SOME EXAMPLES OF COMPLEMENTED MODULAR LATTICES

G. Grätzer and Maria J. Wonenburger

(received November 13, 1961)

Let L be a complemented, %-complete modular lattice. A theorem of Amemiya and Halperin (see [1], Theorem 4.3) asserts that if the intervals [0,a] and [0,b], $a,b \in L$, are upper %-continuous then $[0,a \cup b]$ is also upper %-continuous. Roughly speaking, in L upper %-continuity is additive. The following question arises naturally: is %-completeness an additive property of complemented modular lattices? It follows from Corollary 1 to Theorem 1 below that the answer to this question is in the negative.

A complemented modular lattice is called a Von Neumann geometry or continuous geometry if it is complete and continuous. In particular a complete Boolean algebra is a Von Neumann geometry. In any case in a Von Neumann geometry the set of elements which possess a unique complement form a complete Boolean algebra. This Boolean algebra is called the centre of the Von Neumann geometry. Theorem 2 shows that any complete Boolean algebra can be the centre of a Von Neumann geometry with a homogeneous basis of order n (see [3] Part II, definition 3.2 for the definition of a homogeneous basis), n being any fixed natural integer.

Preliminaries

We first recall some properties of regular rings. The definitions and proofs can be found in [3] part II, Chap. II or [2], § 3. We always assume that the regular ring has a unit element which will be denoted by 1.

Canad. Math. Bull. vol. 5, no. 2, May 1962.

If S is a regular ring, \overline{L}_S (\overline{R}_S) denotes the complemented modular lattices of principal left (right) ideals. The mapping which takes each element of \overline{L}_S into its right annihilator is a dual-isomorphism of \overline{L}_S onto \overline{R}_S . Under this map the principal left ideal (e) generated by the idempotent e goes into the principal right ideal (1-e).

If S is a regular ring, the ring S_n of $n \times n$ matrices with entries in S is also regular. There exists a lattice isomorphism between $\overline{L}_{S_n}(\overline{R}_{S_n})$ and the lattice of finitely generated submodules of the left (right) S-module of n-tuples (a_1, a_2, \ldots, a_n) , $a_i \in S$. Since S_n is regular, for every $A \in S_n$ there exists an idempotent matrix E such that $(E)_{\ell} = (A)_{\ell}$. Moreover, it is possible to choose

$$\mathbf{E} = \begin{pmatrix} e_1 & 0 & \dots & 0 \\ c_{21} & e_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & e_n \end{pmatrix}$$

where $e_i^2 = e_i$, e_i $c_{ij} = c_{ij}$, c_{ij} $e_j = 0$, for i, j = 1,2,...,n and $c_{ij} = 0$, for j > i. Such a matrix is called a left canonical matrix. An idempotent matrix such that $e_i^2 = e_i$, c_{ij} e_i e_i e_j e_i e_j e_j e_i e_j for i, j = 1,2,...,n and e_i and e_i for j > i is called right canonical. For every e_i for there exists a right canonical matrix e_i such that e_i for every e_i e_j e_j

In what follows our regular ring S will be the Boolean ring B defined by a Boolean algebra \mathscr{G} , that is, the elements

of B are those of \mathscr{G} and

$$a + b = ab^{\dagger} \cup ba^{\dagger}$$
, $ab = a \cap b$,

where c' denotes the complement of $c \in \mathcal{S}$. The notation $c = a \circ b$ implies that ab = 0. If \mathscr{O} is an ideal of \mathscr{S} , it defines an ideal I of B. There exists a 1-1 correspondence between the elements of \mathscr{S} and the principal ideal of B.

In the ring S_n there is in general more than one left (right) canonical matrix corresponding to an element $A \in S_n$. However, if two left canonical matrices E and F are such that $(E)_{\ell} = (F)_{\ell}$ and they have the same idempotents down the main diagonal, then E = F. This follows from the fact that EF = E if $(E)_{\ell} = (F)_{\ell}$. Although in general the element e_i is not uniquely defined by A, the ideal $(e_i)_{\ell}$ is unique. Since in the Boolean ring B any principal ideal is defined by a unique element, any principal left ideal of B_n is defined by a unique left canonical matrix. We will identify the elements of E with the corresponding left canonical matrices.

