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In this paper we consider the questions of existence and uniqueness of solutions to a singular, nonlinear
boundary value problem arising from a model problem in isothermal autocatalytical chemical kinetics. The
boundary value problem occurs in the construction of a small time asymptotic solution to an initial-boundary
value problem (King and Needham [14]), and existence and uniqueness for the boundary value problem are
required for consistency of this formal asymptotic solution.

1991 Mathematics subject classification: 34

1. Introduction

In a one-dimensional unstirred environment, the study of the isothermal autocatalytic
reaction scheme,

A-+B rate = fe[/l][B]p, (1.1)

(where A,B are reactant and autocatalyst respectively, k>0 is the rate constant and
p>0 in the reaction order) leads to an examination of the coupled reaction-diffusion
initial-boundary value problem,

(1.3)
, X ><J,

) = O, t>0 (1.4)
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<x(x,t)^A(t)J{x,t)^B(t), with 0^ oo as x-K»,r>0. (1.5)

Here a(x, t), P(x, t) are dimensionless concentrations of the reactant and autocatalyst
respectively, x is dimensionless distance and t is dimensionless time, with the notation
(aPP)+ defined to be,

° agO or 0^
<x,p>0.

In (1.3), g(x)>0 is an analytic function in O^X^CT, and so g(x)~ga(o — x)r as X-KT ,
for some constant ga>0 and reN. Under these conditions it is readily shown (via the
scalar maximum principle for parabolic operators) that a(x, t), p\x, t) ^ 0 for all x,t >0.

For p ^ l the initial-boundary value problem (1.2)—(1.5) has been studied extensively
by Merkin et al. [19], Merkin and Needham [16,17,18], Gray et al. [11], Billingham
and Needham [4,5,6,7] and Needham and Merkin [21]. An important part of
examining this system is a full understanding of the scalar initial-boundary value
problem,

du d2u . P. .
= ^ + ( M ' ) + , x,t>0,

u(x,0) = 'g(x); O^x^
; x>a,

= 0, t>0,

u(x,t)-^uoo(t), with 0 ^ u 0 O ( 0 < o o , as x->oo, t > 0 .
Here (•)+ is defined as in (1.6) and throughout the paper, the notation (•)+ will have

the following definition,

x<0.

We will refer to the above problem as /[p]. With p ^ l , /[p] has been studied
extensively (see, for example, Fujita [10], Bandle and Levine [1], Weissler [24], Levine
[15]). For 0 < p < l , the equivalent "sink" problem (with +(up)+ replaced by —(up)+ in
/[p]) has been considered in detail by Bandle and Stakgold [2] and Grundy and
Peletier [12]. The corresponding source problem /[p] has recently been examined by
King and Needham [14] and Needham [20], who in particular obtain an asymptotic
solution to /[p] as t-*0+, uniform in x, using the method of matched asymptotic
expansions. In the course of the analysis in [14] the following modified initial-boundary
value problem arose,
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^ ) + , - o o < X < o o , t>0,

l/(X,t)-»^ 1*2/(1-.) V ' t > 0 '
t&tTX / **^ -/* — ^ ^

Following [14], this problem is reduced by the similarity transformation,

with X = Xt~112. On substituting from (1.7) into J[p], we are left with the following
nonlinear boundary value problem for V(X), namely,

=0, -oo<X<oo, (1.8)

^0 for all - o o < X < o o , (1.9)

which will henceforth be referred to as BVP. It should be noted that in the reduction of
J[p] to BVP, we have replaced ( F " ) + - ( l / ( l - p ) ) F by [F p - ( l / ( l - p ) )K] + . This is
allowable by condition (1.9) and will be convenient in what follows. The details of this
problem were not considered in [14]; only the asymptotic forms as X->±co, which
were immediately required as matching conditions, were derived. However, for the
asymptotic structure derived in [14] to be formally complete, we require that for a fixed
0 < p < l , then BVP has a unique solution for each go>0. It is this existence and
uniqueness question for BVP which we consider in the present paper. Related problems
in the non-singular case p> 1 have been considered by Escobedo and Zua Zua [9].

We adopt a shooting method, similar in spirit to that used by Berestycki et al. [3]
and Peletier and Serrin [22] for radial problems on the half line. This method is
adapted for BVP, which is defined on the full line. In particular, we consider a modified
boundary value problem BVP (defined in (2.1)-(2.4)) for u = u(X), — oo<Z<oo and
establish the following main theorem.

Theorem. The set of solutions to BVP consists of a one-parameter family, which can
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be parametrized by <5 > 0. For each 8 > 0 3 a unique solution of BVP if and only ifv = vc(8).
Moreover, that solution can be constructed in terms of solutions to IVPl, 2 as

u(X,vc(3)), x^O
AS)), x<0.

Here ti and u are solutions of the initial value problems IVPl,2, (defined in (3.1,2)
and (4.1,2) respectively) with vc(S) being a critical value of v defined in section 3. This
theorem enables existence and uniqueness for BVP to be deduced directly.

2. A modified boundary value problem

We consider in this section a modified form of BVP, namely,

' —u] =0, -oo<AT<oo,
1-P J +

(2.1)

^ 0 in -oo<A'<co, (2.2)

= 0[(-AT)2/(1-p)] as X ^ - o o , (2.3)

£/(AT)->(l-p)1/(1-p) as X ^ + oo, (2.4)

which we will refer to as BVP. A solution of BVP is to be a solution in the classical
sense; that is, a twice continuously differentiable function U(X) satisfying (2.1) on
— oo<X<oo, together with conditions (2.2)-(2.4). We begin by first establishing some
general properties concerning BVP.

