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ABSTRACT

The main objective of this paper is to measure the process error for a portfolio
of independent disability insurance policies in a multiple state modelling context.
We consider the calculation of premiums for a portfolio of income protection
insurance policies in a stochastic environment represented both by random
transitions in the underlying multiple state model and random external economic
factors in the form of stochastic investment returns and inflation. We also
investigate the sensitivity of the process error to the level of volatility incor-
porated in a given model using suitably defined risk measures. We then draw
conclusions and identify possible avenues for future research.
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1. INTRODUCTION

Describing and quantifying the risks involved in health related products are
becoming increasingly more important as insurance companies endeavour to
respond to the demand for such products, created by external economic trends
(e.g. the increasing numbers of self-employed) and demographic changes (e.g.
the ageing of the population), noting that this type of business has caused
substantial losses in the past. The objective of this paper is to consider the
calculation of premiums for a portfolio of simple disability insurance policies
in a stochastic environment represented both by random transitions in the under-
lying multiple state model and random external economic factors (i.e. factors
not under the control of the insurer). The disability insurance product which
we examine is now called income protection insurance, IPI (or simply IP) but
was formerly known as permanent health insurance (PHI) in the UK.

We will consider the risk in the portfolio that emanates from the sickness-
claims process (i.e. morbidity) and the risk attributable to the economic uncer-
tainty represented by stochastic investment returns and inflation rates. We will
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also consider how this level of risk can be managed through, for example, a
risk-loaded premium or through a solvency margin (i.e. risk-based capital)
both of which can be determined from probabilistic calculations.

We note that all models abstract to some extent from the real world and,
as noted by Daykin et al (1994) and other authors, models are subject to three
broad types of error or risk:

model error – because models are not known with certainty
and usually are only approximations to the real
world;

parameter error – past observation data are limited in quantity and
so parameters are not known with certainty;

process (or stochastic) error – our target quantities will be subject to random
fluctuations about the mean, even when the
model and parameters are correct.

Our focus will be on the third component: process error. The pooling of insured
units in a portfolio is a critical part of the insurance process and, as demon-
strated by Cummins (1991), leads to a reduction in the relative level of vari-
ability in the portfolio i.e. the risk per unit. This is a statement about process
error – the other two types of error are not controllable in a comparable way.
We note that external factors (for example, investment returns and inflation)
have a systematic effect which affects all policies at the same time, so that the
pooling of risks through writing more of the same business may not reduce
the relative level of variability from this source: this is analysed in section 4 of
the paper.

Before focusing on process error, we will make some comments at this
stage about the two other types of error. Modelling a portfolio of disability
insurance policies provides us with an example where model error could be
important – there are, for example, at least three established methodologies
for pricing and reserving of disability insurance products in use in the UK i.e.
Manchester Unity, inception rates plus disability annuity approach and the
multiple state model approach, although it is well argued that the multiple
state model provides a framework within which the different models can be for-
mulated successfully (CMI Committee (1991), Haberman and Pitacco (1999)).
Practitioners in the UK have tended to abandon the Manchester Unity approach
because of the model error associated with it and now use one of the other two
approaches. For IP portfolios, we might expect that the parameter risk would
be more significant than in life insurance because:

a) the underlying data are less reliable. For example:
• sickness inceptions with durations less than the deferred period are unob-

servable, making the data more scanty;
• claim times tend to be a round number of weeks;

b) the definition of sickness and of a claim are less clear cut, and are influenced
by policy conditions. Thus, a company will need care in using unadjusted
industry wide data, as provided by the CMI Bureau in the UK;
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c) sickness claims are often linked with socio-economic conditions and there
is scope for moral hazard (Haberman (1987)).

Our main objective will be to identify ways of measuring the process error for
a portfolio of independent income protection policies in a multiple state mod-
elling context. A second objective will be to observe the extent to which the
process error changes as we increase the volatility and complexity of the models
generating investment returns and inflation. Thus, we start with a model that
is based on random multiple state transitions and deterministic (i.e. expected)
economic assumptions and then increase the volatility of this model by allowing
for stochastic economic factors. In this way, we will be able to compare, in a
specific case (i.e. for a particular policy), the magnitudes of the relative varia-
bility due to demographic process risks and due to demographic and economic
process risks combined. Further, we will be able to identify and isolate the
effect of different components of the process risks and ultimately to measure
their impact on the proposed risk measures.

In life insurance, it is usual to consider the (liability) process risk as being
relatively insignificant because claim amounts are fixed and portfolios tend to
be large so that the law of large numbers and pooling lead to a reduction in
process risk. However, Marceau and Gaillardetz (1999) have demonstrated that
this effect operates differentially for different types of life insurance policy, with
the mortality process risk being more significant for temporary insurances than
for endowment insurances. In income protection insurance, there is variability
in terms of claims incidence and size (i.e. measured by duration of time spent
sick or disabled beyond the deferred period) and portfolios tend to be smaller
than in life insurance, so that we might expect that liability process risk may
not be negligible. This will be investigated in subsequent sections.

