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Let L be a complemented, ~¥-complete modular lattice.
A theorem of Amemiya and Halperin (see [1], Theorem 4%. 3)
asserts that if the intervals [O, a] and [O,b], a,b ¢ L, are
upper %§-continuous then [O, aub]is also upper %¥-continuous.
Roughly speaking, in L upper ®-continuity is additive. The
following question arises naturally: is *-completeness an
additive property of complemented modular lattices? It follows
from Corollary 1 to Theorem 1 below that the answer to this
question is in the negative.

A complemented modular lattice is called a Von Neumann
geometry or continuous geometry if it is complete and
continuous. In particular a complete Boolean algebra is a
Von Neumann geometry. In any case in a Von Neumann
geometry the set of elements which possess a unique comple-
ment form a complete Boolean algebra. This Boolean algebra
is called the centre of the Von Neumann geometry. Theorem 2
shows that any complete Boolean algebra can be the centre of a
Von Neumann geometry with a homogeneous basis of order n
(see [3] Part II, definition 3.2 for the definition of a homogeneous
basis), n being any fixed natural integer.

Preliminaries

We first recall some properties of regular rings. The
definitions and proofs can be found in [3] part II, Chap. Il or
[2], 83. We always assume that the regular ring has a unit
element which will be denoted by 1.
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If S isa regular ring, LS (RS) denotes the

complemented modular lattices of principal left (right) ideals.
The mapping which takes each element of LS into its right
annihilator is a dual-isomorphism of ES onto ﬁs. Under
this map the principal left ideal (e)j generated by the

idempotent e goes into the principal right ideal (1-e)r.

If S is a regular ring, the ring S of n xn matrices
n

with entries in S 1is also regular. There exists a lattice
isomorphism between ES (RS ) and the lattice of finitely

n n
generated submodules of the left (right) S-module of n-tuples
(a.,a_, ...,a ), a,¢S. Since S 1is regular, for every

1" 2 n i n

AeS there exists an idempotent matrix E such that
n

(ELZ = (A),Z' Moreover, it is possible to choose

e . 0 0
1
0
21 %2
E =
Cni CnZ en
2 ..
where e, =e,, e ¢, =c ., c e =0, for i,j=1,2,...,n
i i i ij ij ij j
and Cij =0, for j>1i. Such a matrix is called a left
canonical matrix. An idempotent matrix such that
2
e, =e, , c,.e =c_,e c =0 for i,j=1,2,...,n and
i i ij j ij i ij
Cij =0 for j>1i 1is called right canonical. For every AceS
n

there exists a right canonical matrix E such that (A) =(E) .
T T

Notice that if E is a right (left) canonical matrix then 1-E
is left (right) canonical.

In what follows our regular ring S will be the Boolean

ring B defined by a Boolean algebra %7, that is, the elements
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of B are those of ¥7 and
a+ b=ab'uba' , ab=anb,

where c' denotes the complement of ¢ ¢ The notation
c =aUb implies that ab=0. If is an ideal of 7, it
defines an ideal I of B. There exists a 1-1 correspondence
between the elements of 9 and the principal ideal of B.

In the ring Sn there is in general more than one left

(right) canonical matrix corresponding to an element Ae S .
n

However, if two left canonical matrices E and F are such
that (EZZ e (F).Z and they have the same idempotents down the

main diagonal, then E =F. This follows from the fact that
EF=E if (E)j = (F)j . Although in general the element e,
1

is not uniquely defined by A, the ideal (ei)—é is unique.

Since in the Boolean ring B any principal ideal is defined by
a unique element, any principal left ideal of Bn is defined by

a unique left canonical matrix. We will identify the elemsnts
of iB with the corresponding left canonical matrices.
n

Some examples of complemented modular lattices

Throughout this section 7 will be a Boolean algebra,
«an ideal of ¥/, and B and I the corresponding Boolean
ring and ideal. J denotes the cardinal power of the set J.

THEOREM 1. Let L consist of the 2x2 left canonical

matrices
e1 0
A= , where e ,e_eB and atcIl. For
a e2 1 2
Ai,AZe L, define AiiAz if (A1)Z C (AZ)Z where (A)

is the principal left ideal of B2 generated by A. Then L is

a complemented modular lattice. Moreover, the following
conditions are equivalent
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(i) L isan % -complete 5 -sublattice of L
a a BZ

(ii) L is an % -complete ’)$ -continuous
o a

5§ -sublattice of L
a B2

(iii) “isan S -ideal and #3 is 5 -complete.
a @

Proof. Let R be the set of right canonical matrices

e 0
A= 1 , e ,e_eB with ael, ordered by the relation
a e 1" 2
2
< if . i i
A1 < AZ i (Ai)r C (AZ)r Then the dual isomorphism
between L and R induces a dual isomorphism between
2 2

L and R. Hence any statement about L implies its dual,
since what we prove for L can be proved as well for R.