Proposition 2.5. Let U(X) be a solution of equation (2.1) in a neighbourhood No of
X = X0, such that at X = X0, U(XO) = UX(XO) = Q, whilst U(X)^0 in No; then,

(i) Xo>0=>U(X) = 0 in
(ii) Zo<0=>l/(Z) = 0 in

(iii) Xo = 0=>U(X) = 0 for all -oo<AT<oo.

Proof, (i) In this case ATo>0 and U(X0) = Ux(Xo) = 0, with U(X)^O in JV0. For
XeN0, we now multiply (2.1) by Ux and apply \Xo...ds, to obtain

U&X)=- J sVl(s)ds- 2V'+'i*) + P^; XeN0, (2.5)
(1+P) ( 1 P )

after use of the conditions at X = X0. We now take X>X0, and use the mean-value
theorem on the first term on the right-hand side of (2.5), to give,
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UX{X) = - ( A -XO)\_XU2
X(X)-]- ^ ^ +j^y XeN0> (2.6)

with Xe(X0,X). Now, since 0 < p < l , there exists a d>0, depending upon X0 and p,
such that, from (2.6), Ul(X)£0VXe[Xo,Xo + 5~\. Hence UX(X)=O in [XQ, AT0 + <5], and
as U(Xo)=0 and U(X) is continuous in No, we conclude that U(X)=0 for Y £ [ X o , ^ , ]
for any Xl>X0, and the results follow.

Parts (ii) and (iii) are established similarly. •

This result can be used to establish the following monotone property for all solutions
to BVP.

Proposition 2.7. Let U(X) be a solution of BVP, then U(X) is strictly monotone
decreasing, with U(X)>(l-p)Uil~p) for all -oo<Ar<oo.

Proof. From condition (2.2), U{X)^0. However, conditions (2.2)-{2.4) together with
Proposition 2.5 lead us to conclude that U(X)>0 for all — oo<X<oo. Now, suppose
that U(X)£(l-p)llll-p) for all -oo<A'<oo, then (via conditions (2.3), (2.4)) U(X)
must have a local minimum at X = XT (say), with 0<U(XT)<(l-p)lia-"\ U'(XT) = O
and U"(XT)^0. However, using equation (2.1) we have U"(XT)=(\/(l- p))U(XT)-
Up(XT)<0, which gives a contradiction. Hence U(X)^{1 -p)1 / ( 1"p ) for all - o o < X <
oo. Next suppose that U(X) has a turning point at X = XT (say), then, via (2.1),

U (XT)-

Thus, U(X) can only have a local minimum for all — oo<Ar<oo. It then follows from
conditions (2.3), (2.4) that U(X) must be strictly monotone decreasing in — oo<X<oo,
after which the above inequality tightens to U(X)>(1 — p)1/(1"p) for —oo<X<oo, as
required. •

These results will be revisited at a later stage. We now adopt a shooting technique to
obtain the complete family of solutions to BVP. This involves the study of two related
initial value problems.

3. The initial value problem in -Y>0

In this section we consider the initial value problem,

"] =0, X>0 (3.1)

, ux(O)=-vd, (3.2a,b)
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where <5^0 and v^O, and we henceforth refer to this as IVP1. We first make the
following remark.

Remark 3.3. With 8 = 0, IVP1 clearly has the global solution u(X) =
(1— p)1/(1"p)VX^0. It follows that this is unique through an application of the local
uniqueness result (Coddington and Levinson, [8, Theorem 2.2]).

We now restrict attention to the case when S>0, and to proceed, we require the
corresponding linearized initial value problem, namely,

1-">] = 0, X>0, (3.4)

u,x(O)=-vS, (3.5,6)

which we shall refer to as LIVPl. The general solution to equation (3.4) is readily
obtained, and conditions (3.5,6) determine the unique solution to LIVPl as,

] , ^ , (3.7)

for all X^O. We note that for X»l,

For v = l/s/n, u,(X) is monotone decreasing in X with u,(A")-»(l — p)1/(1~p) as X-+c
However, for 0gv<l/N/7t, ul(X)>(l-p)1/il-<') for all X > 0 and u,(X)
((5/2)(l — yfnv)X2 as X^oo. For v>l/y/n, ut{X) is monotone decreasing with u,(X)
-{5/2)(Jnv-\)X2 as X^oo. We are now able to relate u(X) to u,(X).

Proposition 3.9. Let ii(X) be a solution to IVP1 for Xe^X^ for any Xe>0. Then
u(X) = u,(X) and ux(X)^ulx(X) VIe[O,*.] .

