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Abstract

In this paper we present a characterization of PSL(2.7) by a condition different from that
given in our previous paper.

1. Introduction

In the first place we shall fix our notation. Let G be a finite group and
m(G) the set of primes each dividing the order of G. Then we denote by
m(G),

7(G)={p € w(G)||G : M] isapower of p, where M is a subgroup of G}
and by ¢(G), the set of pairs
W(GY={M,p)|p € 1(G).p |G : M] for a maximal subgroup M of G}.
We shall be using the following hypothesis:
(*) (1)) G is simple
(i) Every maximal subgroup of G has index a power of a prime.

In Adnan (1976), we have been able to show that if the group G satisfies
hypothesis (*) together with the condition

(A) For every (M,p)E Wy, M is q-soluble for some q¢&r1—{p}
then G = PSL(2,7).

In this paper we replace condition (A) by another condition which is
easier to work with, and show that in presence of hypothesis (*), our new
condition implies condition (A) and as such G =PSL(2,7).

Next we proceed to state our main theorem.

MAINTHEOREM. Let G be a finite group satisfying (*). Then G = PSL(2,7)
if the following condition (B) holds.
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(B) There are primes p,q € 1, p# q, such that for every (M, p), (N, q) € ,
M N N is disjoint from its conjugates.

2. Preparatory lemmas

LemMa 1. (Non-simplicity condition). Let G be a finite group and H and
K be subgroups of G with

(G:H]=p' [G:K]=¢q'

p, q being distinct primes of w(G). If H N K contains a unique involution x, and
if C6(x)C Ng (H N K), then G is not simple.

Proor. Set Y = HNK. If g#2# p, then Y contains an S,-subgroup T
of G. Since Y contains a unique involution, it follows that T is either cyclic or
generalized quaternion and so G is not simple by p. 373 of [2]. Thus we may
assume that q = 2.

Let B = 0,(Y). Then B#1 by hypothesis. Moreover, if S is an S,
subgroup of H, then H = YS. Since Y NS is an S;-subgroup of Y, we have
B C S. We conclude that O,(H)# 1.

Now let t be an involution such that t € Z N O,(H), where Z = Z(S).
Since Z C Cs(x)C Ng(Y), t normalizes Y. If r is an odd prime dividing | Y|
and R is an S,-subgroup of Y, then [R,t]C[Y,t]C Y N OH). Let z be any
non-identity element of R. Then [z, ¢] € O,(H) and since t € Z, t centralises
O,(H), and hence ¢ centralises ¢*. Hence [z, t] = ¢*t is an involution in Y or 1.
By hypothesis [z, t] € {x). Similarly [z, t] € (x) and we conclude that [z,¢] =
1. Therefore t centralises R and thus Y. Since t € Z, we have Y, S C Cs(1)
i.e. HC Cs(t). Thus [G: Cs(t)] is a power of p and so G is not simple by
p- 131 of [2].

Lemma 2 (Solubility Criterion). If G is a finite group expressible in the
form G = HQ where H is a regular group of automorphisms of some p-group,
having no quaternion subgroups and Q is a q-subgroup of G for some prime
q € m(G), then G is soluble.

Proor. Since H contains no quaternion subgroups, we deduce that H is
metacyclic (by [2] p. 258). If g € 7 (H), then we write G = KQ, where K is a
Hall q'-subgroup of H and Q, a Sylow g-subgroup of G. Thus we may assume
without loss of generality that H is a ¢'-subgroup of G.

We proceed now by induction on |G |. We first show that if N is a
non-trivial normal subgroup of G, then N is soluble. If Q C N then
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N = (N N H)Q and by induction N is soluble. If QZ N then L = HN is a
proper subgroup of G. Also Q N N is a Sylow g-subgroup of N and hence of
L, and so L = H(Q N N). Again by induction L and hence N is soluble. In
particular if G'CG, then G’ and hence G is soluble. We may therefore
assume that G is perfect. If O,(G)# 1, then clearly G = G/O,(G) satisfies
the hypothesis of the lemma and so G and hence G is soluble. On the other
hand if O,(G) # 1, then let r be the largest prime dividing O,(G) and D be
an S,-subgroup of O,(G). Since O,(G)C H, O,(G) is metacyclic and so
D=0,(G)i.e. DIG. Thus G/Cs(D) embeds into Aut(D). Since D is cyclic
and G is perfect, we have G = Cs(D). Set G =G/D. Then 1% DC
Z(G)N G’ and so the Schur multiplier of G (see [3], p. 628) is non-trivial,
However by Satz ([3], p. 642) the r-part of the Schur multiplier of G embeds
into the Schur multiplier of R, R being an S,-subgroup of G. Since R is cyclic,
it follows by Satz in [3] p. 643 that the Schur multiplier of R is 1, a
contradiction. Therefore we may assume O,(G)=1= O,(G) ie. F(G)=1.
Now let x € Z(H) (Z(H)# 1 by Satz in [3] p. 506). Then [G: Cs(x)] is a
power of g and hence G is not simple by a theorem of Burnside (cf. [2] p.
131). Let N be a normal (non-trivial) subgroup of G. Since N is soluble, we
have 1# F(N)C F(G), the last contradiction.

