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Abstract

On a Fano manifold M we study the supremum of the possible t such that there is
a Kähler metric ω ∈ c1(M) with Ricci curvature bounded below by t. This is shown
to be the same as the maximum existence time of Aubin’s continuity path for finding
Kähler–Einstein metrics. We show that on P2 blown up in one point this supremum is
6/7, and we give upper bounds for other manifolds.

1. Introduction

The problem of finding Kähler–Einstein metrics is a fundamental one in Kähler geometry. After
the works of Yau [Yau78] and Aubin [Aub78] what remained is settling the existence question
for Fano manifolds. Yau [Yau93] conjectured that in this case the existence is related to stability
of the manifold in the sense of geometric invariant theory. Important progress was made by
Tian [Tia97], who introduced the notion of K-stability. This was extended by Donaldson to the
study of more general constant scalar curvature Kähler metrics (see e.g. [Don01, Don09]). The
conjecture relating K-stability to the existence of constant scalar curvature Kähler metrics, now
called the Yau–Tian–Donaldson conjecture, is currently a very active field of research. For a
survey and many more references, see Phong and Sturm [PS09].

In this paper we study Aubin’s [Aub84] continuity method for finding Kähler–Einstein
metrics. Given a Kähler metric ω ∈ c1(M), this approach is to find ωt solving

Ric(ωt) = tωt + (1− t)ω

for all t ∈ [0, 1]. For t= 0 a solution exists by Yau’s theorem. This continuity path has nice
properties, an important one being that the Mabuchi energy [Mab86] is monotonically decreasing
along the path. This was exploited in [BM87] to show the lower boundedness of the Mabuchi
energy. It is also crucial for finding a priori estimates using properness of the Mabuchi functional
(see [Tia97]).

We are interested in the situation when we cannot solve up to t= 1. Clearly understanding
this is crucial in the study of obstructions to the existence of Kähler–Einstein metrics. A natural
question is what the supremum of the t is for which we can solve the equation. We first show
that this is independent of the choice of ω, and is equal to the invariant R(M) that we define by

R(M) = sup
t∈[0,1]

{∃ω ∈ c1(M) such that ω > 0 and Ric(ω)> tω}.
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The proof goes via relating the existence of a solution to properness of a certain functional. For
the case t= 1 this has been done in [Tia97], with a stronger version of properness shown in
Phong et al. [PSSW08].

The problem then becomes to determine R(M) for manifolds which do not admit Kähler–
Einstein metrics. Tian [Tia92] considered the problem of bounding R(M) and obtained the upper
bound R(M1) 6 15/16 where M1 is P2 blown up in one point. We show that in fact R(M1) = 6/7.
More generally we give an upper bound for any Fano manifold which has non-trivial vector
fields and non-vanishing Futaki invariant. In § 4 we show that if R(M) = 1 then the manifold is
K-semistable with respect to test-configurations with smooth total space.

2. The definition of R(M)

Let M be a Fano manifold, so c1(M)> 0. Let us fix a base metric η ∈ c1(M), and consider a
family of metrics

ωt = η + i∂∂φt.

The Mabuchi functional [Mab86] is defined by its variation
d

dt
M(ωt) =

∫
M
φ̇t(n− S(ωt))ωnt ,

normalised so thatM(η) = 0. Here S(ωt) is the scalar curvature. For any Kähler metric α ∈ c1(M)
we also define the functional Jα by its variation

d

dt
Jα(ωt) =

∫
M
φ̇t(Λωtα− n)ωnt ,

normalised so that Jα(η) = 0. Here Λωt means the trace with respect to ωt. The functional Jα is
essentially the same as I − J in terms of Aubin’s I, J functionals (see [BM87]). When α is not
necessarily in the same Kähler class as ω, it was introduced in [Che00] to study the Mabuchi
energy on manifolds with c1 < 0. See also [SW08, Wei04].

Given any ω ∈ c1(M), Aubin’s continuity path for finding Kähler–Einstein metrics is given
by

ωnt = ehω−tφtωn, (1)
where hω is the Ricci potential, defined by

Ric(ω)− ω = i∂∂hω,

and normalised so that
∫
M ehωωn =

∫
M ωn. Equivalently we have Ric(ωt) = tωt + (1− t)ω. For

t= 0 this can be solved by Yau’s theorem [Yau78].
Finally we call a functional F defined on the space of Kähler metrics in c1(M) proper if there

exist constants ε, C > 0 such that
F(ω)> εJη(ω)− C

for all ω ∈ c1(M). Since Jη is the same as the functional I − J in the literature, this notion of
properness coincides with the one used in [Tia97].

