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A CLASS OF ALMOST COMMUTATIVE NILALGEBRAS 

HYO CHUL MYUNG 

1. I n t r o d u c t i o n . T h e purpose of this paper is to investigate a class of 
nonassociative nilalgebras which have absolute zero divisors. If a nilalgebra is 
nilpotent, it, of course, possesses an absolute zero divisor. For the nilpotence 
of nonassociative nilalgebras, the si tuat ion however becomes quite complicated 
even in the finite-dimensional case. For example, Gers tenhaber [3] has con­
jectured the nilpotence of commuta t ive nilalgebras. While Gers tenhaber and 
Myung [4] prove t ha t any commuta t ive nilalgebra of dimension ^ 4 in 
characterist ic ^ 2 is nilpotent, Sut t les [9] discovered an example of a 5-
dimensional commuta t ive nilalgebra which is solvable bu t not ni lpotent . T h u s 
this is a counterexample to the conjecture of Gerstenhaber . All algebras con­
sidered are finite-dimensional over a field and nilalgebras are assumed to be 
power-associative. If A is a finite-dimensional nilalgebra, it is well-known tha t 

adim A+i _ o £ o r all a G ^4. A nonzero element a of an algebra A is called an 
absolute zero divisor if a A = Aa = 0. In terms of the right and left multipli­
cations in A, this is to say R(a) = L(a) = 0 on A. HA is a commuta t ive 
nilalgebra, all R(x), L(x) are nilpotent, which is proved by Gers tenhaber [3] 
in characterist ic 0 and by Oehmke [7] in characterist ic > 2 . In the non-
commuta t ive case, this result still holds for many of the well-known non-
commuta t ive Jo rdan nilalgebras in which case the algebras tu rn out to be 
nilpotent. However, the si tuat ion is quite different for an t i commuta t ive 
algebras (nilalgebras of nil-index 2) . In fact, in view of Engel 's Theorem, all 
R(x) are ni lpotent in a Lie algebra A if and only if A is ni lpotent . A closer 
look a t the example of Sut t les reveals the interesting fact t h a t a commuta t ive 
nilalgebra may not possess an absolute zero divisor. I t seems thus qui te 
na tura l to look for a class of nilalgebras possessing absolute zero divisors from 
noncommuta t ive nilalgebras where all R(x) and L(x) are ni lpotent . In this 
paper we obtain such a class from "a lmos t " commuta t ive nilalgebras. 

For an algebra A, the minus-algebra A~ of A is defined as the same vector 
space as A bu t with a multiplication given by [x, y] = xy — yx. Then A is 
said to be Lie-admissible if A~ is a Lie algebra. If a Lie-admissible algebra A 
is flexible; t ha t is, A satisfies the flexible law x(yx) = (xy)x, then all D(x) = 
R(x) — L{x) are derivations of A ; [xy, z] = x[y, z] + [x, z]y for all x, y, z £ A. 
T h e plus-algebra A+ of A is defined by x • y = \{xy + yx) on the same 
vector space as A if the characterist ic is not 2. Then A is called Jo rdan-
admissible if A+ is a Jo rdan algebra, and it is shown in [8] t h a t A is flexible 
Jordan-admissible if and only if A is a noncommuta t ive Jo rdan algebra. I t will 
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be worthwhile to point out t ha t flexible Lie-admissible algebras may not be 
power-associative, while every flexible Jordan-admissible algebra is power-
associative in characteristic 7̂  2. I t is not difficult to find such examples, bu t 
they seem not to have been shown in a l i terature. Let L be a Lie algebra over 
a field $ of characteristic 7^ 2, 3, 5. Let A = L + $e be a vector space direct 
sum of L and a one-dimensional space <£e. For a fixed a £ $ , w e define a product 
in -4 by 

(1) (a + Xe)(6 + /xe) = afr + a(/za + \b) + Xfie 

for a, b (z L and À, M Ç $. One easily checks tha t 4̂ is flexible Lie-admissible, 
and t ha t x2x2 = xsx for all x £ 4̂ [1, p. 557] if and only if 2a3 — 3a;2 -\- a = 0, 
so t ha t A is power-associative if and only if a = 0, \, or 1. 