The paper is organised as follows. Section 2 describes the overall method-
ology. Section 3 describes in detail the models used and assumptions made,
as well as introducing the four risk measures that will be used and the method
of calculation of the premium. Section 4 describes and analyses a selection of
the results obtained. Section 5 provides some concluding comments.

2. METHODOLOGY

We construct a simple asset-liability model of an insurer with only IP business
using a multiple state model approach. Firstly, we simulate independent sample
paths for individual policyholders occupying the healthy and sick states and
moving between states, which are used to draw up a cumulative yearly experience
over the policy term for the cohort of insured lives. Secondly, we simulate
annual stochastic investment returns and stochastic inflation rates applying
the widely accepted Wilkie model. We then construct a simple cash flow model
for the portfolio and use the simulation results to construct useful financial
quantities at the portfolio (or indeed company) level (see section 3).

In particular, we will consider four overall measures of risk, viz the proba-
bility of ruin and relative average shortfall for the portfolio and the levels of
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FIGURE 1: Incorporated volatility structure of the defined asset-liability models.

risk-based capital or risk-loaded premium to achieve a pre-specified probability
of ruin. We will analyse and compare the results for three different models with
increasing levels of volatility, that is:

a) stochastic sickness experience and deterministic economic factors, where the
latter are obtained as the expected values of their stochastic counterparts:
the Deterministic Assets Model (DAM). This class of model is intended
to describe the set of simulations where the final outcomes are based on a
stochastic morbidity experience and fixed (i.e. deterministic) economic fac-
tors (i.e. return on investment and cash-flow inflation rates). Using this
model, we will be able to measure the process risk due to the demographic
factors and quantify the effect of the demographic volatility in isolation on
the important risk measures that we have defined.

b) stochastic sickness experience combined with stochastic investment experi-
ence and deterministic inflation rates: the Stochastic Assets Model 1 (SAM1).
This second class of model is defined to capture the process risks resulting
from the volatile nature of the morbidity experience and the uncertainty
in the investment returns, while keeping the premium, benefits and expense
inflation at a fixed level. In this type of model, the resulting asset returns
are stochastic and less dependent on the size of portfolio. Intuitively, by
comparing the outcomes of this group of simulations with those for DAM,
we will be able to measure the process risk due to investment returns and
evaluate the effect on the risk measures being considered.

c) a fully stochastic model, with all of the above demographic and economic
factors randomised: the Stochastic Assets Model 2 (SAM2). In this third
class of model, we further emphasize the influence of economic process
risk in the proposed simulations by including also the effect of stochastic
inflation on premiums, benefits and expenses. Therefore, we could consider
the resulting model to be ‘fully stochastic’ having each of its important
components randomised and time dependent, so that the model is brought
closer to replicating a real IP office experience. However, this is not the
actual purpose of this final model, since the results would heavily depend
on the chosen parameter values. Instead, our principal objectives are to
measure the process risk arising from introducing the extra randomness
attributable to these economic factors and to quantify their effect on the
above mentioned risk measures.

Figure 1 illustrates the above strategy by indicating the type of extra volatility
added to each model.
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3. MODELS AND ASSUMPTIONS

3.1. Policy Design

We consider a simple policy design with terminal age 65 and a range of entry
ages: {30, 40, 50, 60} with zero lapse rates. Premiums are payable while the pol-
icyholder is either healthy or sick but for a period less than the deferred period
(i.e. a no claim exclusion period). Benefits are payable as an annuity while the
policyholder is sick for a duration longer than the deferred period. Various
expenses are incorporated. The policy design is such that the premiums and ben-
efits are guaranteed from the outset to increase in line with inflation, but are not
altered to take account of the actual demographic or investment experience.

We note that the premium and benefit levels may vary significantly in the
case of the stochastic inflation model, although in practice, this effect would
be mitigated by market pressures. All regulatory requirements and taxation are
ignored. Overall, we assume a homogeneous IP portfolio made up of a cohort
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TABLE 1

SUMMARY OF CHOSEN POLICY DESIGN

IP Policy Design

Deferred period: (d) 13 weeks

– Initial (e) £200 at inception of policy (including commission)

Expenses: – Renewal
(w0) £25 pa if the policyholder is healthy

(y0) £95 pa if the policyholder is sick

– Claim (z0) £200 at inception of the claim (i.e. claim registration and claim
underwriting costs)

Return on investment: (r1)
10.7% pa expected rate of investment return for the deterministic
approach or Wilkie model for the stochastic approaches (see
section 3.3.1)

3% pa expected inflation of premiums and benefits using both
– premium (e1) deterministic (i.e. fixed) or stochastic (i.e. time series) approaches

Escalation (see section 3.3.2)

rates 4% pa expected inflation of expenses using both deterministic
– expense (e2) (i.e. fixed) or stochastic (i.e. time series) approaches (see sec-

tion 3.3.2)

Premium: (p0)
£220 pa for entry age 30 and similar levels for other entry ages
across different models (see section 3.6)

Benefits: (c0)
£8,000 pa while policyholder is sick, but subject to the require-
ments of the deferred period

Ages at entry: (x1) 30, 40, 50 or 60

Termination age: (x2) 65
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of independent policies and there is no possibility of their insurance cover
being increased by starting additional contracts during the fixed term.
The detailed assumptions are presented in Table 1 and are intended to be rep-
resentative of IP contracts in UK at the time of writing.