Theorem 1. The following are equivalent for 0 6 t < 1.

– We can solve equation (1).

– There exists a metric ω ∈ c1(M) such that Ric(ω)> tω.

– The functional M+ (1− t)Jω is proper for any ω ∈ c1(M).
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In particular we can introduce an invariant R(M) to be the supremum of the possible t < 1 for
which the above statements hold.

The proof of the theorem follows from Lemmas 2, 4 and 5. The statement of the theorem for
t= 1 (the second statement replaced with Ric(ω) = ω) follows from the works of Tian [Tia97]
and Phong et al. [PSSW08]. Note that by the following lemma all the Jω for different ω are
equivalent, so by definition they are all proper. The invariant R(M) measures what the smallest
multiple of Jω is that we need to add to M to make it proper.

Lemma 2. If α, α′ are in the same Kähler class then for all ω ∈ c1(M), we have

|(Jα − Jα′ )(ω)|<C

for some constant C independent of ω.

Proof. Let us write α= α′ + i∂∂ψ, and ω = η + i∂∂φ. Writing ωt = η + ti∂∂φ we have
d

dt
(Jα − Jα′ )(ωt) =

∫
M
φΛωt(α− α′)ωnt

= n

∫
M
φ(i∂∂ψ) ∧ ωn−1

t

= n

∫
M
ψ(i∂∂φ) ∧ ωn−1

t

=
d

dt

∫
M
ψωnt .

It follows then that

(Jα − Jα′ )(ω) =
∫
M
ψ(ωn − ηn),

which is uniformly bounded in terms of sup |ψ|. 2

The following proposition, which follows directly from the work of Chen and Tian [CT08] is
the key technical result.

Proposition 3. If ω satisfies the equation

Ric(ω) = sω + (1− s)α, (2)

where α ∈ c1(M) is positive, then the functional M+ (1− s)Jα is bounded below.

Proof. First note that ω satisfying equation (2) is a critical point of the functionalM+ (1− s)Jα.
This follows directly from the variational formula

d

dt
[M(ωt) + (1− s)Jα(ωt)] =

∫
M
φ̇t[sn+ (1− s)Λωtα− S(ωt)]ωnt

and taking the trace of equation (2). The result now follows formally from the convexity of
the functional M+ (1− s)Jα along geodesics in the space of Kähler potentials, studied by
Mabuchi [Mab87], Semmes [Sem92] and Donaldson [Don99]. Indeed with some computation we
obtain

d2

dt2
[M(ωt) + (1− s)Jα(ωt)] =

∫
M

(φ̈t − |∂φ̇t|2)[sn+ (1− s)Λωtα− S(ωt)]ωnt

+
∫
M

[|Dφ̇t|2 + (1− s)|∂φ̇t|2α]ωnt
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where D is the Lichnerowicz operator and |∂φ̇|2α = gjq̄αpq̄g
pk̄∂jφ̇∂k̄φ̇ in local coordinates, with g

being the metric corresponding to ωt. Now the path ωt is a geodesic if φ̈t = |∂φ̇t|2 so the second
derivative of M+ (1− s)Jα is non-negative along geodesics. If ω is a critical point, and any
other metric can be joined to ω using such a geodesic, then the lower boundedness follows from
convexity. Unfortunately it is still an open problem whether any two metrics can be joined using
geodesics, but we can instead rely on the theory of Chen and Tian [CT08] as follows.

By Yau’s theorem [Yau78] we can find a metric ω0 ∈ c1(M) such that Ric(ω0) = α. By the
same computation as in Chen [Che00], we have

M(ω) + (1− t)Jα(ω) =D +
∫
M

log
ωn

ωn0
ωn − tJα(ω),

for some constant D. As in Chen–Tian, Theorem 6.1.1. this functional is weakly sub-harmonic
on almost smooth solutions of the geodesic equation in the space of Kähler metrics. Then the
argument in Theorem 6.2.1. implies that the functional is bounded below on the space of metrics
in the first Chern class. 2

Lemma 4. If there exists a metric ω with Ric(ω)> tω, then the functional M+ (1− t)Jη is
proper.