A noncommutat ive algebra 4̂ is said to be almost commutative if 4̂ contains 
a commuta t ive subalgebra of codimension one. Similarly, a nonabelian Lie 
algebra is called almost abelian if it contains an abelian subalgebra of codimen­
sion one. An almost abelian Lie algebra is not necessarily nilpotent, as shown 
by certain solvable Lie algebras; for example, the 3-dimensional solvable Lie 
algebra L with multiplication xy = x, xz = yz = 0, where we notice t ha t 
B = $y + §z is an abelian subalgebra of codimension one, bu t not an ideal 
in L. Let L be an almost abelian Lie algebra over a field $ of characteristic ^ 
2, 3, 5 and B be an abelian subalgebra of codimension one of L. Then we note 
t ha t the algebra A = L + $e constructed by (1) is an almost commuta t ive 
algebra and tha t S = B -\- $e is a commutat ive subalgebra of codimension one 
bu t is not an ideal of A. However, in case A is a nilalgebra, we will see 
t h a t any codimension one subalgebra of A is an ideal, provided all R(x), L(x) 
sere ni lpotent in A (this will be the case if all D(x) are ni lpotent; for example, 
A~ is a nilpotent Lie algebra). We now s ta te the main theorem. 

T H E O R E M . Let A be a finite-dimensional, flexible, strictly power-associative 
algebra over a field <î> of characteristic 9^ 2. If A is a nilalgebra such that A~ is 
an almost abelian, nilpotent Lie algebra, then A contains absolute zero divisors 
and furthermore the center Z of A~ is an ideal of A. 

We have observed tha t the condition tha t A~ is nonabelian and ni lpotent 
is essential in the theorem. 

2. Proof of t h e t h e o r e m . We begin with the following lemma. 

L E M M A . Let A be a finite-dimensional, flexible, strictly power-associative 
nilalgebra over a field $ of characteristic ^ 2. 

(i) If x is an element in A such that D{x) is nilpotent then R(x) and L(x) are 
nilpotent in A. 

(ii) If S is a subalgebra of codimension one of A such that D (x) is nilpotent in 
A for all x € S, then S is an ideal of A. In particular, if A is almost commutative, 
every commutative subalgebra of codimension one is an ideal of A. 
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Proof, (i) Consider the commuta t ive nilalgebra A + and let T(x) = %(R(x) 
+ L(x)). Then , if the characterist ic is 0, it is shown in [3] t h a t T(x) is nil-
potent . If the characterist ic is greater t han 2, then we adjoin an ident i ty to 
A+ to get a commuta t ive algebra (A+)f of degree one. Then Oehmke [7] proves 
t h a t T(x) is ni lpotent on (A+)' and so on A+ for all x £ A (his proof does not 
use the simplicity of the algebra) . T h u s in any case T(x) is ni lpotent for all 
x £ A. Using the flexible law R(x)L(x) = L(x)R(x), we have t h a t if D(x) is 
ni lpotent then R(x) = ^D(x) + T(x) and L(x) = T(x) — \D(x) are nil-
potent too. 

(ii) Let 5 be a codimension one subalgebra of A. Let a be an element of A 
but not in S. Suppose t h a t 5 is not an ideal of A. Then , since S and a span A, 
we may assume there exists an element x £ 5 such t h a t ax = Xa (mod S) for 
some X 9e 0 in <ï>. Since 5 is a subalgebra of A, we have aR(x)n = \na (mod S) 
and 0 = \na (mod S) for some n since R(x) is ni lpotent . This forces X = 0, 
a contradict ion, and so ax £ S for all x £ S. Similarly, we have xa £ S for all 
x £ S and hence S is an ideal of A. 

