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Abstract

In this paper we present a characterization of PSL(2.7) by a condition different from that
given in our previous paper.

1. Introduction

In the first place we shall fix our notation. Let G be a finite group and
TT(G) the set of primes each dividing the order of G. Then we denote by
T(G),

T(G) = {pG TT(G)\ [G : M] is a power of p, where M is a subgroup of G}

and by 4>(G), the set of pairs

i/»(G) = {(M,p)|p E r ( G ) , p | [ G :M\ for a maximal subgroup M of G}.

We shall be using the following hypothesis:
(*) (i) G is simple

(ii) Every maximal subgroup of G has index a power of a prime.
In Adnan (1976), we have been able to show that if the group G satisfies

hypothesis (*) together with the condition

(A) For every (M,p)G. tjj, M is q-soluble for some q G T - {p},

then G = PSL(2,7).
In this paper we replace condition (A) by another condition which is

easier to work with, and show that in presence of hypothesis (*), our new
condition implies condition (A) and as such G — PSL(2,7).

Next we proceed to state our main theorem.

MAIN THEOREM. Let G be a finite group satisfying (*). Then G — PSL (2,7)
if the following condition (B) holds.
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(B) There are primes p, q G T, p ^ q, such that for every (M, p), (N, q) G t/>,
M H N is disjoint from its conjugates.

2. Preparatory lemmas

LEMMA 1. (Non-simplicity condition). Let G be a finite group and H and
K be subgroups of G with

[G:H] = p> [G:K] = q'

p, q being distinct primes ofn(G). IfH D K contains a unique involution x, and
if CG(x)C NG (H n K), then G is not simple.

PROOF. Set Y = H C\K.\i q^2/ p, then Y contains an S2-subgroup T
of G. Since V contains a unique involution, it follows that T is either cyclic or
generalized quaternion and so G is not simple by p. 373 of [2]. Thus we may
assume that q = 2.

Let B = O2(Y). Then B/ 1 by hypothesis. Moreover, if S is an S2

subgroup of H, then H = YS. Since Y C\ S is an S2-subgroup of Y, we have
B C S. We conclude that O2(H)/ 1.

Now let f be an involution such that [ £ Z f l O2(H), where Z = Z(S).
Since Z C C c ( x ) C NG(Y), f normalizes Y. If r is an odd prime dividing | Y\
and R is an Sr-subgroup of Y, then [R, f] C [ Y, f] C Y n O2(H). Let z be any
non-identity element of R. Then [z, f ] G O2(H) and since ( G Z , I centralises
O2(H), and hence / centralises f*. Hence [z, f] = t't is an involution in Y or 1.
By hypothesis [z, f] G (x). Similarly [z2,;] G (x) and we conclude that [z, t] =
1. Therefore t centralises R and thus Y. Since I £ Z , we have Y, S C CG(f)
i.e. H C CG(t). Thus [G: CG(0] is a power of p and so G is not simple by
p. 131 of [2].

LEMMA 2 (Solubility Criterion). / / G is a finite group expressible in the
form G = HQ where H is a regular group of automorphisms of some p-group,
having no quaternion subgroups and Q is a q-subgroup of G for some prime
q G TT(G), then G is soluble.

PROOF. Since H contains no quaternion subgroups, we deduce that H is
metacyclic (by [2] p. 258). If q G v(H), then we write G = KQ, where K is a
Hall q'-subgroup of H and Q, a Sylow q-subgroup of G. Thus we may assume
without loss of generality that H is a q '-subgroup of G.

We proceed now by induction on \G\. We first show that if N is a
non-trivial normal subgroup of G, then N is soluble. If Q C N then
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N = (Nn H)Q and by induction N is soluble. If Q£ N then L = HN is a
proper subgroup of G. Also Q H N is a Sylow g-subgroup of N and hence of
L, and so L = H(Q n N). Again by induction L and hence N is soluble. In
particular if G'CG, then G' and hence G is soluble. We may therefore
assume that G is perfect. If Oq(G)^ 1, then clearly G = G/Oq(G) satisfies
the hypothesis of the lemma and so G and hence G is soluble. On the other
hand if Oq(G)^ 1, then let r be the largest prime dividing Oq{G) and D be
an Sr-subgroup of Oq(G). Since Oq{G)QH, Oq(G) is metacyclic and so
0=30, (G) i.e. D<G. Thus G/CG(D) embeds into Aut(D). Since D is cyclic
and G is perfect, we have G = CG{D). Set G = G/D. Then I / D C
Z(G)H G' and so the Schur multiplier of G (see [3], p. 628) is non-trivial.
However by Satz ([3], p. 642) the r-part of the Schur multiplier of G embeds
into the Schur multiplier of R, R being an S,-subgroup of G. Since R is cyclic,
it follows by Satz in [3] p. 643 that the Schur multiplier of R is 1, a
contradiction. Therefore we may assume Oq(G)= 1 = Oq(G) i.e. F(G)= 1.
Now let JC E Z(H) (Z(H)/l by Satz in [3] p. 506). Then [G: CG(x)] is a
power of q and hence G is not simple by a theorem of Burnside (cf. [2] p.
131). Let N be a normal (non-trivial) subgroup of G. Since N is soluble, we
have 1 / F(N)QF(G), the last contradiction.

