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ALGEBRAIC SINGULARITIES HAVE MAXIMAL
REDUCTIVE AUTOMORPHISM GROUPS

HERWIG HAUSER ano GERD MULLER

§1. Introduction

Let X = 0,/t be an analytic singularity where i is an ideal of the
C-algebra 0, of germs of analytic functions on (C", 0). Let m denote the
maximal ideal of X and A = Aut X its group of automorphisms. An ab-
stract subgroup G < A equipped with the structure of an algebraic group
is called algebraic subgroup of A if the natural representations of G on
all “higher cotangent spaces” mw*/m**' are rational. Let r be the repre-
sentation of A on the first cotangent space m/m* and A, = #(A).

Cartan’s Uniqueness Theorem [8] asserts that every reductive algebraic
subgroup of A is faithfully represented by z. This was strengthened by
the second author in [9]: Any two reductive algebraic subgroups G, H
of A are conjugate if and only if #(G) and z(H) are conjugate in A,.

Since A, is an algebraic subgroup of GL (m/m® it has by [7, Chapter
VIII, Theorem 4.3] a Levi subgroup, i.e. a reductive subgroup containing
every reductive subgroup of A; up to conjugacy. (Hence a Levi subgroup
is a maximal reductive subgroup, unique up to conjugacy.) A reductive
algebraic subgroup G of A will be called a Levi subgroup of A if z(G)
is a Levi subgroup of A,. It follows from the result cited above that a
Levi subgroup of A (if it exists) contains every reductive algebraic sub-
group of A up to conjugacy. Let us mention an interesting consequence
hereof. A rational action of a reductive algebraic group on a singularity
X = 0,[t can be lifted to an action on @,, linear in suitable coordinates.
In the presence of a Levi subgroup of Aut X this linearization can be
done simultaneously for (up to conjugacy) all reductive group actions on
X

In [9] it was shown that weighted homogeneous singularities with
positive weights and complete intersections with isolated singularity admit
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a Levi subgroup in their group of automorphisms. In the present paper
we shall extend this by proving

THEOREM 1. Any algebraic singularity has a Levi subgroup in its group
of automorphisms.

Here a singularity X = 0,/i is called algebraic if i can be generated
by power series algebraic over the polynomials. Special cases are arbi-
trary isolated singularities (cf. [1, Theorem 3.8]) and plane curves (possibly
non-reduced, cf. [5, 1.11]). The main step in the proof of Theorem 1 is

THEOREM 2. If a reductive algebraic group acts rationally on the com-
pletion of an algebraic singularity then it also acts on the singularity itself
(with the same representation on the cotangent space).

Theorem 2 also yields an extension of Saito’s characterization of
weighted homogeneous isolated hypersurface singularities: If fe 0, is
algebraic over the polynomials and belongs to m-j(f) then f is weighted
homogeneous in suitable coordinates. (Here m denotes the maximal ideal
of 0, and j(f) the Jacobian ideal of f.)

We thank Dorin Popescu for valuable discussions.

§2. Proofs

Let GL (C") act contragrediently on ¢, and its completion d,. We
shall prove the following more precise version of Theorem 2:

TuEOREM 2. Let G < GL(C") be reductive. Suppose that the ideal
i < 0, is generated by power series algebraic over the polynomials. Then
i is equivalent to a G-stable ideal i < 0, if and only if i-0, is formally
equivalent to a G-stable ideal i/ < 0,.
Theorem 1 is a corollary of Theorem 2’ by

LEMMA. Let X = 0,/i be an arbitrary analytic singularity. Then Aut X
has a Levi subgroup if and only if the assertion of Theorem 2’ holds for
every reductive subgroup G < GL(C™).

Proof. “if”. Take a Levi subgroup G of A,. By [9, Satz 4] there is
a faithful rational action G — Aut(d,/i-@,). Hence by the formal version
of [9, Satz 6] there is a faithful rational representation G — GL(C™) such
that i-d, is formally equivalent to a G-stable idea) of d,. By the asser-
tion of Theorem 2’ we obtain a faithful rational action «: G — Aut(@,/i).
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Without loss of generality n(a(G)) < G. Counting dimensions and numbers
of components we conclude #(«(G)) = G.

“only if” is an immediate consequence of the analytic version of [9,
Satz 6].

The proof of Theorem 2’ relies on an approximation theorem for
polynomial equations with formal solutions. It was conjectured by Artin
[2, Conjecture 1.3] and recently proven by Popescu [10, Theorem 1.3] and
Rotthaus [11, Theorem 4.2] that excellent Henselian local rings have the
approximation property. This implies (cf. [3, Remark 1.5]) the following
approximation theorem with nested subring condition. For a coordinate
system x = (x,, - - -, x,) denote by C{x} the algebra of convergent power
series and by C{x) the algebra of algebraic power series, i.e. those fe C{x}
which are algebraic over C[x].

THEOREM 3. If a system of polynomial equations over C{u, x> admits
formal solutions y(u), z(u, x),

F(u, x,5(u), 2(u,x)) =0,
then it has convergent (in fact, algebraic) solutions y(u), z(u, x),
F(u, x, y(w), 2(u, x)) =0,
approximating y(u), (u, x) up to any given order.