For the proof of the theorem, let B be a. codimension one, abelian subalgebra 
of A~~. Since A~ is ni lpotent , applying the lemma to A~ implies t h a t B is an 
ideal of A~. W e first show t h a t B is a subalgebra of A. Let A = &h + B be a 
vector space direct sum. Then [A, A] = [B, h] ^ 0 since B is abelian in ^4~. 
Let x, y £ B and let x^ = ah (mod .B). For g 9* 0 in [A, A], let g = [6, &] for 
b £ B. Since D(&) is a derivation of A and J3 is abelian, applying D(b) to 
xy = ah (mod 5 ) implies 0 = a[h, b] = ag and « = 0. Hence B is a subalgebra 
of A and is again an ideal of A by the lemma. 

Since D(h) induces a ni lpotent linear t ransformation on B, B can be ex­
pressed as a direct sum 

B = Mi ® M2 ® . . . ® Mr 

of cyclic subspaces Mt in B relative to D(h) such t h a t n\ ^ m ^ . . . ^ wr 

where w* = dim If* and rt\ is the nil-index of D(h) in i3. Let xifi, . . . , #*tWt- be 
a basis of Mt such t ha t [xiik-i, h] = xi>k and [xitTli, h] = 0, & = 2, 3, . . . , nt. 
Since I? is abelian and [B,h] ^ 0, the center Z of A~ is contained in J 3 , and 
hence Z is the centralizer of h in J5. Therefore, if we let X\ = XitTni . . . , xr = 
Xr,nr> Xi, . . . ,xr form a basis of Z . Recalling t h a t B is an ideal of A, hxt = 
XÏ/Z £ ^ and so [hxt, h] = h[xu h] = 0. Hence 

(2) hxi = xji £ Z , ^ = 1, 2, . . . , r. 

Since [J3, A] T^ 0, «i è 2. Let £ be such t h a t n\ ^ ni ^ . . . ^ wp ^ 2 and 
72* = 1 if i > p. For x ^ B/\î i S P then 

0 = [#i,nt-_if ff&] = x[xiini-ly h] = ##,, 

and similarly xtx = 0 (again recall B is abelian and is an ideal of A). Hence 
we have 
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(3) Bxt = xtB = 0, i = 1, 2, . . . , p. 

If j > p, by (2) we see 

i = 1, 2, . . . , p and 1 g k S nt - 1. 

Therefore we have 

(4) a^Xi,* = xitkXj = 0, 1 ^ i ^ p, 2 ^ k ^ ntl p < j . 

Ifi^p and j > p, by (4) 

[XjXiti, h] = Xj[xiti, h] — XjXit2 = 0, 

and since Z is the centralizer of h in B, this implies that 
for j > p and 1 ^ i ^ £. Therefore by (2), (3), and (4) we see that Z is an 
ideal of A. 

Finally, we show that 

(5) h([A,A] r\Z) = {[A, A] C\ Z)h = 0. 

Let z e [A,A]r\Z and let h2 = Xh (mod B) for X G $. Then s = [b, h] for 
J G B and [6, /*2] = h[b, h] + [b, h]h = 2 ^ , while [&, &2] = X[&, A] = Xs. Hence 
2zA = Xs and since RQi) is nilpotent, either z = OorX = 0. In any case, zh = 0, 
thus showing (5). Since Xi, . . . , xv G [A, A] C\ Z, it follows from (3) and (5) 
that absolute zero divisors of ^4. This completes the proof of 
the theorem. 

3. Examples. Since any nonabelian nilpotent Lie algebra of dimension 
^ 4 is almost abelian and is completely known [2, p. 120], the theorem can be 
used to determine all noncommutative flexible Lie-admissible nilalgebras A 
of dimension ^ 4 such that A~~ is nilpotent. In this case, dim A = 3 or 4 and 
if dim A = 4 then dim Z(A~) = 1 or 2. In the theorem, "strict" power-
associativity is needed only to show that all T(x) are nilpotent on A. However, 
if dim ^ 4 ^ 4 , then, without the condition that A is strict, it is shown in [4] 
that A+ is nilpotent and so all T{x) are nilpotent. In the following we assume 
that A is a noncommutative algebra over the field 3>. 