We show first that L is a complemented modular lattice.
When & = 7 the ordered set defined in the theorem coincides
with ZB and there is nothing to prove. When «# 7 we will
2
prove that L 1is a sublattice of I_:B . For this we use the
2

lattice isomorphism between the principal left ideals of B‘2

and the finitely generated submodules of the left B-module of
2-tuples (a,,a ), a.eB. If {(a1,a2)} denotes the left
i

1" 2
submodule generated by the vector (a1 ,a_) then the module
e1 0
M corresponding to the canonical matrix o has the
a
\ 2

form

(1) M={(e,,0)} @{(a,e,)} ={le,. 0} D{(a,a)} @{(0,2 )}

where a = eza' and @ indicates direct sum. Since the
o

matrix is canonical e2 zala .
o
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It is clear that the only elements of M whose second or
first component is zero are the elements of the submodules
{(ei,O)} or {(O,ao)} , respectively. The elements of M

of the form (c,c) are the elements of {{aWe ao ) a\'Jeiao)} .

1
The module
(2) N={(f1:0)} @ {(b,b)} @ {(O,bo)} ,
where bel, bf1 =bb0 =0, corresponds to the canonical matrix
£, 0 ) ’
b f2

where fZ =bV bo . Now N contains M if and only if

, < Dfb ,
eiif1 ao_bo and a < bufto

or what is equivalent,

< . -
e f e <f2, a_<_b \/fifz and aob 0.

In general given two modules M and N defined by
(1) and (2)

M Nz{(eivfi’ 0)} + {(awb, a ub)} + {(0, aoubo)} =
={(e wf wba wb a, 0)}®{(c.c)} @P{(0,a wb wbe, 6 waf )}
1 1 o o o o 1 1

where c = af‘1b' v e'ia:)b <aUbel. Hence M uNe L. By
° =

duality M " Ne L. Therefore L is a sublattice of a modular
lattice and is itself modular. Since

M= {lefar, 0} @ {(0, a!)}

is a complement of the module M, L is a complemented
modular lattice.
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Our next step is to show that if G is ¥ -complete
then EB is *S-complete. It is sufficient to show that L
2 2
is upper %% -complete, because the lower »¥-completeness
follows by duality.

e 0
Let aP = 1 e L for all BeJ,
aB eB BZ
2
where 35 5. Itis immediate that if 7 is 5% -complete,

the union of the corresponding modules

M:f{(ef’ 0} @ {(a", ")} @ (0,aP1} where af =P ()’

is the module

P

M= {(\.}ei

, 00} + {(uaﬂ, v aﬁ)} + {(0, v ai)}

which corresponds to the canonical matrix

ue? ) ((uaﬁ) . (uai)) 0
d {uaﬁ)u{uai}
where d=(uaﬁ) . (ue?u((uaﬁ) . (uai))),.

Now we are ready to prove the equivalence of conditions
(1), (ii), (iii).
(i) implies (ii). This is a consequence of the additivity

of upper *$-continuity in complemented “S-complete modular
lattices. For, if

0 0 10
X‘(o 1) and Y‘( )

the intervals [0, X] and [0, Y] are both isomorphic toF ;
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hence L ={0, X Y] is upper %f-continuous. Using duality
we get that L is 3 -continuous.

(ii) implies (iii). Since ¥J is isomorphic to the interval
[0,X], if L is Ra-complete then B is Ha-complete'.

Now let

e L,

which implies that aPe o7 and therefore o is 55a-comp1ete.