3.2. The Demographic Model 

3.2.1. Multiple State Model

To describe the transitions, we have used the continuous time and three-state
(i.e. discrete) healthy-sick-dead model (H, S, D), with the states labelled S={1,
2, 3} respectively. It should be noted that, given the universality of the multi-
ple state technique, we can readily apply our methodology to other similar
three-state models, for example active-disabled-dead, or indeed extend it with
additional states like: ‘short-term sick’ and ‘long-term sick’ or ‘lapsed’ (Rickay-
zen, 2001), or apply it to other types of insurance cover, for example Long
Term Care (see Haberman and Pitacco, 1999). The computing power needed
to simulate a large number of stochastic transitions using multiple state models
is no longer a problem, so we have available an excellent mathematical frame-
work for modelling a complex insurance portfolio and determining the relevant
measures of risk.

We consider an insured aged x at entry and let S (x + t) denote the random
state occupied by the insured at age x + t, t ≥ 0. We define the conditional
probabilities

( ) ( )Prp S x t j S x it x
ij = + = =6 @ (1)

for i, j ∈ {1,2,3} assuming the Markov property. For the specific applications
here, we will only consider new policyholders who are healthy at their entry age
x1 (i.e. S (x1) = 1).

Then we define the transition intensities

lim t
p

mx
ij

t

t x
ij

0
=
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(2)

For the functional form of the transition intensities we have adopted the grad-
uated values obtained by CMI Committee (1991) from fitting to the males
1975-78 experience (for individual policies), as these have wide currency in the UK
(although a less complex set of graduations has been proposed by Renshaw and
Haberman (1995)).

Our intention is to consider a portfolio of policies with a deferred period
of 13 weeks. Where appropriate we have chosen the graduated transition inten-
sities that are consistent with this selection. For the transition intensities from
state 2 (sick), there is strong evidence of dependence on sickness duration, z,
(i.e. length of stay in state 2) leading to a semi-Markov framework. However,
we have ignored this level of complexity and have used the relevant graduated
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FIGURE 2: Example of a three-state model ‘sample path’.

values corresponding to z = 17 weeks. These have been chosen because one
of the reported features of the 1975-78 data (and other comparable data sets
– see Renshaw and Haberman (1995)) is the reduced recovery rates during the
first 4 weeks of claim. The choice of z = 17 weeks for the 13 weeks deferred
period policies, being considered here, avoids this anomaly.

Thus, the functional forms are as follows:

m12
x = exp(a0 + a1x + a2x2 + a3x3) (3)

where a0 = –2.722, a1 = 0.1290, a2 = –4.240 ≈ 10–3 and a3 = 3.888 ≈ 10–5

m13
x = b0 + b1y + exp(b2 + b3y) (4)

where y = x
50

70- , b0 = –4.652 ≈ 10–3, b1 = –4.525 ≈ 10–3, b2 = –3.986, b3 = 3.185

m21
x = c0 + c1(x – c2) (5)

where c0 = 3.086, c1 = –0.0927, c2 = 50.326

m23
x = (d0 + d1(x – d2) + d3(x – d2)2)d4 + d5 exp(d6x) (6)

where d0 = 0.238, d1 = –4.819 ≈ 10–3, d2 = 0.326, d3 = 9.587 ≈ 10–5, d4 = 0.537,
d5 = 7.221 ≈ 10–3, d6 = 2.435 ≈ 10–2.

We have carried out some tests for policies with deferred period other than 13
weeks and the results obtained are of a similar character to those reported in
section 4. It is beyond the scope of this paper to provide any detailed results
on the sensitivity to the choice of deferred period, however the results are avail-
able from the authors on request.

3.2.2. Simulation and Thinning

Our goal is to simulate a random morbidity experience (i.e. length of times
spent in different states) for each life in the initial IP portfolio over the term
of the policy. A convenient way to achieve this is by “thinning” as described in
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Ross (1990) and utilised (in the actuarial literature) by Jones (1997) for model-
ling transitions in continuing care retirement communities. This method produces
individual experiences (i.e. ‘sample paths’ – see Figure 2) that are independent
of each other and identically distributed. The thinning procedure used to sim-
ulate an individual sample path is set out in detail in the flow chart in Figure 3
and a brief description of the process is given below.

We assume that all policyholders are healthy (i.e. in state 1) at entry at age x1
with the prospect of either surviving the term to the final age (x2) or dying
during the term. For IPI, the policies are designed so that a claim may be made
only when the policyholder has been in the sick state for longer than the deferred
period.

For a policyholder in state 1 at entry age x1 at time 0 and a policy with
term m years we consider

max� m m
x x x m x x

12 13

1 1

= +
# # +

_ i (7)

where the term in parentheses represents the transition intensity out of state 1
at age x, and � is chosen to be the maximum value of this overall intensity
throughout the age range [x1, x1 + m].