Some examples of complemented modular lattices

Throughout this section $\mathscr O$ will be a Boolean algebra, $\mathscr O$ an ideal of $\mathscr O$, and B and I the corresponding Boolean ring and ideal. $\overline J$ denotes the cardinal power of the set J.

THEOREM 1. Let $\,L\,$ consist of the $2\,x\,2$ left canonical matrices

 $A = \begin{pmatrix} e_1 & 0 \\ a & e_2 \end{pmatrix}, \text{ where } e_1, e_2 \in B \text{ and } a \in I. \text{ For } A_1, A_2 \in L, \text{ define } A_1 \leq A_2 \text{ if } (A_1) \in C \text{ } (A_2) \text{ where } (A) \text{ is the principal left ideal of } B_2 \text{ generated by } A. \text{ Then } L \text{ is a complemented modular lattice. Moreover, the following conditions are equivalent}$

(i) L is an
$$\mathcal{S}_{\alpha}$$
-complete \mathcal{S}_{α} -sublattice of $\overline{\mathbb{L}}_{B_2}$

- (ii) L is an \mathcal{S}_{α} -complete \mathcal{S}_{α} -continuous \mathcal{S}_{α} -sublattice of $\overline{\mathbb{L}}_{\mathbf{B}_{2}}$
 - (iii) \mathscr{S} is an \mathscr{S}_{α} -ideal and \mathscr{B} is \mathscr{S}_{α} -complete.

Proof. Let R be the set of right canonical matrices $A = \begin{pmatrix} e_1 & 0 \\ a & e_2 \end{pmatrix}, \ e_1, e_2 \epsilon B \text{ with a} \epsilon I, \text{ ordered by the relation}$ $A_1 \leq A_2 \text{ if } (A_1)_r C (A_2)_r. \text{ Then the dual isomorphism}$ between \overline{L}_B and \overline{R}_B induces a dual isomorphism between B_2 and R. Hence any statement about L implies its dual,

since what we prove for $\,L\,$ can be proved as well for $\,R\,$. We show first that $\,L\,$ is a complemented modular lattice.

When $\mathscr{L} = \mathscr{S}$ the ordered set defined in the theorem coincides with \overline{L}_{B_2} and there is nothing to prove. When $\mathscr{L} \neq \mathscr{S}$ we will

prove that L is a sublattice of \overline{L}_B . For this we use the lattice isomorphism between the principal left ideals of B.

and the finitely generated submodules of the left B-module of 2-tuples (a_1, a_2) , $a_i \in B$. If $\{(a_1, a_2)\}$ denotes the left submodule generated by the vector (a_1, a_2) then the module M corresponding to the canonical matrix $\begin{pmatrix} e_1 & 0 \\ a & e_2 \end{pmatrix}$ has the

form

(1)
$$M = \{(e_1, 0)\} \oplus \{(a, e_2)\} = \{(e_1, 0)\} \oplus \{(a, a)\} \oplus \{(0, a_0)\}$$

where $a_0 = e_2 a'$ and \bigoplus indicates direct sum. Since the matrix is canonical $e_2 = a \stackrel{\cdot}{\cup} a_0$.

It is clear that the only elements of M whose second or first component is zero are the elements of the submodules $\{(e_1,0)\}$ or $\{(0,a_0)\}$, respectively. The elements of M of the form (c,c) are the elements of $\{(a \dot{c}_1 a_0, a \dot{c}_1 a_0)\}$.

The module

(2)
$$N = \{ (f_4, 0) \} \oplus \{ (b,b) \} \oplus \{ (0,b_0) \}$$

where $b \in I$, $bf_1 = bb_0 = 0$, corresponds to the canonical matrix

$$\begin{pmatrix} f_1 & 0 \\ b & f_2 \end{pmatrix} ,$$

where $f_2 = b \dot{U} b_0$. Now N contains M if and only if

$$e_1 \le f_1$$
, $a_0 \le b_0$ and $a \le b \circ f_1 b_0$,

or what is equivalent,

$$e_1 \le f_1$$
, $e_2 \le f_2$, $a \le b \cup f_1 f_2$ and $a b = 0$.