Proof. Let us write

Ric(ω) = tω + (1− t)α,
where α is a positive form in c1(M). It follows from the previous proposition that the functional
M+ (1− t)Jα is bounded from below. By Lemma 2 it follows that M+ (1− t)Jη is also
bounded from below.

In order to show that it is proper, we use a perturbation argument. We want to show that
for sufficiently small ε > 0 we can find ω′ such that

Ric(ω′)− (t+ ε)ω′ = (1− t− ε)α.

This is just the openness statement in Aubin’s continuity method [Aub84]. Then the previous
argument implies that M+ (1− t− ε)Jη is bounded below, so

M+ (1− t)Jη = εJη + (M+ (1− t− ε)Jη)> εJη − C,

which is what we wanted to prove. 2

Lemma 5. If the functionalM+ (1− s)Jη is proper, then for any metric ω ∈ c1(M) we can find
an ωs such that

Ric(ωs) = sωs + (1− s)ω,
that is, we can solve along the continuity method up to time s.

Proof. This is a slight extension of a result in [Tia97] (see also [BM87]). Using Yau’s
estimates [Yau78] we only need to show that if the path of metrics ωt = ω + i∂∂φt satisfies

ωnt = ehω−tφtωn (3)

for t < s, then there is a uniform C0 bound sup |φt|<C. For this we compute the derivative

d

dt
[M(ωt) + (1− s)Jω(ωt)].
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Differentiating equation (3) we get

∆tφ̇t =−φt − tφ̇t,

where ∆t is the Laplace operator of the metric ωt. Using the formula

S(ωt) = tn+ (1− t)Λωtω,

we can compute

d

dt
[M(ωt) + (1− s)Jω(ωt)] =

∫
M
φ̇t[−(1− t)Λωtω + (1− s)Λωtω − (s− t)n]ωnt

= (s− t)
∫
M
φ̇tΛωt(ωt − ω)ωnt

= (s− t)
∫
M
φ̇t∆tφtω

n
t

= (s− t)
∫
M

(−φt − tφ̇t)φtωnt

= (s− t)
[
−
∫
M
φ2
tω

n
t + t

∫
M
φ̇t(∆tφ̇t + tφ̇t)ωnt

]
6 0,

as long as t < s. Here we have used that ∆t + t is a negative operator since Ric(ωt) > tωt.

Since M+ (1− s)Jω is proper (again using Lemma 2 to relate the different J functionals),
we obtain a uniform bound

Jω(ωt)<C

for t < s. As in [BM87] this gives the required C0 estimate. 2

3. Bounding the invariant R(M)

It is an interesting problem to find bounds on R(M) for a given Fano manifold M . First let us
briefly discuss lower bounds. Clearly when M admits a Kähler–Einstein metric then R(M) = 1.
The converse however is not true. For instance the unstable deformations of the Mukai 3-fold
given by Tian [Tia97] have R(M) = 1. To see this first recall that the Mukai 3-fold M0 admits a
Kähler–Einstein metric (see Donaldson [Don]), so for any t < 1 there is a metric ω0 on M0 with

Ric(ω0)> tω0.

Tian’s example is a manifold M such that M0 has arbitrarily small deformations which are
biholomorphic to M (there exists a degeneration of M to M0). With such small deformations
we can obtain a metric ω on M such that Ric(ω)> tω still holds. Since we can do this for any
t < 1, this implies that R(M) = 1. Alternatively, it is well-known that R(M) = 1 if the Mabuchi
energy is bounded from below (see [BM87]), and Chen [Che08] showed that this is the case for
the manifold M . More generally we have the following.

Proposition 6. If M is a Kähler–Einstein manifold and M ′ is a sufficiently small deformation
of the complex structure of M , then R(M ′) = 1. More precisely there exists some ε > 0 such that
R(M ′) = 1 for all M ′ such that the complex structures of M and M ′ differ by at most ε in the
Ck norm for large k (say k > 4).
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Proof. This follows from the proof of the main result in [Szé]. It is shown there that there exists
a small ball B ⊂Ck with a linear action of the group of holomorphic automorphisms Aut(M)
on B such that points in a complex analytic subset Z ⊂B give all the small deformations
of the complex structure of M which have the same first Chern class as M (i.e. Z is a subset of
the Kuranishi space [Kur65] of M) and manifolds in the same Aut(M) orbit are biholomorphic.
Moreover the points in Z which are polystable for the action of Aut(M) (i.e. their orbit is closed
in Ck) correspond to deformations of M which admit Kähler–Einstein metrics. Suppose that
the small deformation M ′ corresponds to a point z ∈ Z. Either z is polystable, in which case
M ′ admits a Kähler–Einstein metric, or there exists a polystable point z0 in the closure of the
Aut(M)-orbit of z, such that also z0 ∈ Z. This z0 is obtained by minimising the norm over
the Aut(M)-orbit of z. Let M0 be the manifold corresponding to z0 (it may be that M0 =M), so
M0 admits a Kähler–Einstein metric. Since z0 is in the closure of the orbit of z, we can realise M ′