REMARK. In the proof of lemma 2 above, one can use theorem 4.4 (ii)'of
[2], p. 253 instead of the Schur multiplier and argue that G is not perfect.

LEMMA 3. Let G be a finite group, then

(i) G = MN for two subgroups M and N implies NG(M D N) is
factorisable.

(ii) If G satisfies (*), and if (M, p) and (N,q)E 4>(G), forp and q distinct
primes in T(G), then G = MN. If M is Frobenius group then NG(M H N)C N.
Conversely if M n N is disjoint from its conjugates and if Na(M D N)C N,
then M is Frobenius.

(iii) Let G satisfy (*), and let (M, p), (N, q) E iA(G) for distinct primes p
and q in T(G) such that M D N is disjoint from its conjugates. If M is Frobenius
then M D N is a Frobenius complement for M and has odd order.

PROOF, (i) Let us write H = M D N. If g £ NG(H), then g = mn, for
some m EM and n E N. So

Thus

Hm =H" 'CM DN = H i.e. m,nENG(H).
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(ii) By (i) we may write NG(H) = (M n Na(H))(N D NO(H)). Since M
s Frobenius, it follows by Thompson's theorem (cf. [2] p. 337) that F(M) ^ 1.
}y lemma 4 in [1] it follows that F(M) is an Sp-subgroup of G. Since [M: H]
s a power of p, we have M D NG(H) = H. Thus Na(H) = N f l Na(H) is
:ontained in N. Conversely if NG(H)C N, then as M fl N = H, we conclude
V n NG(H) = H. Further H is disjoint from its conjugates and so M is
-robenius.

(iii) To show H is a complement for M, we notice that by our hypothesis
H is disjoint from its conjugates. Moreover since [M: H] is a power of p and
M is Frobenius with kernel an Sp-subgroup of G (cf. [1], lemma 4), we have
M fl NG(H) = H i.e. H is a complement for M.

To show H has odd order, we notice that if | H | is even, then since H is a
:omplement for M, by the above, H contains a unique involution, say x. By
hypothesis, H is disjoint from its conjugates, and so CG(x)C. NG(H). By
lemma 1, however G could not be simple, thus leading to a contradiction.

To establish our main theorem we proceed to prove in two parts.
(A) Let 3 ={(M,N)\(M,q),(N,p)Gilj, M and N being non-Frobenius};

then we establish first that 3 is empty.

PROOF. If $ is not empty, choose (M,N)E.$, with (M, q), (N,p)Gi|(,
such that M n N = H has maximal order. Let L be a maximal subgroup of G
containing NG(H). Since [G: H] is divisible only by p or q, L has index a
power of p or q. We may therefore assume that (L,q)G t//. Suppose now by
way of contradiction that L is Frobenius. Then H C N n L = K where K is a
complement of L by part (iii), Lemma 3. Now let R be an Sr-subgroup of G
and also contained in H, for r G n(G). Then n,(R)char H, fl,(R)char K.

Since H and K each is disjoint from its conjugates, we have

By lemma 3 (ii), No (H) = NG (K)C ]V. By the same lemma 3 (ii) again, we
conclude that M is Frobenius contrary to the fact that (M, N)G J>.

On the other hand, if L is non-Frobenius, with (L,q)G (//, then (N, L)G
i\ Since H C N D L, maximality of H forces H = N C\ L. Since NG(H)CL, it
follows by Lemma 3 (ii) that N is Frobenius — a contradiction. Thus ^ is
empty.

(B). By (A) using Thompson's theorem ([2] p. 337) we obtain that a
maximal subgroup of G has in fact a nontrivial Fitting subgroup. By [1]
lemma 4 T = {p,q}. Next let (U,q), (V,p)G t//. By part (A) above we may
assume that U is a Frobenius group. By lemma 3 (ii) U D V is a complement
of t/ and has odd order and so U is soluble. Since V = (U D V)Q, where Q
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is a Sylow g-subgroup of G, it follows by lemma 2 that V is soluble also. Thus
by the main theorem in [1], we conclude that

G = PSL (2,7).
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