In general given two modules $\,M\,$ and $\,N\,$ defined by (1) and (2)

$$M = \{ (e_1 \cup f_1, 0) \} + \{ (a \cup b, a \cup b) \} + \{ (0, a_0 \cup b_0) \} =$$

$$= \{ (e_1 \cup f_1 \cup ba_0 \cup b_0 a, 0) \} \oplus \{ (c, c) \} \oplus \{ (0, a_0 \cup b_0 \cup be_1 \cup af_1) \}$$

where $c = af_1'b' \cup e_1'a'b \le a \cup b \varepsilon I$. Hence $M \cup N \varepsilon L$. By duality $M \cap N \varepsilon L$. Therefore L is a sublattice of a modular lattice and is itself modular. Since

$$M' = \{(e_1' a', 0)\} \oplus \{(0, a_0')\}$$

is a complement of the module M, L is a complemented modular lattice.

Our next step is to show that if \mathcal{G} is \mathcal{H} -complete then \overline{L} is \mathcal{H} -complete. It is sufficient to show that \overline{L} B

2

is upper \mathcal{H} -complete because the lower \mathcal{H} -completeness

is upper $\,\,$ -complete, because the lower $\,\,$ -completeness follows by duality.

Let
$$A^{\beta} = \begin{pmatrix} e_1^{\beta} & 0 \\ 1 & \\ a^{\beta} & e_2^{\beta} \end{pmatrix}$$
 $\varepsilon \quad \overline{L}_{B_2}$ for all $\beta \varepsilon J$,

where $\overline{J} \leq \,\,$ %. It is immediate that if $\mathcal G$ is $\,\,$ 8 -complete, the union of the corresponding modules

$$M_{3} = \{(e_{1}^{\beta}, 0)\} \oplus \{(a^{\beta}, a^{\beta})\} \oplus \{(0, a_{0}^{\beta})\} \text{ where } a_{0}^{\beta} = e_{2}^{\beta} (a^{\beta})'$$

is the module

$$M = \{(\cup e_1^{\beta}, 0)\} + \{(\cup a^{\beta}, \cup a^{\beta})\} + \{(0, \cup a^{\beta})\}$$

which corresponds to the canonical matrix

(3)
$$A = \begin{pmatrix} c e_{1}^{\beta} & c & ((c a^{\beta}) \cdot (c a^{\beta})) & 0 \\ c & d & |c a^{\beta}| \cdot |c a^{\beta}| \end{pmatrix}$$

where
$$d = (\cup a^{\beta}) \cdot (\cup e_1^{\beta} \cup ((\cup a^{\beta}) \cdot (\cup a_0^{\beta})))'$$
.

Now we are ready to prove the equivalence of conditions (i), (ii), (iii).

(i) implies (ii). This is a consequence of the additivity of upper 5-continuity in complemented 5-complete modular lattices. For, if

$$X = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $Y = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,

the intervals [0, X] and [0, Y] are both isomorphic to G;

hence $L = [0, X \cup Y]$ is upper \Re -continuous. Using duality we get that L is \Re -continuous.

(ii) implies (iii). Since $\mathscr G$ is isomorphic to the interval [0,X], if L is $\ensuremath{\,^{\mbox{\sc is}}}_{\alpha}$ -complete then B is $\ensuremath{\,^{\mbox{\sc is}}}_{\alpha}$ -complete. Now let

$$C^{\beta} = \begin{pmatrix} 0 & 0 \\ & & \\ a^{\beta} & a^{\beta} \end{pmatrix} \epsilon L$$

for all $\beta \in J$ and $\overline{J} \leq \mathcal{H}$. Then

which implies that $\cup a^{\beta} \in \mathscr{A}$ and therefore \mathscr{A} is $\underset{\alpha}{\bowtie}$ -complete.

(iii) implies (i). Let

$$A^{\beta} = \begin{pmatrix} e_1^{\beta} & 0 \\ & & \\ a^{\beta} & e_2^{\beta} \end{pmatrix} \epsilon L \text{ for all } \beta \epsilon J,$$

and $\overline{J} \leq \frac{8}{\alpha}$. Then (3) implies that $\bigcup A^{\beta} \in L$, hence (i) holds.