(I) A is a flexible nilalgebra such that A~ is a nilpotent Lie algebra of 
dimension 3 if and only if A is given by the multiplication 

x2 = az, xy = j&s, yx = (fi — l)z, y2 = yz, a, /?, y G <ï>, 

and all other products are 0. 
(II) A is a flexible nilalgebra such that A~ is a nilpotent Lie algebra of 

dimension 4 and dim Z(A~) = 1 if and only if A is given by 

x2 = az, xh = — \y + ftz, hx = \y + fiz, 

yh = —hy = — \z, h2 = 72?, a, 0, 7 G $, 
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and all other products are 0. In this case A is a nilalgebra of nil-index 3 and 
is a Lie algebra if and only if a = (3 = y = 0. 

( I l l ) A is a flexible nilalgebra such t h a t A~ is a ni lpotent Lie algebra of 
dimension 4 and dim Z(A~) = 2 if and only if A is given by 

x2 = ay + j3z, xz = zx = yy, xh = 8y + \z, 

hx = (8 + 1)3/ + As, zft = As = vy, z2 = jiy, ft2 = ay + rz, 

and all other products are 0, and a, fi, y, 8, X, /x, v, a, r £ $ with JU,#2 = JLIX2 = 
JUT2 = 0. In this case A is a nilalgebra of nil-index 4 if ju = 0 and of nil-index 
3 if M 7^ 0. A is a Lie algebra if and only if <5 = — § and all other parameters 
are 0. 

Here we only prove Case ( I I I ) and the other cases are entirely similar. In 
this case A~ has a basis x, y, 2, ft such t h a t [ft, x] = y and all other Lie products 
are 0 (see [2, p . 120]). Then B = <ï>x + $3/ + <£>£ is an ideal of A~ and Z = 
$3/ + $>z is the center of A~. Hence by (5) y is an absolute zero divisor of A. 
From [ft, x2] = 2xy = 0, we obtain x2 = ay + jSz and [ft, ft2] = 0 implies 
h2 = ay + rz. Since [ft, xh] = [ft, x]ft = yh = 0, xft = 8y + \z and ftx = 
(8 -\- l)y + \z. Set t ing zx = xz = yy + y'z (recall Z is an ideal of ^4), we 
get t ha t (xz)x = y'xz and since R(x) is nilpotent, y' = 0. Similarly hz = zh = 
vy. Since z3 = 0, z2 = \xy. T h a t x ^ B implies 0 = x2x2 = (ay + /5s)2 = (32z2 = 
/32/x3/ and hence (32IJL = 0. Since ft belongs to the subalgebra $3/ + fe + <3>ft, 
ft2ft2 = 0 implies \xr2 = 0. Similarly we obtain \±\2 = 0 from (xh)2(xh)2 = 0. 
Therefore A has the multiplication table given in ( I I I ) . Conversely, it can be 
shown tha t the algebra A in ( I I I ) is a flexible, (power-associative) nilalgebra 
such tha t A~ is a ni lpotent Lie algebra and dim Z(^4~) = 2. 

Incidental ly we see t ha t the algebras above are all ni lpotent such t h a t all 
products of any 4 elements in A are 0. In fact, in (I) we get Az — 0. In Case 
(I I ) Az C $z and since z is an absolute zero divisor and A2A2 = 0, A is 
nilpotent . In Case ( I I I ) Az C $3; (again note y is an absolute zero divisor) . 
Also A2 A2 C $ • /X3/, and i f / x ^ O , /3 = A = r = 0 and so in any case A2 A2 = 0, 
thus A is nilpotent. Combining this with the known result [4] for the com­
muta t ive case, we can s ta te 

PROPOSITION. Let A be a flexible, power-associative nilalgebra over a field of 
characteristic 7^ 2 such that A~ is a nilpotent Lie algebra. If dim ^ 4 ^ 4 then A 
is also nilpotent such that all products of any 4 elements in A are 0. 