We can generate ‘jumps’ (i.e. exits out of state 1) using a Poisson process
with rate � since the intervals between successive event times would be expo-
nentially distributed with parameter �–1. However, there would be too many
such event times (i.e. exits) because of the definition of � in (7) and so we need
to moderate or “thin” out the possible jumps. The probability of the occurrence
of a simulated jump at time t1 is proportional to the ratio:

�p
m mx t x t

1

12 13

1 1 1 1=
++ + .

Thus we accept the first exit time for which a simulated uniform random num-
ber u2 ∼ U(0,1) is smaller than or equal to p1. If t*

1 is the time of the first
accepted jump, then we need to establish whether the insured jumps to state 2
or state 3. For this purpose, we simulate a third uniform random number u3 ∼
U(0,1) and provided this is smaller than or equal to the ratio:

1 1

1p
m m

m

x t x t

x t

2 12 13

12

1 1

1
=

+
+ +

+

* *

*

.

we confirm the jump as being to the sick state (i.e. state 2). Otherwise, we
accept the jump as being to the dead state (i.e. state 3).

Once the simulation has led to our deciding on the time and state of the
first transition, we move forward to the next transition. We then determine �
(over the age range x1 + t*

1 to x1 + m) and proceed iteratively until we have
a jump that takes the insured life beyond time m or until death, whichever is
sooner.
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FIGURE 3: Logical Scheme of Simulation with Thinning.
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We note that there is a choice regarding a simulated jump time, t, which
takes the path beyond time m: we can accept this either with or without test-
ing it using a random number u2 against p1, as in the standard thinning process.
We have chosen the latter on the grounds of simplicity and have checked
whether the former approach would markedly affect the results. Our conclusion
is that there is little difference between the two approaches as far as the cumu-
lative claim times (i.e. joint experience of all policyholders in the portfolio) in
the vicinity of the terminal age x2 are concerned.

3.3. The Economic Model

3.3.1. Investment Returns Model

In order to generate random investment returns for the SAM1 and SAM2
cases, we will use the widely accepted Wilkie model for equity returns and
returns on index-linked government bonds. We use the structure of the model
as in Wilkie (1995) and the initial parameter settings recommended therein.
We consider an asset portfolio comprising 50% equities and 50% index-linked
government bonds, with annual rebalancing (and assuming that investment
income received for each asset class is re-invested in the same asset class) so
that the asset allocation strategy is static.

For the DAM case, in order to maintain a consistent level of investment
return (with the SAM1 and SAM2 cases), we need to estimate the annual
interest rate (assumed to be constant over the whole term) from a large number
of trials based on the underlying stochastic asset model. This is obtained from
running 1,000 simulations of the Wilkie model over an appropriate time horizon
and calculating the equivalent mean annual compound rate of return. This method
results in a constant rate of return of

r = 10.7% pa

for the first entry age (30) and minor adjustments have been made to allow for
the effect of different entry ages used for later simulations.

3.3.2. Inflation Rate Model

Further volatility from the external economic environment is incorporated by
allowing for the effects of random annual rates of inflation on the expenses
(per unit of exposure) experienced in the portfolio and on the levels of pre-
miums and benefits. For consistency with the stochastic investment return
model, we apply the same type of first order autoregressive series model for
the force of inflation as suggested in Wilkie (1995). However, we set different
expected values (rather arbitrarily) for the time series. Thus, we assume a mean
annual increase of 3% in the premium and benefits levels and a mean annual
increase of 4% in the renewal and claim expenses, with corresponding variances
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determined by the simulations of the Wilkie model. We note that this confi-
guration implies an indexed type of policy design (see section 3.1).

In summary, inflation has been incorporated within the three models as
follows:

• For the DAM case, deterministic inflation rates are applied to the premium
and benefit levels (at 3% pa) and to the claim and renewal expense levels
(at 4% pa). These are consistent with the predicted means of the formulated
time series models.

• For the SAM1 case, deterministic inflation rates are applied to the premiums,
benefits and expense levels (as above) but the investment returns are assumed
to be stochastic (as described in section 3.3.1).

• For the SAM2 case, stochastic inflation rates are applied to the premiums,
benefits and expense levels (with the investment returns also assumed to be
stochastic).

3.4. Cash Flow Model

For any policy year (t, t + 1), the cash flow is assumed to occur mid-way through
the year (for a mathematical treatment, that is equivalent to uniform incidence
over a year) and is defined to be the difference between the simulated income
and outgo i.e. for simulation j, the cash flow per cohort is:

CF P C W Y Zt
j

t
j

t
j

t
j

t
j

t
j= - - + +_ i (8)

where for the policy year (t, t + 1) and simulation j the components are:

P j
t = total premiums paid by all policyholders,

C j
t = total claim payments payable to policyholders who are sick and for whom

the duration of sickness exceeds the deferred period of the policy,
W j

t = total premium-related expenses,
Y j

t = total regular claim expenses,
Zj

t = total initial claim expenses (payable at the commencement of a claim).

In equation (8), the terms P j
t and W j

t are proportional to the simulated time
spent in the healthy state, or in the sick state if less than the deferred period.
Similarly, the terms C j

t and Y j
t are proportional to the simulated time spent

claiming (i.e. continuous sick time in excess of the deferred period) and finally,
the term Zj

t is proportional to the simulated number of new claims initiated in
year (t, t + 1).