COROLLARY 1. Let L be as in Theorem 1. Suppose $\mathscr S$ is complete and $\mathscr A$ is an $\mathscr S$ -ideal which is not an $\mathscr S$ -ideal. Then

- (a) L contains two elements X and Y such that the intervals [0, X] and [0, Y] are complete and continuous and $L = [0, X \cup Y]$.
- (b) L is β -complete and β -continuous but not α -complete.

Proof. The only thing which has to be proved is that L is not $\mathcal{L}_{\alpha+1}$ -complete.

Suppose L is $\beta_{\alpha+1}$ -complete. Then, since $L = [0, X \cup Y]$, by the additivity of $\beta_{\alpha+1}$ -continuity in $\beta_{\alpha+1}$ -complete lattices, L is $\beta_{\alpha+1}$ -continuous. Let Ω be the first ordinal such that $\overline{\Omega} = \beta_{\alpha+1}$ and $\{a^{\beta}\}_{\beta < \Omega}$ an increasing chain of elements of β such that $\Omega = \beta_{\alpha+1}$. Take

$$C^{\beta} = \begin{pmatrix} 0 & 0 \\ a^{\beta} & a^{\beta} \end{pmatrix}$$

Then

$$C = \bigcup C^{\beta} = \begin{pmatrix} 0 & 0 \\ & & \\ \bigcup_{\alpha} \beta & \bigcup_{\alpha} \beta \end{pmatrix} \notin L.$$

If $C' = \begin{pmatrix} e_1 & 0 \\ 0 & 1 \end{pmatrix}$ is the supremum of the C^{β} in L then

 $b \not \ge \cup a^{\beta}$, since be I. On the other hand C < C' implies that $\cup a^{\beta} \le b \cup e_1$, hence $e_1 \not = 0$. Now

$$D = \begin{pmatrix} e_1 & 0 \\ 0 & 0 \end{pmatrix} \epsilon L. \quad D \cap C^{\beta} = 0 \text{ for all } \beta < \Omega \text{ , but}$$

 $D \cap C \neq 0$, which contradicts the $\Re_{\alpha+1}$ -continuity of L.

COROLLARY 2. Let L be as in Theorem 1. Then L is a Von Neumann geometry if and only if $\mathscr C$ is a complete Boolean algebra and $\mathscr C$ is a principal ideal, that is, I = [0,x], $x \in B$. In this case the center of L is isomorphic to $[0,x] \times [0,x'] \times [0,x']$.

Proof. When $\mathscr{I} = [0, x]$, L is the lattice direct sum of the intervals $[0, Y_0]$, $[0, Y_1]$, $[0, Y_2]$, where

$$\mathbf{Y}_{0} = \begin{pmatrix} \mathbf{x} & \mathbf{0} \\ \\ \mathbf{0} & \mathbf{x} \end{pmatrix}, \quad \mathbf{Y}_{1} = \begin{pmatrix} \mathbf{x}' & \mathbf{0} \\ \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \mathbf{Y}_{2} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \\ \mathbf{0} & \mathbf{x}' \end{pmatrix}.$$

Hence its center is isomorphic to $[0,x] \times [0,x] \times [0,x]$

THEOREM 2. If $\mathscr B$ is a complete Boolean algebra, then the lattice \overline{L}_{B_n} is a Von Neumann geometry whose center is isomorphic to $\mathscr B$.

Remark. For n = 2 this theorem is contained in Theorem 1.

Proof. Because of the dual isomorphism between \overline{L}_{B_n} and \overline{R}_{B_n} we only need to prove that \overline{L}_{B_n} is upper complete and upper continuous. Now $\overline{L}_{B_n} = [0, X_1 \cup X_2 \cup \ldots \cup X_n]$, where X_i is the canonical matrix with 1 in the (i,i) place and zeros elsewhere, and the interval $[0, X_i]$ being isomorphic to $\mathscr C$, is continuous. Therefore, by the theorem of Amemiya and Halperin quoted in the introduction, if \overline{L}_{B_n} is upper complete it is also upper continuous. So it is sufficient to prove that \overline{L}_{B_n} is upper complete.