as an arbitrarily small deformation of M0. The above argument then shows that R(M ′) = 1. 2

In addition one can give a lower bound in terms of the alpha invariant α(M) or its equivariant
version (see Tian [Tia87]), namely Tian showed that R(M) > α(M) · (n+ 1)/n as long as this
is no greater than 1, where n is the complex dimension.

There is much less known about upper bounds for R(M). The problem was briefly studied
in the paper of Tian [Tia92], and he found some bounds in terms of the tangent bundle. For P2

blown up in one point he found the upper bound 15/16. In the next section we will show that in
fact R(M1) = 6/7 where M1 is P2 blown up in one point. For the blowup in two points we show
R(M2) 6 21/25.

To obtain upper bounds we can use the recent work of Stoppa [Sto09]. The basic observation
is that the equation

Ric(ω) = tω + (1− t)α
is a twisted cscK equation (or generalised Kähler–Einstein equation in the terminology of Song
and Tian [ST07]). Stoppa gives an obstruction to solving this equation, generalising the slope
stability obstruction to the existence of cscK metrics due to Ross and Thomas [RT06]. As we
will see, this gives a good bound for P2 blown up in one point, but for the blowup in two points
it does not give anything because it is slope stable (see Panov and Ross [PR09]). So we now
give another upper bound which in some sense is more basic. Both are based on constructing
sequences of metrics along whichM+ (1− t)Jω is not bounded from below for certain t. Stoppa
uses a metric degeneration which models deformation to the normal cone, whereas we look at
one parameter families of metrics induced by holomorphic vector fields.

Proposition 7. Fix a metric ω such that Ric(ω) = α is a positive form. Let H be a smooth real-
valued function on M and suppose that X =∇H is a holomorphic vector field. Write ft :M →M
for the one-parameter group of diffeomorphisms generated by X. Let ωt = f∗t ω. Then

lim
t→∞

d

dt
Jα(ωt) =

∫
M
H(S(ω)− n)ωn + lim

t→∞

∫
M

(f−1
t )∗(∆H)ωn.

Here ∆ is the Laplacian with respect to the metric ω.

It follows that

lim
t→∞

d

dt
(M(ωt) + (1− s)Jα(ωt)) = s

∫
M
H(n− S(ω))ωn + (1− s)K Vol(M),

whereK is the divergence of the vector fieldX on the submanifold whereH achieves its minimum.
If this limit is negative, then M+ (1− s)Jα is not bounded below, and so R(M) 6 s.
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Proof of Proposition 7. Let ωt = f∗t ω and write ωt = ω + i∂∂φt. Then one can normalise φ̇t so
that φ̇t = f∗t H. We compute

d

dt
Jα(ωt) =

∫
M
φ̇t(Λωtα− n)ωnt

=
∫
M
φ̇t[Λωt(Ric(ω)− Ric(ωt))]ωnt +

∫
M
φ̇t(S(ωt)− n)ωnt .

The second term is simply ∫
M
H(S(ω)− n)ωn.

For the first term we have∫
M
φ̇t[Λωt(Ric(ω)− Ric(ωt))]ωnt =

∫
M
φ̇t∆t log

ωnt
ωn
ωnt

=
∫
M

(∆tφ̇t) log
ωnt
ωn
ωnt

=
d

dt

∫
M

log
ωnt
ωn
ωnt =

d

dt

∫
M

log
ωn

ωn−t
ωn.

We have written ω−t = (f−1
t )∗ω. Then (d/dt)ω−t =−i∂∂(f−1

t )∗H since it is the same as flowing
along −∇H. Therefore we obtain

d

dt

∫
M
−log

ωn−t
ωn

ωn =
∫
M

(f−1
t )∗(∆H)ωn.