In the above model, we assume an instantaneous occurrence of all cash-
flows so that there are no administrative (or other) delays. The policy funds
then accumulate as follows:

A A r CF r1 1
/

t
j

t
j

t
j

t
j

t
j

1

1 2
$ $= + + +

+ _ _i i (9)
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where Aj
t represents the accumulated assets (in respect of all current policyhol-

ders) at time t for simulation j and r j
t is the simulated rate of return on invest-

ment for year (t, t + 1). In our calculations we assume that Aj
0 = 0 for all j (i.e.

there are zero initial assets per policy) apart from when we consider risk-based
capital requirements in section 4.

For the case where rates of return on investment are assumed to be non-
stochastic, r j

t is the estimated constant value referred to in section 3.3.1 (e.g.
r j

t = 10.7% for all t and j for entry age 30).

3.5. Risk Measures

We have considered four types of risk measures relevant to our model IP port-
folio that we use in order to quantify the risks faced by an insurer with IP liabil-
ities. These measures are defined as follows:

1. Probability of Ruin

This is evaluated as the proportion of outcomes with negative residual assets
at the termination of the contract (i.e. Am < 0, where m corresponds to the
termination of the contract) from a predetermined number of sample simula-
tions (with each simulation having an identical number of policies issued at
entry age). That is:

( )Pr ruin N
k=

where k represents the number of insolvent cases and N is the total number of
simulations (usually 500). Note that the actual size of the ruin is irrelevant for
this risk measure.

2. Mean Shortfall

The mean shortfall is the mean of Am (the residual assets at the termination
of the contract), conditional on Am < 0. This is estimated by the average short-
fall in a predetermined number of simulations (N) relative to the (fixed) num-
ber of policies at entry:

ruinrel = n k A1 1
m
j

j

k

1=

!= G where Aj
m < 0 for j = 1,k

n is the number of policies issued at x1 (constant across the trials) and k is the
number of insolvent cases. To facilitate comparison between cohorts of different
sizes, we express this index relative to n.

Although it is theoretically possible to have a simulation j such that Aj
t < 0

for some t < m but A j
m ≥ 0, this situation does not in fact arise for any of our

simulations.
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As demonstrated by Artzner et al (1997) and Artzner (1999), risk measures
based on the mean shortfall approach are superior to the more commonly
used Value-at-Risk (VAR) measures. In particular, they satisfy the coherence
requirement by being sub-additive (whereas VAR measures need not satisfy this
property) and are less sensitive to changes in the tail of the distribution being
investigated.

3. Risk-Based Capital 

The amount of capital (i.e. assets) required at outset A0(e) in order to secure
at most a pre-specified probability of ruin e (assuming a ‘break-even’ premium
level, see section 3.6). Note that this is expressed in multiples of the break-even
premium.

4. Risk-Loaded Premium

The percentage of additional premium l(e) (to be added to the ‘break-even’
premium, see section 3.6) required to secure at most a pre-specified probabil-
ity of ruin e.

3.6. Calculation of the “Break-Even” Premium

In order to calculate the “break-even” initial premium per policy for a partic-
ular class of models (i.e. DAM, SAM1 or SAM2), we consider a portfolio of
1,000 identical policies and run N = 500 simulations of the residual policy funds
at the termination of the contracts (i.e. at age 65) for a given initial premium.
We then use iteration to derive a value for the initial premium such that

Pr(ruin) = 0.5 (10)

where Pr(ruin) is the probability of ruin defined in section 3.5.

The values that are obtained (rounded to the nearest pound) for the different
entry ages under consideration are summarised in the following table:
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TABLE 2

SUMMARY OF BREAK-EVEN INITIAL PREMIUMS

Age at Break-even Initial Premium (£)
Entry SAM1 (DAM) SAM2

30 220 235
40 272 280
50 336 338
60 462 462
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The models DAM and SAM1 lead, not unexpectedly, to almost identical break-
even premiums for the 1,000 policies at issue, and continue to be close even
for significant changes in the size of the initial cohort (see Figure 11, later).
We recall that the SAM1 approach uses simulated annual investment returns
while the DAM approach uses an equivalent mean annual compound rate of
return. However, there is an increase (about 7% for entry age 30, see Figure 12,
later) in the break-even premium level when we move from the SAM1 to the
SAM2 model. This arises because the SAM2 approach includes an extra level
of variability compared to the SAM1 approach through the impact of stochas-
tic inflation on premiums, benefits and expenses. This effect becomes less signi-
ficant with increases in the entry age (i.e. as the insurance term reduces) due to
the reduction in the cumulative effect of the stochastic components.

This approach is different from the conventional approach based on the
equivalence principle where we equate expected present values of policy income
and outgo. In future work, we will investigate the effect of different choices for
the calculation method for the premium.

The implications of using (10) are that:

a) the premium does not include any margin for profit or adverse experience,
b) the company expects to “break even” at the termination of the contracts,

assuming that all profits are retained internally and
c) any projection that leads to ruin (of the portfolio) can be attributed to

“process error” only.