Proof. Define the linear differential operator, L [ ] , as L\w~]
(w—(1—p)I/<1-p)), for any suitably differentiable function w(X). Now, L[u,] =

J and ul(0) = {l-p)llil-p) + 5, ulx(0)=-v5. Also,

V —oo<u<oo and hence VA'e^,Xe~]. Moreover, u(0)-u,(G) and iix(0) = ulx(0); thus we
can apply the comparison theorem for initial value problems with linear ordinary
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differential operators (see, for example, Protter and Weinberger [23, Ch. 1, Theorem 13,
p. 26]) to u(X) and u,{X) in [O,ATe] to obtain, u,(X) g u(X) and ulx(X)^
ux{X) V X e [0, Xe], as required. D

We next consider a further initial value problem,

u'xx+?Xul
x-N(u')+=0, X>0, (3.10)

5, u'x(0)=-v5 (3.10,11)

where N— 1 +Int(l/1 —p), and we shall henceforth refer to this initial value problem as
LIVP2. The solution to LIVP2 is readily obtained. For v^22"-1(N!)2/(2N)!v/;t then
u'(X) is always positive in X > 0 and,

(3-12)

where A2N(X)=YJr=oN\i(2r)}(N-r)\ylX2r. It is readily shown from (3.12) that in this
case u '(Ar)>(l-p)1 / ( 1-p )VX>0. Now, for v>22N~l(N\)2/(2N)\y/n, then there is a point
X = X*>0 at which ul(X*)=0, with ul(X)>0 for 0^X<X* and ul(X)<0 for X>X*.
In this case u'(X) is given by (3.12) for O^X^X*, but has the form

ul(X) = u'x(X*) | e-^-x'2)l4)ds (3.13)
x*

for X>X*. We note that, in this case,

2 2 (3.14)

as X-»oo. In addition we observe from (3.12,13) that for any v^O, there is a constant
K(N) such that,

(3.15)

We can now establish:

Proposition 3.16. Let u(X) be a solution o/IVPl for Xe[0,A"e] for any Xe>0. Then
u(X) g u\X) and ux(X) ^ u'x(X) V X e [0, X J .

Proof. We first observe that if u(X) ̂  0 V X e [0, X J then 3 an Xo e [0, .Ye] such that
u(Xo)=0, u(X)>0VXe[0,Xo] and u(X)s0 or u(X)<0VXe(Xo,Arj. This follows
from equation (3.1) and Proposition 2.5. There are now three cases to consider:
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(i) First suppose u'(X)>0VXe[0,Ze] and u(X)>0VAre[0,Ar
e]. We then define the

linear differential operator, L [ ] , as L[w] = wxx+jXwx — Nw, for any suitably differen-
tial function w(X). Now via LIVP2, L[w'] = 0VXe[0,ArJ. Also

-Nu = -\u"

Vu>0 and hence ^Xe[0,XJ. Moreover, u(0) = u'(0), ux(0) = u'x(0), thus we can apply
the comparison theorem for linear ordinary differential operators, [23], to u(X) and
u\X) in [0,XJ to obtain u(x)^ul(X) and ux(X)^u'x(X)VXe[0,ATe].

(ii) Next suppose u'(X) > 0 V X e [0, JfJ, but w(A-)} 0 V X e [0, XJ, and let Xo be as
defined above: For Xe[0,XQ~] the result follows from (i) above, whilst for Xe\_Xo,Xe~]
we apply the same argument as in (i) but using the operator L[w] = wxx+^Xw. For
Xe[X0,XJ, u(X)£:0, from above. Thus, using equation J3.1), L[M]=0VAre[Xo,Ar

e].
However, in this case u\X)>0VXe[Zo,XJ so that L[u'] = Nu'>0VAre[Ar

o,Xe].
Moreover, u'(X0)^u(X0) and «'X(A"O)^ux(X0), and so the comparison theorem for
linear differential operators, [12], gives u(X)^ul(X) and Mx(A

r)<;i4(Ar)VAre[Ar
0,A

rJ, as
required.

(iii) Finally suppose u'(X)i>0 on [O.XJ. Then 3 an A ^ X Q such that u'(X)>
0VJ6[0,Xo) , ul(Xo) = 0 and u'(X)<0VA:6[Xo,Ar

e], via (3.12,13). For^e[0,Xp) the
result follows from parts (i) and (ii). Moreover we can deduce that u(Xo)^u'(Xo) = 0
and ux(Xo)^u'x(XQ)<0 from the result on [0,Xo) and continuity of u(X), u'(X) and
first derivatives at X = X0. These conditions enable us to conclude that (via the first part
of thisproof and (3.12,13)) u(X), ul(X) ̂  0 V X e [Xo, XJ, and so via (3.10), (3.1)

Xo,Xc], and the result follows via the comparison theorem.

All cases have now been considered and the proof is complete. •

Remark 3.17. On the interval Xe[0,Xe~\, for any Xe>0, Propositions 3.9, 3.16 show
that, Ui(X)5Su{X)^u\X), ulx(X)^ux(X)^u'x(X), which provide a priori bounds on the
solution of IVPl.

Having established a priori bounds on the solution of IVPl, we are now able to
consider (for each <5>0, v^O) global existence and uniqueness of solutions to IVPl.

Proposition 3.18. For each S>0 and O^v^l/^/n there exists a unique solution to
IVPl with Xe[0,XJ, for any Xe>0.

Proof. We first write IVPl as the equivalent first order system

ux=V, Vx=
1 (3.19.