We use induction on n. If n=1, $\overline{L}_B \approx \mathcal{S}$ and there is nothing to prove. Assume then that the theorem is true for n-1. Let A^β be an increasing chain, where $\beta < \Omega$, Ω any limit ordinal, and

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \quad \epsilon \, \overline{\mathbf{L}}_{\mathbf{B}_{\mathbf{n}}}.$$

Then the elements $A^{\beta} \cap E$ form an increasing chain. To the element $A^{\beta} \cap E$ there corresponds a finitely generated submodule N^{β} of the left B-module of n-tuples and the elements of this submodule have the last component equal zero. Therefore, because of the induction assumption, the increasing chain of submodules N^{β} has a supremum which is also a submodule whose elements have the last component equal to zero. Let $A' \in \overline{L}_B$ be the left canonical matrix corresponding to this submodule.

 $A' = \begin{pmatrix} e_1 & 0 & \dots & 0 & 0 \\ c_{21} & e_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{n-1,1} & c_{n-1,2} & \dots & e_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$

If C is an upper bound of the A^{β} , $\beta < \Omega$, then $C \ge A^{\beta} \cap E$. Hence $C \ge A'$, and $C \ge A^{\beta} \cup A'$. That is, any upper bound of the A^{β} is an upper bound of the chain of $A^{\beta} \cup A'$ and conversely. Let $B^{\beta} = A^{\beta} \cup A'$, since $B^{\beta} \cap E = (A^{\beta} \cup A') \cap E = A'$,

$$B^{\beta} = \begin{pmatrix} e_1 & 0 & \dots & 0 & 0 \\ c_{21} & e_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{n-1,1} & c_{n-1,2} & \dots & e_{n-1} & 0 \\ b_1^{\beta} & b_2^{\beta} & \dots & b_{n-1}^{\beta} & e_n^{\beta} \end{pmatrix}$$

Moreover, if $\alpha < \beta$, $B^{\alpha} \leq B^{\beta}$ and this implies $B^{\alpha}B^{\beta} = B^{\alpha}$, which is equivalent to $e^{\alpha}_{n}b^{\beta}_{i} = b^{\alpha}_{i}$, i = 1, 2, ..., n-1, $e^{\alpha}_{n}e^{\beta}_{n} = e^{\alpha}_{n}$. Now it is easily seen that

$$B = \begin{pmatrix} e_1 & 0 & \cdots & 0 & 0 \\ c_{21} & e_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{1} & c_{2} & \cdots & c_{n-1} & c_{n}^{\beta} \end{pmatrix}$$

is the supremum of the chain of B^{α} . For, $e_{n}^{\alpha}b_{i}^{\beta}=b_{i}^{\alpha}$ and $e_{n}^{\alpha}e_{n}^{\beta}=e_{n}^{\alpha}$ for $\alpha<\beta$ imply that the b_{i}^{β} and e_{n}^{β} form increasing chains. Consequently, $e_{n}^{\alpha}(\ \cup\ b_{i}^{\beta})=b_{i}^{\alpha}$, $e_{n}^{\alpha}(\ \cup\ e_{n}^{\beta})=e_{n}^{\alpha}$ and $(\ \cup\ e_{n}^{\alpha})(\ \cup\ b_{i}^{\beta})=\bigcup_{\alpha}(e_{n}^{\alpha}(\ \cup\ b_{i}^{\beta}))=\bigcup_{i}^{\alpha}$, Therefore B is a canonical matrix such that $B^{\alpha}B=B^{\alpha}$, which implies $B^{\alpha}\leq B$, and it is clear that B is the supremum.

REFERENCES

- 1. I. Amemiya and I. Halperin, Complemented modular lattices. Can. J. Math. Vol. 11, pp. 481-520.
- K. D. Fryer and I. Halperin, The von Neumann coordinatization theorem for complemented modular lattices. Acta Szeged 1956, pp. 203-249.
- 3. J. von Neumann, Continuous Geometry. Princeton University Press, 1960.

Hungarian Academy Queen's University