The first part of the result follows.
For convenience let us assume that inf H = 0. Note first of all that J ∇H is a Killing

field, and so it generates a torus action. In particular H is a component of the moment map
for a torus action. It follows that H is a Morse–Bott function with even-dimensional critical
manifolds of even index (see McDuff and Salamon [MS98]), and so H−1(0) is a connected complex
submanifold, and in addition

lim
t→∞

f−1
t (x) ∈H−1(0)

for a dense open set in M . For a point y ∈H−1(0), the Laplacian ∆H(y) is the divergence of
the vector field X, which is independent of the metric since X(y) = 0. It is just given by the
total weight of the action on the normal bundle of H−1(0), or alternatively the weight of
the action on the anticanonical bundle at y. This is independent of the choice of y ∈H−1(0),
and we denote it by K. To see that ∆H(y) does not depend on the point y ∈H−1(0), note that
H−1(0) is connected and

(∆H)p(y) =Hīip(y) =Hip̄i(y)−Rjj̄pl̄(y)Hl(y) = 0,

since∇H is a holomorphic vector field (so Hip = 0) and y is a zero of∇H. Here we used subscripts
for covariant derivatives and Rjj̄pl̄ is the curvature tensor.

It follows that

lim
t→∞

(f−1
t )∗(∆H)(x) =K for almost every x ∈M.

Since (f−1
t )∗(∆H) is uniformly bounded, independent of t, it follows that

lim
t→∞

∫
M

(f−1
t )∗(∆H)ωn =K

∫
M
ωn.

325

https://doi.org/10.1112/S0010437X10004938 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004938
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At the same time
d

dt
M(ωt) =

∫
M
φ̇t(n− S(ωt))ωnt =

∫
M
H(n− S(ω))ωn,

so the proposition follows. 2

3.1 P2 blown up in one point
Let M1 be P2 blown up in one point. In this section we prove the following.

Theorem 8. For P2 blown up in one point we have R(M1) = 6/7.

We first show that R(M1) 6 6/7 using twisted slope stability. Since we give an alternative
proof, we will be brief. Let us write E for the exceptional divisor. We are using the polarisation
c1(M1) =O(3)− E. The Seshadri constant of E is then 2. If there is a metric ω with Ric(ω)> tω,
then, by taking the trace, we must have

S(ω)− (1− t)Λωα= 2t

for some positive form α ∈ c1(M1). According to Stoppa [Sto09, § 5.1] we have

3
2

2c1(M1).E − 2[(−c1(M1) + (1− t)c1(M1)).E + E2]
2(3c1(M1).E − 2E2)

>
−(−c1(M1) + (1− t)c1(M1)).c1(M1)

c1(M1)2
.

Computing this and simplifying, we obtain exactly t6 6/7.
Alternatively, for a more self-contained proof we can use Proposition 7. It is easiest to compute

in terms of toric geometry. The moment polytope of M1 has vertices (0, 0), (2, 0), (2, 1), (0, 3). We
choose H(x, y) =−x. Then, for any toric metric ω ∈ c1(M1), using Donaldson’s formula [Don02]
we have ∫

M1

H(2− S(ω))
ω2

2!
= 2

∫
P
H dµ−

∫
∂P

H dσ =−2
3
,

where dµ is the Lebesgue measure on P and dσ is a multiple of the Lebesgue measure on each
edge of P , as described in [Don02]. In our case dσ = |dy| on the vertical edges and dσ = |dx| on
the remaining edges. To compute the weight we can compute the Laplacian of H in terms of a
symplectic potential u on P . It is given by

∆H = ∂i(uij∂jH) = ∂iu
ij∂jH,

where uij is the inverse of the Hessian of u and we used that fact that H is linear. We want to
compute this on the edge where H achieves its infimum, i.e. on the edge joining (2, 0) and (2, 1).
The vector field ∂iu

ij converges to the inward normal ν on the edges, normalised so that the
area form dx ∧ dy contracted with ν gives the measure dσ on the edge (see Donaldson [Don02]).
Hence

∆H =∇νH =−∂xH = 1
on the edge x= 2. We get that the weight K = 1, so

s

∫
M1

H(2− S(ω))
ω2

2!
+ (1− s)K Vol(M1) = 4− 14

3
s.