, F(0)=-v<5.
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Now, via Propositions 3.9, 3.16 and 3.17, any solution of (3.19) is a priori bounded in
[0, Xe] with, for 0 g v ̂  /

V71
l
(3.20)

Now let D = Rx.[0,Xe], where R is the rectangle described in (3.20), and define
F:D-*M2 as,

It is clear that F is continuous throughout D. Moreover, since via (3.20) u is bounded
away from zero in D, then F is a differentiable function of («, V) throughout D, and
hence is Lipschitz continuous in (u, V) throughout D. Under these conditions, a repeated
application of the local existence and uniqueness theorem (see, for example, Coddington
and Levinson [8, Ch. 1., Theorem 2.3]) on the intervals [0,a],[a,2a],...,[(s — l)a,sa]
(where a = min(Xe,b/M) with, 6 = ^(1—p)1/(1 "">+ 1, M = max|F(u, V,X)\V{u,v,X)e

1 / ( 1 ) § 1 / < 1 ) ^ / ^ f'
\

[0,Xe~\, and seN with Xe/a^s<Xe/<x + l) establishes existence and uniqueness on the
interval X e [0, Xe~\, for any Xe > 0. •

Remark 3.19. For the above proof, in the notation of Coddington and Levinson [8],
the rectangle R used in each local application of [8, Theorem 2.3], with initial
conditions (uo,vo)

 a t *o> i s | " -«o | ^ i ( l -p ) 1 / ( 1 ~ p ) > l ^ - ^ o l ^ l . |AT —A"o|^ 1-

The restriction 0 ^ v^ l/y/n in Proposition 3.18 can be removed as follows:

Extension 3.20. For v>l/y/n existence can again be established on [0,Xc], for any
Xe>0, via the a priori bounds of Propositions 3.9, 3.16 and the Cauchy-Peano local
existence theorem ([8, Ch. 1, Theorem 1.2]). However, in this case the lower bound on u is
negative, and so uniqueness cannot be guaranteed immediately as now F is not Lipschitz
continuous in (u,v) throughout D (D now contains part of the plane u = 0). Despite this,
uniqueness can still be established.

Proof (of uniqueness for v>l/^/n). Suppose M(^;V) is a solution of IVP1 with
v> \/y/n and X e [ 0 , ^ J . There are two cases to consider,

(i) u(X;v)>0VXe[0,Xe-]
Uniqueness follows from applying the local uniqueness result ([8, Ch. 1, Theorem

2.3]) at each -Yo
e[0>^e]> a s ^(«» K-X) is locally Lipschitz continuous at each such point

(u(X0), V(X0), Xo), since u(X; v) is bounded away from zero.

(ii) u(X
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In this case 3 X*e(O,Xe] such that u(Ar*;v) = O and u(X, v) > 0 V X e [0, X*). Unique-
ness for Xe[0,X*) follows as in (i) above. At X = X*, ux(X*;v)^0. With ux(X*; v)=0,
then via equation (3.1) and Proposition 2.5, we deduce that u(X;v) = 0 for Xe[X*,XJ,
and uniqueness follows on this interval. The remaining possibility is that iix(X*;v)<0,
when for Xe[X*,X^], u(X;v) satisfies the initial value problem (via IVPl),

u(X*;v) = 0, iix(X*;V)=-a*

for some <x* > 0. This has the unique solution

u(X;v)= - a * J e-«s2-**2)/4)rfs<0.

V X e IX*, XJ, and the result is established. •

The next stage is to examine the closeness of solutions to IVPl and LIVP1. We begin
with:

Lemma 3.21. Let u(X) and u,(X) be solutions of IVPl and LIVP1 respectively on
[0,XJ, for any Xe>0, then,

( i ) 0 ^ ^

(ii) 0^Hl(ul)
for all Xe[P,XJ. Here tf(w) = [wp-(l /( l-p))w]+ and H,(w)= - [ w - ( l - p ) 1 / ( 1 - p ) ] ,
with A(p)=\p(l-p)-ll(1-p).

Proof, (i) Via Proposition 3.9 we have u(X)^u,(X)VXe^XJ. Moreover u,(X)>
( l - p ) " ( 1 - p ) ¥X>0 . Hence fi(Ar)^(l-p)1/(1-")VAre[O,Ar

e]. Now, H(w) is strictly mono-
tone decreasing in w for w>(l-p)1 / ( 1-p ) . Therefore [//(u,(AT))-//(u(A:))]g
0VZe[0 ,XJ . In addition, H(w) is also Lipschitz continuous in w>(l—p)1/(1"p) (it is
differentiate, with bounded derivative \H'(w)\^(\/l-p)Vw^(l -p)lia~p)). Thus
[//(«,(!))-H(«(X))]^(1/1 -p)[u(^)-«,(^)] V Jre [0,XJ, as required.

(ii) We note first that when v = l/N/n, ut(X) is monotone decreasing in X ̂  0, with
t^W-Kl-p)1/ ' 1-"* as X->oo. Also, in w^(l-p)1 / ( 1 -p ) , H,(w)-H{w) is positive and
monotone increasing. Therefore 0^H,(ul{X))-H(u,(X))^Hl(ul(0))-H(ul{0))^A(p)d2 V
Xe[0,Xg], on using u,(0) = (l —p)1/u~p)+d and Taylor's theorem with remainder. •

Extension 3.22. The inequality (i) also holds for v>\ly/n, but only extends to the
maximal interval [0,Xo], where Xo is the unique, positive value of X with «,(X0) =
[P(l - P ) ] 1 / U ~P)<(1 - P ) ] 1 / u ""'• Note that Xo depends on S and v.