(iii) implies (i). Let

A" = e L forall BeJ,
B B

\ a 82
and J< 80 . Then (3) implies that waPe L, hence (i)
holds.
COROLLARY 1. Let L be as in Theorem 1. Suppose

is complete and «/ is an Ffa—ideal which is not an
e -ideal. Then
at+1

(2) L contains two elements X and Y such that tke
intervals [0, X] and [0, Y] are complete and continuous and
L=[0, XuUY]

(b) L is ™ -complete and *$ -continuous but not
a

ol -complete.
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Proof. The only thing which has to be proved is that L
isnot %  -complete.
atl

Suppose L is 5‘5Q+1-comp1ete. Then, since
L=[0, XuUY], by the additivity of S1‘&’{_1-cont'muity in
=~ +1-complete lattices, L is 9‘SQ+ -continuous. Let ()
be the first ordinal such that £ = 8&+1 and {aﬁ}

an increasing chain ofelements of « such that

\.Jap ¢ 7. Take

B< S

Then

p

e 0
If C/=( 1 ) is the supremum of the C° in L then

bi\./aﬁ , since bel. On the other hand C < C’ implies
that uaﬁf_buei , hence e, £ 0. Now

e, 0

D= e L. Df‘\C‘3=0 for all B< {1 , but

0 0
D AAC #0, which contradicts the % _H-continuity of L.
@

COROLLARY 2. Let L be as in Theorem 1. Then L
is a Von Neumann geometry if and only if Z is a complete
Boolean algebra and «is a principal ideal, that is,
I=[0,x], xe B. In this case the center of L is isomorphic

to [0,x]X [0,x"]x [0,x].
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Proof. Wnen «f =[0,x], L is the lattice direct sum
of the intervals [0, Y ], [0, Y1] . [0, YZ] , where
o

(x O) x° 0) (0 0
Y = Y = | , Y .=

’ 1
° 0 x 0 o0 g 0 x°

Hence its center is isomorphic to [0,x] x [0,x ] x [0,x ]

THEOREM 2. If & isa complete Boolean algebra, then
the lattice L is a Von Neumann geom=ztry whose center is
Bn
isomorphic to Ve .

Remark. For n =2 this theorem is contained in Theorem 1.

Proof. Because of the dual isomorphism between EB

n
and RB we only need to prove that LB is upper complete
n n
and upper continuous. Now LB =[o, X1 VXZ v... vX1],
n
n

where X, is the canonical matrix with 41 in the (i,1i) place
1
and zeros elsewhere, and the interval [0,X.] being isomorphic
- 1

to 7 , 1s continuous. Therefore, by the theorem of Amemiya
and Halperin quoted in the introduction, if L is upper

Bn
complete it is also upper continuous. So it is sufficient to
prove that L is upper complete.

B
n

We use induction on n. If n=1, I..;Bzﬂand there is
nothing to prove. Assume then that the theorem is true for

n-1. Let AP be an increasing chain, where B < f2, fL
any limit ordinal, and

1 0...0 0
0 1...0 0
E-= . . e L, .
0 0...1 0 Bn
0 0...0 0
1419
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B

Then the elements A

el.ment A£3

module NF3 of the left B-module of n-tuples and the elements
of this submodule have the last component equal zero.
Therefore, because of the induction assumption, the increasing

chain of submodules Nﬁ

submodule whose elements have the last component equal to

zero. Let A'e EB be the left canonical matrix corresponding
n

to this submodule,

N E form an increasing chain. To the

N E there corresponds a finitely generated sub-

has a supremwum which is also a

e1 0 oo 0 0
wea O 0
aco | 2 )
Cn—i,i cn-i,Z e en—i 0
0 0 eee 0 0

If C is an upper bound of the Aﬁ, B< £, then

CzABr\E. Hence C> A7, and CZAsuA’. That is,

any upper bound of the A‘3 is an upper bound of the chain of

AﬁuA’ and conversely. Let Bﬁ=AﬁuA', since
BﬁmE=(ABuA’)r\E=A’,
0 ... 0 0
e, 0. 0 0
B‘3 = . .
Cn-i,Z en_1 0
p p &
b2 bn-i e
. a B .. ] a_B a
Moreover, if a<p, B <B" and this implies B B =B ,
which is equivalent to ea b?: bfz, i=1,2,...,n-1,
n i i

a B a ., . .
e e =e . Now it is easily seen that
nn n
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1
c:21 e2 0 0
B =
\Y; b‘3 wb ubﬁ ' ve
1 n-1 n

is the supremum of the chain of Ba. For, ea’bf3 =bfr and
n i

1
e’ e‘3 =e” for a< f imply that the bF3 P

. and e form
n n n i n

. . . @ a
increasing chains. Consequently, e ( ub?) =b, ,
n i i

ea(Ueﬁ)=ea and (uea)(ub,ﬁ)=u(ea(ub?))=ubfl,
n n n n 1 o n ﬁ 1 1

o a
Therefore B is a canonical matrix such that B B=B ,

which implies Ba_<_ B, and it is clear that B is the
supremum.
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