This is negative for s > 6/7, in which case the functional M+ (1− s)Jω is not bounded below
by Proposition 7, and so R(M1) 6 6/7.
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To show that R(M1) > 6/7 we explicitly construct metrics with Ric(ω)> tω for all t < 6/7.
Again thinking of M1 as the P1 bundle P(O(−1)⊕O), we will use the momentum construction
to obtain metrics on M1 (for more details on this construction see [HS02]). Let ω0 be the Fubini–
Study metric on P1, and let h be a Hermitian metric on O(−1) with curvature form iω0. Write
p :O(−1)→P1 for the projection map. On the complement of the zero section in the total space
of O(−1) define the metric

ω = p∗ω0 + 2i∂∂̄f(s),

where s= (1/2) log |z|2h and f(s) is a suitably convex function. We change coordinates to
τ = f ′(s), which is the moment map for the S1-action rotating the fibres of O(−1). Let I ⊂R
be the image of τ and let F : I →R be the Legendre transform of f . In other words F is defined
by the equation

f(s) + F (τ) = sτ.

We then define the momentum profile of the metric ω to be

φ(τ) =
1

F ′′(τ)
.

We can compute the Ricci curvature of ω in terms of φ(τ). In addition, if φ has suitable behaviour
at the endpoints of I, then the metric ω can be extended across the zero and infinity sections,
and we obtain a metric on M1. This is summarised in the following proposition. For more details
see [HS02] (or also [Szé09]).

Proposition 9. Let φ : [0, 2]→R be a smooth function such that φ is positive on (0, 2), and

φ(0) = φ(2) = 0, φ′(0) = 2, φ′(2) =−2.

Then we obtain a metric ωφ ∈ c1(M1), given in suitable local coordinates by

ωφ = (1 + τ)p∗ω0 + φ(τ)
i dw ∧ dw

2|w|2
,

and whose Ricci form is

ρφ =
(

2− [(1 + τ)φ]′

2(1 + τ)

)
p∗ω0 − φ ·

{
[(1 + τ)φ]′

2(1 + τ)

}′
· i dw ∧ dw

2|w|2
,

where the primes mean differentiating with respect to τ .

In order to have ρφ > tωφ we need to satisfy two inequalities

2− [(1 + τ)φ]′

2(1 + τ)
> t(1 + τ)

−
{

[(1 + τ)φ]′

2(1 + τ)

}′
> t.

By integrating once, it is easy to see that the second inequality implies the first one for all t6 1.
Let t= 6/7 and let us solve the case of equality in the second inequality. We obtain a ψ such

that

(1 + τ)ψ(τ) = 2τ +
1
7
τ2 − 4

7
τ3.

This ψ is positive on (0, 2) and it satisfies the boundary conditions

ψ(0) = ψ(2) = 0, ψ′(0) = 2, ψ′(2) =−10
7
.
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Now let φ(τ) = ψ(τ) + η(τ), where η satisfies

η(0) = η(2) = 0, η′(0) = 0, η′(2) =−4
7
.

For any δ > 0 we can choose η so that for all τ we have

η(τ) > 0, η′(τ), η′′(τ)< δ.

Then φ= ψ + η satisfies the boundary conditions that we want, and

−
{

[(1 + τ)φ]′

2(1 + τ)

}′
=

6
7
−
{

[(1 + τ)η]′

2(1 + τ)

}′
=

6
7
− 1

2
η′′(τ)− η′(τ)

2(1 + τ)
+

η(τ)
2(1 + τ)2

>
6
7
− δ.

Letting δ→ 0, we find that we can obtain a metric with Ric(ω) > tω for all t < 6/7, so
R(M1) > 6/7. Note that we would have to analyse the metrics more carefully near τ = 0 and
τ = 2 to see whether we have the strict inequality, but clearly Ric(ω) > tω is enough for what we
want. This completes the proof that R(M1) = 6/7.

Note that in the limiting case t= 6/7, the function ψ that we found above defines a singular
metric satisfying Ric(ω) > (6/7)ω. The fact that ψ′(2) =−10/7 means that the metric has conical
singularities with angle 2 sin−1

√
5/7 along a line not meeting the exceptional divisor (i.e. along

the divisor at infinity in P(O(−1)⊕O)).

3.2 P2 blown up in two points

Let M2 be P2 blown up in two points. In this section we prove the following proposition.