The inequality (ii) holds for v> l/^/n, but only extends to the maximal interval [O.^J,
where Xt is the unique, positive value of X with u^X,) = max{(l— p)1/(1"p> — 5,
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[ p ( l ~ P ) ] 1 " l p ) } - This inequality also holds for O^v<l/N/7r, but only extends to the
maximal interval [0, X2~\, where X2 is the unique, positive value of X with ul(X2) =
(1 — p)1/(1~p) + (5. Again we note that both Xt and X2 will depend on 8 and v.

We next write IVPl and LIVPl as equivalent first order systems,

; x>o], x \ ( ) ; |

= vt,vix=- JXvi ~ # i("i); X > 0 j
(3.23)

subject to u,(0) = u(0) = ( l - p ) 1 / ( 1 - p ) + <5, u,(0) = 0(0) = - v<5. On defining W(X) =
(u{X)-u,(X), v(X)-v,(X))T, we readily find from (3.23) that W(X) satisfies the following
initial value problem

Wx = A(X)W+g(W), W(0) = 0, X>0, (3.24)

where

( ) )
(3.25)

The initial value problem (3.24) is equivalent to the integral equation,

W{X)= ] B(X)B-l(s)g{W(s))ds, X>0, (3.26)
s = o

where B(X) is a fundamental matrix for the system Yx = A(X) Y, and can be taken as,

( '

On substitution into (3.26) using (3.25) and (3.27) we arrive at,

lH,(u,(s))-H(u(s)y]ds, X>0,
s = 0

which leads directly to the inequality,

5 = 0

x|//((u,(s))-//(M(s))|ds, X>0, (3.28)

We can now establish:
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Proposition 3.29. Let ii(X) and u,(X) be solutions of IVP1 and LIVPi respectively.
Then for any 8>0, v^O,

(3-29»

for all Xe[O,Ar
e] (where Xe, when necessary, is restricted to those values allowable for

Lemma 3.21 to hold).

Proof. From (3.28) we have immediately that

IWWlg J [(X-s) + l]\H,(u,(s))-H(u(s))\ds, X>0. (3.30)

Now, for Xe[0, Xe~] (with Xe, if necessary, restricted so that Lemma 3.21 holds) we
have, via Lemma 3.21 and (3.22),

0 g H,(u,) - H(u) = [tf ,(u,) - tf (M()] + [H(ut) - HiuJ]

^ 2 (3.31a)

. ^ s C O . X J . Thus, using (3.31a) in (3.30) we arrive at,

5 = 0

VXe[0 ,A: j . This leads to,

{ £ ^ S ) X \ \ 2 l (3.31b)
s=o

] . It is now straighforward to apply the Gronwall inequality (see for
example, Hirsch and Smale [13, Ch. 8, §4]) to (3.31b), to obtain,

V X e [0, Xe~], as required. •

Remark 3.32. For any finite (allowable) Xe, Proposition 3.29 implies that |u(A") —
Ui(X)\, \ux(X)-ulx(X)\ = 0(82) uniformly on Xel0,Xe~] as (5-0+ for fixed v^0.
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We next make use of Proposition 3.29 to examine the behaviour of the solution to
IVP1 with varying v^O, at a fixed <5^0. We first recall that, for v>l/y/n, then u,(X) is
monotone decreasing in X with u = 0 at X = Xc(v, 5) where, from (3.7), (3.8),

*c(v,<5)~ ^ ^ (3.33)

^ as v->oo.
dv

Recall also that for v>l/s/n, £^,8) is defined so that u,(X1) = Max{(l-p)1/ (1"p>-5,
(p(l-p))1/(1"p>}, and in this case Proposition 3.29 applies for Xe[OJ, (v^)] , Hence,
applying Proposition 3.29 at X = Xt(v,5) we obtain

1(Xl + 2) exp

We also note, via (3.7), that,

* ,<v,«Hft aS V^1+/^ (3.35)
[ 0 as v-»oo,

with X^S) being a monotone decreasing function of v>l/y/n. Therefore, for a fixed
<5>0, we observe from (3.34), (3.35) that there exists a v = vu(<5) > l/^/n (with
vu(d)->\+/s/n as <5->0 + ) such that,

u(jei(v,<5))<(l-p)1'(1-p)Vv6(vli(5),oo). (3.36)

Moreover (via equation (3.1), the only turning point of M with 0 < u < ( l — p)1/(1~p) can
be a local maximum) we may also infer that,

u x (* i ( v, &)) < 0 V v e (vu(<5), oo). (3.37)

Thus, using (3.36, 37) and equation (3.1), it is clear that for each ve(vu((5), oo), then u(X)
is monotone decreasing for 0<X<X*(v) (X*(v)>Xc(v)) with u(X*(v))=O. For X>
X*(v) we have (from (3.1) directly),

with,
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as X^co.
We now consider the case when 0 g v < 1/^/n. In this case recall that u,(X)>

(1—p)1/(1~p) in X>0 and has a single turning point, which is a local minimum, with
U,(X)-KX> as X->oo. Moreover, there exists a unique point X = X2(v,8) with ul(X2) =
(l-p)Uil~p) + 8, and Proposition 3.29 holds for Xe[0,X2]. We also observe that (via
(3.7)),

M : : Z
Thus, for fixed 8>0, u(X2L>ul(X2)>(l-p)llll-'>) and ux(X2)>ulx(X2)>0, via Proposi-
tion 3.9, for all ve[0, l/y/n). These conditions imply (using (3.1)) that u(X) is monotone
increasing in X>X2(v,8) with M(X)-»OO as A'-xso.Vver.O, 1/^/TT). We have thus
established:

Lemma 3.39. For any <5 > 0, then,
(i) with ve(vu(<5),oo), ti(X) is monotone decreasing with ^(ZJ-^u^gO as X-^oo. //ere

vu((5)>l/y^V5>0, with V U (<5)-1 + A/^ as^-»0+.
(ii) wit/i velOJ/^/n), u(X)>(l-p)1/ll~p)yX>0. Moreover, ii(X) is monotone increas-

ing in X>X2(v), and u(X)-*co as Z-»-oo.