4. SIMULATION RESULTS

Because of the limited space available, we will present only a selection of the
results. A fuller set of results is provided in an accompanying working paper:
Haberman et al (2001).

Figures 4 to 6 show the simulated distribution of the assets for a portfolio
of n policies issued at age 30 for the respective cases n = 1,000 and 10,000,
based on 500 simulations. These figures summarise the distribution at each
age through the use of box-plots with the 25th, 50th and 75th percentiles clearly
identified. Figure 4 is based on the DAM asset model i.e. random morbidity
and deterministic economic variables. It is clear that as n increases, the distribu-
tions become more compact, showing that the demographic process risk is reduced
by the pooling of policies as discussed in section 1.

Figures 5 and 6 repeat the presentation but allow for stochastic investment
returns and inflation, based on the SAM1 and SAM2 approaches, respectively.
Generally the distributions in Figures 5 and 6 are much wider than in Figure 4 –
as we would anticipate because of the extra source of variability present. Also,
the more randomness that is built into the models the larger is the variance
across the ages. However, there is an important feature that can be observed:
while in the SAM1 type the pooling effect is still present, although reduced
compared to DAM (i.e. the variability reduces with the size of the portfolio),
in the case of SAM2 the effect is much less apparent. This would suggest that
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FIGURE 4: Deterministic Assets Distribution over age for 1,000 and 10,000 policies at outset.
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the additional process risk introduced in the SAM2 model by assuming that
the inflation rates applied to the premiums, benefits and expenses are stochastic
is far more important than the process risk inherent in the morbidity part of
the model.
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FIGURE 5: Stochastic Assets Distribution (SAM1) over age for 1,000 and 10,000 policies at outset.

Surprisingly, in the SAM2 case the sample standard deviation of the resid-
ual funds increases in size when we move from 1,000 to 10,000 policies
assumed at entry age. However, it should be stressed that the increase seems
to be due mainly to a small number of extreme cases (i.e. outliers) and the
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FIGURE 6: Stochastic Assets Distribution (SAM2) over age for 1,000 and 10,000 policies at outset.

resulting sample distribution of the residual assets for the case of 10,000 poli-
cies at entry is, in fact, more peaked at the mean than the one corresponding
to the portfolio with 1,000 policies at entry. Indeed, this effect is reduced for the
SAM2 model, when the number of simulations is increased to 1,000 and beyond.
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Figures 7 and 8 illustrate the simulated distributions of the residual assets
for portfolios of lives with initial ages 30 and 60, respectively, for the SAM1
case with the rates of investment returns generated from the Wilkie model as
described earlier. Similarly Figures 9 and 10 represent the simulated distributions
for the DAM and SAM2 cases, respectively, with entry age 30. The following
features are noteworthy.

a) increasing the portfolio size from n = 1,000 to n = 10,000, when the asset
model is deterministic, leads to a reduction in the standard deviation of
the residual assets by a factor of approximately 10 (as we would expect
from the pooling of risks), so that the distribution is sharper (see Figure 9);

b) the feature described in a) above whereby the standard deviation of the
residual assets reduces as the portfolio size increases is not as pronounced
in the stochastic model SAM1 (see Figures 7 and 8). This is because the
pooling of risks does not reduce the impact of investment return variabil-
ity which affects all policies in the portfolio simultaneously. However, with
the reduction of the policy term (as we move from Figure 7 to 8) the effect
of pooling of risks increases in weight and the reduction in the standard
deviation from a portfolio size of n = 1,000 to n = 10,000 is much more
significant. Indeed, the reduction factor approaches 10 as the entry age
increases from 30 to 60;

c) furthermore, in the case of the ‘fully-stochastic’ model, SAM2, shown in
Figure 10, the level of the uncertainty of the outcome is less dependent on
the size of the portfolio, and it is possible that increasing the number of poli-
cies could increase the process risk;

d) increasing the policy term (i.e. reducing the age at entry) leads to an increase
in the skewness of the distribution. This is because the accumulation effect
becomes stronger for longer terms and corresponds to the approximate log-
normal character of the simulated accumulations obtained from the Wilkie
model (see Figures 7 and 8);

e) in the SAM2 case, the shape of the distribution is normal rather than log-
normal (see Figure 10).

The implication of changing the entry ages (30, 40, 50 and 60) on the residual
assets (and on the probability of ruin) across the defined models is summarised
in more detail in Table 3 for the n = 1,000 and n = 10,000 portfolios. We note
that the ratios of the standard deviations of the residual assets for the SAM1
and SAM2 cases relative to the DAM case are inversely related to the initial
policy term (i.e. 65 minus entry age). Thus, with a sufficiently short initial pol-
icy term (i.e. high entry age) this ratio reduces to 1. For example, for an entry
age of 30 the standard deviation of the residual assets for SAM2 is 9.4 times
as large as for DAM and for SAM1 is 2.3 times as large as for DAM (for the
case of n = 1,000). But for an entry age of 60, the relative ratios are both close
to 1, demonstrating very similar process risks for the three models in this case.