Proposition 10. For P2 blown up in two points we have 1/2 6R(M2) 6 21/25.

In this case twisted slope stability will not give any obstruction, since M2 is slope stable (see
Panov and Ross [PR09]) and our twisting just makes things more stable (we are adding a proper
function to M). However, we can apply Proposition 7. Once again we work in terms of the
toric polygon to make the computations easier. The polygon corresponding to M2 has vertices
(0, 0), (2, 0), (2, 1), (1, 2), (0, 2). We let H(x, y) =−x− y. The minimum of H is achieved on the
edge where x+ y = 3 and the normalised inward normal there is

−1
2

(
∂

∂x
+

∂

∂y

)
.

By the same argument as before, this implies that the weight K = 1. As before, using Donaldson’s
formulae we obtain

s

∫
M2

H(2− S(ω))
ω2

2
+ (1− s)K Vol(M2) =

7
2
− 25

6
s.

This is negative if s > 21/25, so by Proposition 7 we obtain R(M2) 6 21/25.

To show that R(M2) > 1/2 we use the α-invariant. According to Song [Son05] the
α-invariant for torus invariant Kähler potentials on M2 is 1/3. It follows (see [Tia87]) that
R(M2) > 1/3 · 3/2 = 1/2. It would be very interesting to find better bounds on R(M2).
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4. More general test-configurations

We have seen in Proposition 6 that if M is Kähler–Einstein then R(M) = 1 but the converse is
not true. In this section we show the following weaker converse.

Theorem 11. If R(M) = 1, then M is K-semistable with respect to test-configurations with
smooth total space.

Remark . In a forthcoming paper with Munteanu [MS] we show that in fact R(M) = 1 implies
K-semistability.

Before giving the proof we briefly explain K-semistability. A test-configuration χ for M is a
flat polarised family π : (M, L)→C, such that the following hold.

– π is C∗-equivariant.

– L is relatively ample.

– We have

(Mt, L|Mt)∼= (M, (−KM )k)

for t 6= 0 and some integer k > 0.

The central fibre is then a polarised scheme (M0, L0), with a C∗-action. This allows us to
define the Futaki invariant F (χ) of the test-configuration, which generalises the classical Futaki
invariant in case M0 is smooth and the C∗-action is generated by a holomorphic vector field.
For details see Donaldson [Don02]. The manifold M is called K-semistable if F (χ) > 0 for all
test-configurations χ. If, in addition, F (χ) = 0 only for test-configurations where the central fibre
is isomorphic to M , we say that M is K-polystable. The central conjecture is the following.

Conjecture 12 (Yau–Tian–Donaldson conjecture). The manifold M admits a Kähler–Einstein
metric if and only if M is K-polystable.

In light of this it is reasonable to conjecture the following.

Conjecture 13. The Fano manifold M is K-semistable if and only if R(M) = 1.

Our Theorem 11 goes some way in proving the easier direction of this conjecture.

Proof of Theorem 11. Suppose we have a test-configuration for M with total space M. We can
realise it as a one parameter group acting on an embedding in projective space. More precisely
we have an embedding F :M →PN and a C∗-action on PN . Choose a Fubini–Study metric
ωFS on PN which is invariant under S1, and let H be a Hamiltonian function of this S1-action,
normalised so that supH = 0. Let us write ft : PN →PN for the gradient flow of ∇H. We then
have a family of metrics

ωt = F ∗(f∗t ωFS)

on M and we let ω = ω0. Suppose that the Futaki invariant of the test-configuration is negative,
i.e. M is not K-semistable. We want to show that R(M)< 1. Since the total space of the test-
configuration is smooth, according to [PRS08] (see also [PT]) we have

lim sup
t→∞

d

dt
M(ωt)< 0.
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We want to show that for suitably small ε > 0 we have

lim sup
t→∞

d

dt
(M(ωt) + εJω(ωt))< 0, (4)

which will imply that R(M) 6 1− ε.
To show the inequality (4) we compute

d

dt
Jω(ωt) =

∫
M
φ̇t(Λωtω − n)ωnt .

Note that φ̇t = F ∗(f∗t H) and, since H 6 0, we have

d

dt
Jω(ωt) 6−n

∫
M
F ∗(f∗t H)ωnt 6−nVol(M) inf H.

Thus the limit as t→∞ is bounded above, so for suitably small ε > 0 we have (4). 2
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