In what follows we regard 8 > 0 as fixed and write ii(X) = u(X, v) as we wish to explore
the dependence of u on the parameter v ̂  0.

Lemma 3.40. Let Id = {veU+ u {0} :u(X,v)^{l - p ) " ( 1 - f l V I ^ 0 } , then / , = [0,v*(^)]
for some l/^/n ^ v*(8) g vB(5).

Proof. We have already shown that [0, i/^/n)s/a. Thus inf(/,,) = 0 and putting
sup(/4) = v*(^), then, l/y/n^v*(S)Svu{d). We now show that ls is connected. Suppose
that v^Is (v!>0), then «1(X)5i!(x,v1) |(l-p)"( 1- ' ' lVX^0. Also let 0<vo<v, with
uo(X) = u{X, v0). From equation (3.1),

=0

^O, and uo(0) = u1(0), U'O(0)>M'1(0). Thus, via the nonlinear comparison theorem for
ordinary differential operators (Protter and Weinberger [23, Ch. 1, §9, Theorem 23]) we
have uo(X)^u,(X)VX^0 and therefore voe/a. We conclude that Is is connected.
Finally, we must show that v*(<5) e It (and hence that 1(8) is closed). If we suppose that
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v*(8)<tli, then 3 an X>0 such _that u(£,v*)<(l-p)1/ (1-p). However, u(X,v)^
(1 —p)1/(1~p) V0^v<v*(5), and so u(X,v) cannot be continuous in v at v = v*(<5). This
contradicts continuous dependence at X = X of the solution of IVP1 on initial
conditions (Coddington and Levinson [8, Ch. 1, §7, Theorem 7.1]), and hence v*(8)els.
The result follows. •

For each <5>0, we now consider the solution of IVP1 with v = v*(<5).

Lemma 3.41. The solution u(X, v*) o/IVPl (for any <5>0) is monotone decreasing in
^O and has u{X, v*)-»(l -p)1'*1""' as X-oo.

Proof. Suppose u{X,v*)-*co as X->co, then 3 an X*>0 such that u(X*,v*)>\ +
8 + (l-p)lni-p). However Vv>v*(<5), u(X*,v)<8 + (l-p)m-p). This contradicts conti-
nuity of u(X*, v) on v at v = v*(<5). Therefore we conclude that u(X, v*) must remain
bounded as X->oo. Since u(X,v*)^(l-p)l/a~p\ then (via (3.1)) ii{X,v*) can have at
most one turning point in X>0, which must be a local minimum. We suppose that
u(X,v*) has a local minimum at X = Xm>0 with M(Xm,v*)^(l-p)1/(1"p>. Then u(X,v*)
is monotone increasing and bounded above in X>Xm, so u(X,v*)-*ua) as X-^oo, with
ux>(l —p)1/(1~p). However, this is not compatible with equation (3.1), and we conclude
that u(X,v*) is monotone decreasing in X^O. Thus u(X,v*)-m^ as I->oo with now
(l-p)1 / a~p )^uo o<(l-p)1 / ( 1~p ) + <5. Equation (3.1) then gives immediately um =
(l-p)1/ (1"p) , as required. •

Remark 3.42. It follows from Lemmas 3.40, 3.41 that for all ve(v*(<5), 00), then
u(X,v) is monotone decreasing in X, with w(X,v)-*ua>^0 as X-^oo. Note also that

/ * as <5-0+ (via Lemma 3.40).

At present we have shown that for any d > 0, there is at least one value of v, given by
v = v*((5), such that the solution of IVP1 is asymptotic to ( l-p)1 / ( 1"p ) as X->oo. We
now determine that v = v*((5) is the only value of v for which the solution of IVP1 has
this property.

Lemma 3.43. Let Js = {veU+ u {0}:u{X,v)^(l-p)1/(1-p) as X->oo}, then J} =
for some /

Proof. From Remark 3.42 we have immediately that Jd^ls, and, via Lemma 3.41,
sup(Ji) = v*(8)eJi. Let v_(<5) = inf(Ja), then v,(8) ̂ l/y/n via Lemma 3.39. To demon-
strate that Jd is connected, we follow the proof of Lemma 3.40 and use the nonlinear
comparison theorem for ordinary differential operators, [23]. Finally to show that
v+(8)eJa we again follow the proof of Lemma 3.40, using continuous dependence of the
solution of IVP1 on v at fixed X, [8]. •

We note from Lemma 3.43 and Remark 3.42 that v^(8)->\+/y/n as 8-*0+. Moreover
we are able to show that for each 8>0, Jd has just one element.
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Lemma 3.44. For each <5>0, we have v*(8) = v^.(d).