REMARK. In the proof of lemma 2 above, one can use theorem 4.4 (ii) of
[2], p- 253 instead of the Schur multiplier and argue that G is not perfect.

LemMma 3. Let G be a finite group, then

(i) G = MN for two subgroups M and N implies No(M N N) is
factorisable.

(i) If G satisfies (*), and if (M, p) and (N, q) € ¢(G), for p and q distinct
primes in 7(G), then G = MN. If M is Frobenius group then No(M N N)C N.
Conversely if M N N is disjoint from its conjugates and if No(M N N)C N,
then M is Frobenius.

(iii) Let G satisfy (*), and let (M, p), (N, q) € &(G) for distinct primes p
and q in 7(G) such that M N N is disjoint from its conjugates. If M is Frobenius
then M N N is a Frobenius complement for M and has odd order.

Proor. (i) Let us write H=MNN. If g € N;(H), then g = mn, for
some m € M and n € N. So

Hs=H™ = H.
Thus

H"=H"'CMNN=H ie. mn¢&N(H).
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(ii) By (i) we may write Ng(H) = (M N Ng(H))(N N Ng(H)). Since M
s Frobenius, it follows by Thompson’s theorem (cf. [2] p. 337) that F(M) # 1.
3y lemma 4 in [1] it follows that F(M) is an S,-subgroup of G. Since [M: H]
s a power of p, we have M N Ng(H)= H. Thus Ng(H)= NN Ng(H) is
ontained in N. Conversely if Ng(H)C N, then as M N N = H, we conclude
N N Ng(H)= H. Further H is disjoint from its conjugates and so M is
“robenius.

(iii) To show H is a complement for M, we notice that by our hypothesis
H is disjoint from its conjugates. Moreover since [M: H] is a power of p and
M is Frobenius with kernel an S,-subgroup of G (cf. {1], lemma 4), we have
MO Ng(H)=H ie. H is a complement for M.

To show H has odd order, we notice that if | H | is even, then since H is a
complement for M, by the above, H contains a unique involution, say x. By
hypothesis, H is disjoint from its conjugates, and so Cs(x)C Ng(H). By
lemma 1, however G could not be simple, thus leading to a contradiction.

To establish our main theorem we proceed to prove in two parts.

(A) Let $ ={(M.N)|(M.q),(N,p)E ¢, M and N being non-Frobenius};
then we establish first that § is empty.

Proor. If 4 is not empty, choose (M, N) € 4, with (M, q), (N,p) € ¢,
such that M N N = H has maximal order. Let L be a maximal subgroup of G
containing Ng(H). Since {G: H] is divisible only by p or g, L has index a
power of p or q. We may therefore assume that (L, q) € ¢». Suppose now by
way of contradiction that L is Frobenius. Then HC N N L = K where K is a
complement of L by part (iii), Lemma 3. Now let R be an §,-subgroup of G
and also contained in H, for r € w(G). Then Q,(R)char H, Q,(R)char K.

Since H and K each is disjoint from its conjugates, we have

N (H) = N ({1(R)) = No (K).

By lemma 3 (ii), Ns (H) = Ns (K)C N. By the same lemma 3 (ii) again, we
conclude that M is Frobenius contrary to the fact that (M, N)€ 4.

On the other hand, if L is non-Frobenius, with (L, q) € ¢, then (N, L) €&
#.Since H C N N L, maximality of H forces H = N N L. Since Ng(H)C L, it
follows by Lemma 3 (ii) that N is Frobenius — a contradiction. Thus # is
empty.

(B). By (A) using Thompson’s theorem ([2] p. 337) we obtain that a
maximal subgroup of G has in fact a nontrivial Fitting subgroup. By [1]
lemma 4 7 ={p,q}. Next let (U,q), (V,p) € . By part (A) above we may
assume that U is a Frobenius group. By lemma 3 (ii) U N V is a complement
of U and has odd order and so U is soluble. Since V = (U N V)Q, where Q
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is a Sylow g-subgroup of G, it follows by lemma 2 that V is soluble also. Thus
by the main theorem in {1], we conclude that

G =~ PSL (2,7).
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