Therefore, there is no simple nilalgebra of dimension :g4 described in the 
proposition. I t is not known whether or not there exists a simple, flexible, 
Lie-admissible nilalgebra A such t h a t A~ is ni lpotent . This question was 
raised in [6] from a t t empt ing to classify simple flexible Lie-admissible nil-
algebras. W e have resolved this for dimension ^ 4 and for the algebra A 
described in the theorem. T h e proposition for an a rb i t ra ry dimension does not 
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hold as remarked for the commutat ive case in Introduction. We however 
conjecture tha t the algebra A described in the theorem is nilpotent. 

A noncommutat ive nilalgebra may have an absolute zero divisor wi thout 
being almost commutat ive . Such an example easily comes from Lie or associa­
tive algebras. We close this section with an example of a nonassociative nil-
algebra of nil-index 3 tha t is not almost commutat ive bu t has an absolute zero 
divisor. The following characterization might be interesting. 

(IV) Let A be a flexible nilalgebra of dimension ^ 4 over an algebraically 
closed field <£ of characteristic 0. Then A~ is a nonsolvable Lie algebra if and 
only if A is one of the following: 

(i) the 3-dimensional simple Lie algebra; 
(ii) a nonsolvable Lie algebra of dimension 4; 

(iii) an algebra of dimension 4 with the multiplication given by 

xy — z + \h, yx = z — \h, xh = —hx = \x, hy = —yh = \y, h2 = — z, 

and all other products are 0. In Case (iii) A is a nilalgebra of nil-index 3. 
Proof. Since any Lie algebra of dimension ^ 2 is solvable, dim A = 3 or 4. 

If dim A = 3, then A~ is the 3-dimensional simple Lie algebra [5, p. 14] and 
hence by [6, Theorem 3.1] A is a Lie algebra isomorphic to A~. 

Suppose dim A = 4. Let N be the solvable radical of A~ and A~ = 5 © N 
be a Levi-decomposition of A~ where 5 is a maximal semisimple subalgebra of 
A~. Since A~ is not solvable, dim N ^ 3 . I t is well-known tha t there is no 
semisimple Lie algebra of dimension 1, 2, or 4 in characteristic 0. T h u s we 
have dim S = S and dim N = 1. Therefore 5 is the 3-dimensional simple Lie 
algebra under [ , ] and N = $z. For any finite-dimensional Lie algebra L of 
characteristic 0, it is easy to see tha t if L has one-dimensional radical N, then N 
is the center of L. Hence $z is the center of A~. Let x, y, h be a basis of 5 such 
tha t [x, h] = x, [y, h] = —y, [x, y] = h. Then H = <£>z + $h is a Car tan 
subalgebra of A~, and since i f is a (commutat ive) nil subalgebra of A [6, p.81], 
uz = 0 for all u £ H. Hence it follows from [6, Lemma 3.2(i)] t ha t u2 G $z for 
all u G H. T h u s H2 C $2 since H is commutat ive , and so by the lemma, 
Hz — 0. Let h2 = az for a G $ . Then 0 = [x, h2] = h[x, h] + [x, h]h = hx + 
xh and this together with [x, h] = x implies xh = —hx = ^x, and similarly, 
hy = —yh = ^y. Since $x and <£;y are the root spaces of A~ for H corre­
sponding to the roots 1 and — 1 , we have xz = yz = 0 since R(z) is ni lpotent 
(also see [6, p. 80]). Thus z is an absolute zero divisor of A. Let xy = fiz + yh, 
so 30; = jfrs + (7 — l)h. Using the foregoing relations, the flexible law (xy)h — 
x(yh) + (hy)x — h(yx) = 0 gives 13 = —a and 7 = J. If a = 0, A is a non-
solvable Lie algebra. If a 9^ 0, replace —as by z to obtain the algebra given in 
(iii). In this case, it is easy to see t ha t A is a flexible nilalgebra of nil-index 3. 
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