Proof. Suppose 3 a d>0 such that v*(5)^v^(S). Then, by definition v^(S)<v*(5) and
3 values v = vo,v1 with v!(1(<5)<v0<v1 <v*(S). Let u1(X) = u(X,vl) and uo(X) = ii(X, v0),
then, via the nonlinear comparison theorem, [23], it is readily deduced that,

IAPQ^OVAT^O, (3.45)

where ij/(X)=uo(X) — ul(X) in X^O. Moreover, using initial conditions
(uo(0) = u1(0) = {l-p)ilii~p) + 8) and since v^v^Jg, then,

0+ as *-»oo. (3.46)

Also, il/'(0)= —3(vo — v1)>0 and so 3 an X + > 0 such that,

ip(X)>0VXe(0,X+). (3.47)

The conditions (3.45-47) imply that 3 a point X = XT>0 where ${X) has a local
maximum. Thus,

tl/(XT)>0, ip'{XT) = O, 4>"(XT)S0. (3.48)

Now as both Ui(AT) and uo(X) are solutions of IVP1 with v = v1)v0 respectively, then
satisfies the following,

[uo(X) - u^X)-] - [ug(X) - «?(JQ], (3.49)
( I -P)

in X>0. We now consider X = XT. Since \l/(XT)>0, then, uo(Ar7")>u1(Arr)>(l-/>)1/(1-p)

(via definition of Ja). Thus, using the mean value theorem,

where £,e(uuu0). Hence,

- ul(XT) < jJL- [_uo(X
T) -

7 T i (3.50)
(!-?)

Next, evaluating (3.49) at X = XT, using (3.50), we arrive at, ij/"(XT) = (l/(l-p))
{uo(X

T)-u1(X
T)}-{iip

o(X
T)-up

1(X
T)}>0, which contradicts the last of (3.48). We

conclude that v*(<5) = v^(^) V 5 > 0, as required. •
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In the light of the above lemma we introduce the notation vc(8) = v^(5) = v*(d). We can
now state:

Theorem 3.51. For each 8>0 the solution of IVP1 is such that i i(Ar,v)->(l-p)1 / ( 1"p )

as A'-^oo if and only if v = vc(<5). Moreover, u(X, vc(5)) is monotone decreasing in X^.0,
and vc(d)^l/y/nV5>0, with uc(t5)->l+ijn as <5->0+.

Proof. Follows directly from Lemmas 3.39-3.44. •

The above theorem concludes our analysis of IVP1.

4. The initial value problem in AF<0

In this section we consider the initial value problem,

= 0, X<0, (4.1)

, ux(0)=-v8, (4.2)

with 8, v^O, which we henceforth refer to as IVP2. Again, we can make the following
remark.

Remark 4.3. With 8 = 0, IVP2 has the global solution u(X)=(l-p)1/il-p)yX^O. It
follows that this is unique ([8, Ch. 1, Theorem 2.2]), from application of the local
uniqueness theorem.

To proceed further we re-write IVP2 in terms of ( = — X,

w = 0 , C>0, (4.4)

(4.5)

which we refer to as IVP2. This now falls into the same class as IVP1 (with v replaced
by — v), and we have the following:

Theorem 4.6. For each 8>0 and v^0 , IVP2 has a unique solution in X <0. Moreover,
this solution is monotone decreasing in X with ii(X)-> + oo as X-* — oo.

Proof. We work with the equivalent problem IVP2 in ( > 0 , with solution u(Q. We
define M,(Q and u'(Q as before, except we replace conditions (3.6), (3.11) by M,?(0) =
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u[(0) = v<5. Similarly following the proofs of Propositions 3.9, 3.16, we readily establish
that on any interval [0, (e], u,(C) and u'(Q provide lower and upper bounds on u(£)
respectively. These a priori bounds then enable existence and uniqueness for IVP2 to be
established in [0,Ce] for any Ce>0. Now, since w(0)>(l -p)1 / ( 1" p ) and uc(0)^0, an
examination of equation (4.4) establishes directly that w(() is monotone increasing in
£>0. Moreover, since u(0^u,(C) in (>0 , then u(C)-»oo as £-KX>, as required. •

We are able to use the information that U(X)-KXI as X-* — oo to obtain the
asymptotic form,

u(X)~A(8,v)(-X)2^-") as X-.-oo, (4.7)

with A(S, v)>0 for any S>0, v^O. We can now return to the original problem BVP.

5. The boundary value problem BVP

We first return to BVP. Through Proposition 2.7, we observe that any solution, U(X),
to BVP has [/(0)>(l-p)1/(1~p) and Ux(0)<0. Thus we may write for any solution to
BVP,

Ux(0)=-vS, (5.1)

for some 3, v>0. This leads us to:

Theorem 5.2. There is a bijection between solutions to BVP and those pairs
((5,v)elR+x[R+ for which IVP1 has a solution u(X,v) with u(X,v)->(l-/>)1/(1-'" as

Proof. Let S s IR+ x R+ be defined by,

S = {(<5,v):IVPI has a solution at (<5,v) with u ( * » - » ( l - p ) 1 / ( 1 - p ) has X-»oo},

and,

B = {u:U^-((l-p)ll(1-p\cx>):u(X) is a solution of BVP}.

Now define the mapping T:B->S by T[u(Ar)]=(<5, v), where,

Clearly, T is well-defined. We must now show that T is one-one and onto.