We now consider the effects of changing the initial assets and the initial pre-
mium per policy on the first two defined risk measures (i.e. probability of ruin
and mean shortfall). For the case of a portfolio of policies with age at entry 30
and n = 10,000, Figure 11 shows the effect on the probability of ruin of increasing
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FIGURE 7: SAM1 Residual Assets Distribution in relation to entry age 30.
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FIGURE 8: SAM1 Residual Assets Distribution in relation to entry age 60.
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the initial assets from zero in the upper panel and the effect of charging an ini-
tial premium which is different from the break-even premium of £220 in the
lower panel. In each case, the curves of the probability of ruin for the sto-
chastic model, SAM1, and for the model with deterministic asset returns,
DAM, are presented. We note the following features:

a) from the upper panel, initial assets of zero correspond approximately to a
probability of ruin of 0.5 for the stochastic case (and to a slightly lower level
for the deterministic case because of there being fewer unfavourable results
within the 500 simulations for the DAM model – this effect disappears
when we increase the number of simulations);

b) increasing the initial assets per policy leads to a lower probability of ruin.
This is more marked for the deterministic case where there is less overall
variability;

c) from the lower panel, an initial premium of £220 corresponds approxi-
mately to a probability of ruin of 0.5;

d) increasing the premium beyond £220 leads to a lower probability of ruin,
which, as in b), is more marked for the deterministic case;

e) decreasing the premium below £220 leads to a higher probability of ruin and
we note that, unlike d), the extra variability from the stochastic case (SAM1)
may help when the premium is inadequate and may lead to a lower proba-
bility of ruin.

We note that the variation of the probability of ruin when considered as a
function of either the initial assets or the initial premium is amplified in the
case of a smaller portfolio (results not shown). For the deterministic model
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TABLE 3

RESIDUAL ASSETS DISTRIBUTION AND PROBABILITY OF RUIN FOR VARIOUS COHORTS

Entry Mean of Assets Standard Deviation of Assets Probability of Ruin
Age (£ 000s) per policy issued (£ 000s) per policy issued (%)

1,000 policies issued at entry age
x1

SAM2 SAM1 DAM SAM2 SAM1 DAM SAM2 SAM1 DAM

30 –1.711 1.171 0.204 19.369 4.825 2.065 53.7 51.0 47.0
40 0.012 0.303 0.103 3.979 1.490 0.845 50.3 49.8 45.8
50 –0.005 0.000 –1.985 0.732 0.471 0.411 51.7 50.0 49.2
60 0.003 0.016 0.016 0.147 0.141 0.137 49.5 42.4 42.2

10,000 policies issued at entry age

30 –2.355 1.052 0.273 20.119 4.296 0.644 53.0 50.0 33.0
40 0.016 0.187 0.078 3.502 1.044 0.296 53.1 51.2 38.0
50 –0.021 0.073 0.032 0.567 0.231 0.121 52.5 43.6 37.8
60 0.002 0.007 0.008 0.063 0.049 0.045 49.4 44.6 43.6
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FIGURE 9: DAM Residual Assets Distribution in relation to entry age 30.
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FIGURE 10: SAM2 Residual Assets Distribution in relation to entry age 30.
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(DAM), this is particularly dramatic, for example with the tenfold decrease in
portfolio size leading to a significant increase in “process risk” and a consid-
erable degree of fluctuation in the curves corresponding to Figure 11, for the
case of n = 1,000 policies (results not shown).

Figures 12 and 13 allow us to compare the probability of ruin and mean
shortfall profiles in the case of the different modelling frameworks for a port-
folio with n = 10,000. From Figure 12, which compares the SAM1 and SAM2
models, we note that an increase in the size of the break-even premium (calcu-
lated as described in section 3.6) is required for the SAM2 model, due to the
extra variability present in the latter. We observe that, overall, the slopes of the
curves decrease with an increase in the volatility in the models, so that, the
more volatility that is allowed for in the model, the greater is the increase in
the initial premium (or assets) needed to achieve a given reduction in the prob-
ability of ruin. This is demonstrated in Table 4, where we can see that in order
to reduce the probability of ruin from 25% to, say, 5%, the SAM2 model
requires a significantly higher capital input than the SAM1, or indeed the
DAM, models. Similarly, Table 5 shows a substantial increase in the additional
premium required in the first year to produce the same probability of ruin
(5%) in the SAM1 and SAM2 models.

Figure 13 compares the mean shortfall by annual premium for the DAM
and SAM2 models. We note that, for both models, increasing the annual
premium leads to a reduction in the size of the mean shortfall, as expected.
The mean shortfall is larger in size for the SAM2 case than the DAM case –
as before, a reflection of the inclusion of process risk from the economic vari-
ables. We note the smooth progression in the curve for the DAM case. For the
SAM2 case, the mean shortfalls are more erratic as the annual premium is
increased. This arises because the number of simulations with Am < 0 reduces
as the annual premium is increased and so this feature is a reflection of sam-
pling error – and we have fitted a smoothing curve in an attempt to reduce the
impact of this variation.1 It is interesting to note that there is a steady decrease
in the mean shortfall as the initial premium is increased up to the break-even
level for both models. The smoothing curve indicates that this trend continues
as the premium is increased further, although, as noted above, there is increased
variability in the underlying estimates.

