−1)
and the stress component, σ13, and pressure difference
Δp = p −Hρg at the bottom (in kPa). As in the previous
experiment, all these quantities are mapped onto the scaled
domain 〈0, 1〉 × 〈0, 1〉 and the solutions are plotted at
the cross-section with the plane y = 0.25. For the com-
parison, we plot three full-Stokes solutions from ISMIP-HOM
experiment C, that is the models oga1, fpa2 and rhi1. We
show the results for two aspect ratios, 1

80 in Figure 6, and
1
20 in Figure 7. All solutions are computed with a resolution
of 31 × 31 × 31, and are stopped after 200 iterations. The
projection parameters are θ1 = 0.2, θ2 = 0.02 for aspect
ratio ε = 1

80 and θ1 = 0.1, θ2 = 0.01 for aspect ratio ε = 1
20 .
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Fig. 7. As for Figure 6, but for ε = 1
20 .

To compute each example takes 50 s of CPU time on an Intel
Pentium 4 with 3.2GHz.
Figures 6 and 7 show that, in accordance with our as-

sumption, the SIA-I algorithm fails to compute the horizontal
velocities correctly in the neighborhood of the point where
the sliding friction coefficient β = 0, that is at the point
(0.75, 0.25) in our case. Moreover, the error increases with
the increasing aspect ratio. However, the error is localized
in a small region surrounding the point with β = 0, and the
stresses are well computed everywhere, even for a relatively
large aspect ratio

( 1
20

)
. In general, we may conclude that the

Newton boundary condition at the glacier base, i.e. the slid-
ing law of the form in Equation (67), represents a restriction
for the applicability of the SIA-I only in the cases when the
region of a very small basal friction coefficient, β, is present.

Numerical performance
The essential feature of the presented SIA-I approach is its
computational effectiveness. The algorithm is designed such
that the time cost spent at each iterative step is similar to
that required for the SIA approach. Using an Intel Pentium
4, 3.2GHz computer, we have performed 50 iterations for
the ISMIP-HOM A setting with ε = 1

80 , which is a sufficient
number of iterations for the SIA-I solution to converge to the
full-Stokes solution. In Figure 8 we plot the total CPU time for
SIA-I as a function of degrees of freedom, that is the number
of computed velocity and stress components on a staggered
grid. We can see that computational time increases linearly
with increasing number of degrees of freedom.
Since our full-Stokes solver is not optimized for numerical

performance, we consider CPU-time demands for compu-
tational runs of the professionally optimized finite-element
solver Elmer (Gagliardini and Zwinger, 2008). For the cur-
rent ISMIP-HOM A setting, the authors provide an analytical

formula for CPU-time costs in seconds as a function of the
number of degrees of freedom: y = 0.013x1.11. If we make a
similar estimate for the SIA-I solver, we obtain y = 0.00015x
(see Fig. 8).

CONCLUSIONS
The new iterative SIA-I algorithm presented in this paper is
derived from the traditional SIA assumption of the smallness
of the aspect ratio of the vertical/horizontal dimensions of
a glacier. The algorithm represents an iterative extension
of the SIA approach, and, in general, may provide a
substantially improved solution of the Stokes flow problem.
The key parameters controlling the performance of the SIA-I
algorithm are the aspect ratio and projection parameters, θ1,
θ2. For the model example taken from the ISMIP-HOM A
experiment with ε ≤ 1

10 , the SIA-I algorithm converges if
sufficiently small projection parameters are chosen. The case
with ε = 1

10 is a threshold above which the SIA-I algorithm
fails to converge, resulting in inaccurate and noisy results.
Besides its relative simplicity, the greatest advantage of the

SIA-I algorithm is its fast computational speed, since it is
designed such that the numerical computations consist of
only numerical integration over the vertical coordinate and
the differentiation of field quantities, similar to numerical
operations performed within the SIA approach. Moreover,
the computational demand grows only linearly with the
number of degrees of freedom.
The performance of the SIA-I algorithm was also tested for

the ISMIP-HOM experiment C where a Newton-type sliding
law is applied at the glacier base. The SIA-I approach requires
the reformulation of the sliding law as a Dirichlet boundary
condition for velocity that results in wrongly computed
velocities in the regions of small sliding friction coefficient,
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Fig. 8. CPU-time demands of the SIA-I algorithm as a function of
degrees of freedom for the ISMIP-HOM A setting with ε = 1

80 and
for 50 iterations, computed on Intel Pentium 4, 3.2GHz.

β. However, the errors in the velocities are localized in the
vicinity of the region where β = 0. The erroneous behavior of
the SIA-I algorithm disappears with decreasing aspect ratio.
For instance, in the case where ε = 1

80 , the SIA-I converges
to the exact solution everywhere in the solution domain.
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APPENDIX
THE FINITE-DIFFERENCE FULL-STOKES SOLVER
To carry out the benchmarks against which the SIA-I
solution could be checked, we developed a simple full-
Stokes solver. The governing equations (11–13), (14) and
(24–31) are rewritten in stretched coordinates (see, e.g.,
Pattyn, 2003). The spatial derivatives are approximated by
two-point symmetric differences and the resulting system of
non-linear algebraic equations is solved on the staggered grid
with two types of alternating nodes, first for the rheology
equations and the equation of continuity, the others for
the momentum balance equations. For a fixed viscosity, the
linear system of equations is solved by a PARDISO (Parallel
Sparse Direct Linear Solver) routine (http://www.intel.com),
and the viscosity is iteratively updated by the convex
combination of the previous and updated velocity fields.
The convergence is checked by inspecting the evolution of
the maximal difference between two successively computed
velocity fields.
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