(i) One-one
Suppose Ui{X) and u2(X)eB and T[u1(A

r)] = T[ti2(A
r)]. Then, by definition of T,

U,(0) = M2(0) and UiX(0) = u2x(0). Thus, in X^O, both ux{X) and uz(X) satisfy IVPl with
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the same v,5>0 (see (5.1)). Uniqueness follows from Proposition 3.18 and Extension
3.20, and so, u1(X) = u2(X) in X^O. Similarly, Theorem 4.6 shows that ul(X) = u2(X) in
A"<0. Hence ut(X) = u2(X)V XeU and T is one-one.

(ii) Onto
Let ($, v) e S, then we define,

ju(X,v), X^O

Now, via Theorem 3.51, since u(X,v)->(l — p)1/(1~p) as X->oo, then ii(X,v) is
monotone decreasing in X with ii(X,v)>(l — p)1 / (1~p)VX>0. Also, via Theorem 4.6,
u(X, v) is monotone decreasing in X < 0 with u(X, v)-»oo as X-> — oo and has
asymptotic form (4.7). Therefore M(^) e B and so T is onto. •

We note that S = {(5,v): v = vc(5),5>0}, via Theorem 3.51.

Remark 5.3. The correspondence of Theorem 5.2 relates solutions of BVP uniquely
to points in the positive quadrant of the (<5, v) plane.

Theorem 5.4. The set of solutions to BVP consists of a one-parameter family, which
can be parametrized by d>0. For each 8 > 0 3 a unique solution to BVP if and only if
v = vc(S). Moreover, that solution can be constructed in terms of solutions to IVP1,2 as,

(5 5)
u(X,Vc(5)), X<0. ( 5-5)

Proof. The proof follows from Theorem 5.2, 3.51. •

Remark 5.6. From definition 5.5, we readily deduce that at any fixed X e U, u(X, 5) is
a continuous function of <5^0. In addition we observe that with <5 = 0 in (5.15) then
u(Ar,0)s(l-p)1 / ( 1- '"VX6lR, via Remarks 3.3, 4.3. Hence for fixed XeU

In the remaining part of the paper, we relate solutions of BVP to solutions of BVP.
We begin with:

Proposition 5.7 The function /(5)s^v,.(5), for 5>0, is non-decreasing. Moreover
/ in (5>0, and x(S)~(l/yfit)8 as <5->0+.

Proof. Suppose that <5,>(50>0 and that x(^i)<Z(^o)- Hence 5 lv1<50v0 , where
vi = vc(<5i)> vo = vc(<5o)- Then, via the nonlinear comparison theorem, [23], the solution of
IVP1 with 5 = 6O, v = S1v1/S0 has u(X)->(l-p)1 / ( 1~p ) as X->oo (as it is bounded above
by the solution to IVP1 with S = 5lt v = vt and bounded below by the solution to IVP1
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with (5 = <5O, v = v0). Thus 5lv1/SoeJSo. But voeJio and vo¥=8lvlj8o, which contradicts
Lemmas 3.43, 3.44. Therefore x($i)=^x(do) a nd m e results follows. The final part follows
from Theorem 3.51. •

The family of solutions to BVP, (5.5), have the following behaviour as X-* — oo,

u(X,8)~<t>(d)(-X)2ni-p) as *->-oo, (5.8)

via (4.7), with <&(8) = A(8, vc(S)), and Q>(8)>0 for all 5>0. We can establish the following
properties of <&(S):

Proposition 5.9. In 8>0, <P(8) is monotone increasing with <D(<5)->0+ as 8-*0+ and
<D(<5)->oo as 5-KX).

Proof. Continuous dependence of u(X, 3) on 5 (initial conditions) establishes the
continuity of O(<5) with 8>0. Also at <5 = 0 (via Remark 5.6), u(X, 5) = 0 V X e U, and
continuity of u(X, 8) on 8 for fixed X at 8 = 0 (Remark 5.6) requires lima_0+ O(<5) = 0.
Now, for 8l>80>0 we have (via the nonlinear comparison theorem, [23], in .Y<0, and
Proposition 5.7) u(X,81)>u{X,80) and [-uA-(Ar,51)]^[-Mx(Ar,50)]VA-<0. Thus, via
(5.8) <D(<5,)><I>(<5o), as required. We next show that for a given <5>0, ux(X,8) is
monotone decreasing in X<0. Suppose that ux(X,8) has a turning point in X<0, at
X = XT say, then uxx(XT,8) = 0, and so, via equations (5.5), (4.1), ux(XT,8) =
XT-1l(l/(l-p))u(XT,5)-up(XT,8)] + >0 as u(*r,<5)>(l-p)1/(1~p). However, via
Theorem 4.6 and (5.5), ux(XT, <5)<0, which gives a contradiction. Hence ux(X,8) is
monotone in .Y<0, and is monotone decreasing via (5.8). It now follows directly from
Proposition 4.7 (noting that ux(0,8) = -x(8)) and (5.8) that 0((5)->oo as <5-»oo. This
completes the proof. •

Finally we are able to return to our original boundary value problem BVP given by
(1.8M110). We have:

Theorem 5.10. For each ga>0, BVP has a unique solution. Moreover that solution is
given by V = ii(X,8), where 8 is the unique, positive, root of the equation <t>(8)—g<T = 0.

Proof. The proof follows directly from properties of u(X; 8), 8>0. •
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