We recall that A0(e) is the level of initial assets required to produce at most
a given level of probability of ruin (e). We now consider Table 4 in more detail
which presents some examples of A0(e), calculated relative to the annual pre-
mium in the first year of the policy, for the cases of n = 1,000 and 10,000 for
the deterministic and stochastic asset models and a range of values of e. We
note that, in the case of the stochastic models, the values in the tables have been
determined based on the smoothed probability curves mentioned earlier. The
results show that:

a) reducing e leads to an increase in A0(e), as expected;
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1 We have used a robust local smooth curve generated using the ‘lowess’ S-Plus smoothing routine,
which, in effect, estimates each point of the curve by robust local linear fits from a given (local) pro-
portion of the total observations (see Venables and Ripley, 1999).
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FIGURE 11: Probability of Ruin by initial assets and premium level for SAM1 and DAM
in relation to 10,000 policies assumed at outset.
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b) for the deterministic asset model, DAM, increasing n has a significant effect
on A0(e), indicating the extent to which the demographic process risk reduces
as the portfolio size increases;

c) for the stochastic asset models, the effect of increasing n has a much weaker
effect on A0(e). This indicates that the demographic process risk identified
in b) is relatively insignificant when compared with the process risk arising
from the economic variables.
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FIGURE 13: Average relative size of insolvency against premium level for SAM2 and DAM models
in relation to 10,000 policies assumed at outset.

FIGURE 12: Probability of Ruin against premium level for SAM1 and SAM2 models
in relation to 10,000 policies assumed at outset.
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Table 5 presents the results for A0(e) = 0 for e = 10%, 5% and 1% but allowing
a proportionate risk loading 1 + l(e) to the premiums (i.e. the percentage increase
in the initial premium required to obtain a maximum probability of ruin of e%
when there are no initial assets per policy). Similar effects are demonstrated.
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5. CONCLUSIONS

The results presented here (and more extensive investigations not reported)
demonstrate that pooling, as implied by the law of large numbers, reduces the
demographic process error. We have shown that the economic process error is
considerably more significant than the demographic process error for port-
folios of income protection insurance policies. We have also shown that the
length of term has a decisive influence on the weight of these components of
the process risk. Therefore, the shorter the policy term the more the process
risk depends on the experienced morbidity and on the size of the portfolio, so
that the insurer is relatively more vulnerable to the morbidity experience.

We have demonstrated the methodology for simulating asset/liability profiles
in a multiple state context and shown how estimates for risk-loaded premiums
and for risk-based capital can be obtained. We have also shown, from the
simulation results, the extent to which the risk measures investigated depend
on the input parameters (in particular, the level of the initial premium or of the
initial capital) for models with different levels of stochasticity.
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TABLE 4

RISK-BASED CAPITAL AT ENTRY AGE 30 – INITIAL ASSETS (£000S)
REQUIRED TO PRODUCE A GIVEN RUIN PROBABILITY (PER £1 ANNUAL PREMIUM IN YEAR 1)*

Deterministic Asset Model Stochastic Asset Models

DAM DAM SAM1 SAM1 SAM2 SAM2

Pr (Ruin) n = 1,000 n = 10,000 n = 1,000 n = 10,000 n = 1,000 n = 10,000

25% 0.148 0.025 0.366 0.329 1.609 1.398
10% 0.305 0.081 0.787 0.697 3.545 3.471
5% 0.402 0.101 1.173 1.020 5.515 5.737
1% 0.534 0.162 2.022 1.856 13.551 12.556

* where 0 initial assets produce a 50% probability of ruin for the break-even initial premiums defined
in Table 2.

TABLE 5

RISK-LOADED PREMIUM AT ENTRY AGE 30 – ADDITIONAL PREMIUM REQUIRED IN YEAR 1
TO PRODUCE AN e% RUIN PROBABILITY ASSUMING 0 INITIAL ASSETS

Deterministic Asset Model Stochastic Asset Models

DAM DAM SAM1 SAM1 SAM2 SAM2

e n = 1,000 n = 10,000 n = 1,000 n = 10,000 n = 1,000 n = 10,000

10% 2.9% 0.8% 6.0% 5.1% 20.1% 19.5%
5% 3.5% 1.0% 7.9% 7.0% 29.0% 27.9%
1% 5.4% 1.6% 11.8% 11.5% 51.8% 50.1%
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We have conducted some trials based on changing various aspects of the
model, for example the parameterization of the transition intensities, m12

x and
m21

x , as in (3) and (5) and the choice of the deferred period in the policy design.
These results indicate that the principal conclusions remain valid.

We have investigated a simple policy design. More complex features that
could be added would include:

a) lapse rates, possibly dependent on the type of business;
b) effects of policy duration and temporary initial selection;
c) more complex benefit schemes, for example split levels of benefits as in Long

Term Care contracts and inclusion of termination and death benefits;
d) reviewable premiums, where the level of premium depends on the recent

claims experience at the portfolio level.

As an extension to this study, we are conducting a systematic sensitivity analy-
sis of the results to changes in the transition intensities.
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