Remark. An example of Gabriélov [6] shows that in general the
corresponding statement with C(w, x) replaced by C{u, x} is false.

Proof of Theorem 2. One implication being obvious let us assume
that i-@, is formally equivalent to a G-stable ideal i/ < @,. Letx,, ---, x,
be the natural coordinates on (C*, 0).

By [9, Hilfssatz 2] there are a rational representation of G on C™ and
generators g(x), - - -, 8.(x) e @, of i/ such that the vector g(x) with com-
ponents g,(x) is G-equivariant. Since G is reductive the C-algebra C[x]¢
of invariant polynomials and the C[x]-module of equivariant polynomial
mappings C" — C™ are finitely generated, cf. [13, Corollary 2.4.10 and
Proposition 2.4.14]. Let u(x) = (u(x), - - -, u©,{x)) and p(x) = (p(x), - - -, p,(x))
be corresponding generator systems. We get

8(x) = y(u(x))-p(x) = F(wx)-pi(x) + - + F(wx)) p(x)
with suitable y(u) e C[[u]]®.
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Let fi(x), -+, fa(x) € C{x)> generate i. By assumption there are a
formal coordinate system z(x) € C[[x]]* and a matrix M(x)e GL (m, C[[x]])
such that

f(x) = 8(z(x))- M(x)
hence
f(x) — F(wz(x))-p(E(x))- M(x) = 0.

By Taylor expansion there is an r X m — matrix N(u, x) with entries in
Cllu, x]] such that

f(x) — 3(w)- p(z(x))- M(x) = (u — u(z(x)))- N(u, %) .

This is a system of polynomial equations over C{u, x> in unknowns ¥, z,
M, N. By Theorem 3 the formal solutions ¥(u), 3(x), M(x), N(u, x) can be
approximated up to order 2 by algebraic solutions y(u), z(u, x), M(u, x),
N(u, x),

f(x) — y(w)-p(a(u, x))- M(u, x) = (u — w((u, x)))- N(u, %) .

Since the matrix (9,2(u, x))(0) is invertible and (3,2(u, x))(0) = 0 there
is w(u, x) e C{u, x}* such that z(u, w(y, x)) = x, (@,w(u, x))(0) is invertible,
and (@,w(u, x))(0) = 0. We conclude

f(w(u, x)) — y(w)-p(x)- M(u, w(u, x)) = (v — wx))- N(u, w(u, x)) .
Setting w(x) = w(w(x), x) and M(x) = M(u(x), i(x)) this implies
f(x)) = y(u(x))- p(a)- M(x) .

Since (x) is a coordinate system and M(x) e GL (m, C{x}) we have proven
that i is equivalent to the G-stable ideal of @, generated by the compo-
nents of y(u(x))- p(x).

Remark. The assertion of Theorem 2’ holds for finite groups G and
arbitrary singularities X = ¢,/i. This is a corollary of the following ob-
servation:

Let G < GL(C") be finite. If a system of analytic equations,

F(x9y>z)= 0,

has formal solutions #¥(x), Z(x) without constant terms and such that
¥(x) = Fx), - - -, Ju(x)) is G-equivariant with respect to a representation
of G on C™, then it has convergent solutions y(x), z(x), approximating
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y(x), Z(x) up to any given order, and such that y(x) is again G-equivariant.
(Note that this is false, in general, for infinite G. Take G = C* acting
on C" by

t"(xly o ',xn) = (xly Ty Xy t’xr+17 T ‘,t'xn)'

Then C[x]¢ = Clx,, - -+, x,] and we can use Gabriélov’s example.)

For the proof of the observation write z = (2, - -+, 2,) = .2, where e
denotes the unit element of G, and introduce dummy-variables ;2 =
G2y, - ,2) for ex7eG. Put ,2(x) = 2(rx) for Ye G. Then (J(x), ,2(x),
7e G) is equivariant with respect to a suitable representation of G on
Cc™*#161, A theorem of Bierstone and Milman [4, Theorem A] yields the
desired y(x), z(x).

§ 3. Saito’s problem

Let x,, ---, x, be coordinates on (C",0) and 4, 4, ---,2,€ Z. A power
series fe @, is called weighted homogeneous with weights 2, ---, 2, and
degree 2 (with respect to the coordinates x) if 1 = 4,-a;, 4 .- + 1, a, for
all monomials x*---x% of f. This is equivalent to: f is equivariant with
respect to the representations of C* on C" and C defined by

th
T and #.
i

THEOREM 4. For an algebraic hypersurface singularity X = 0,/(f) the
fellowing conditions are equivalent:

1) fewm-j(f), (m < 0, the maximal ideal, j(f) = @.f, - - -, 0,.1)).

i) There is an analytic coordinate change z(x) such that g(x) = f(z(x))
is weighted homogeneous of non-zero degree.

Proof. One implication being obvious let us assume that fe m-j(f).
By [12, Korollar 3.3 and Lemma 1.4] there is a formal coordinate change
Z(x) such that g(x) = f(Z(x)) is weighted homogeneous of non-zero degree 2.
By Theorem 2’ and [9, Hilfssatz 2] there are an analytic coordinate change
2(x) and a unit w(x)<e @, such that g(x) = f(z(x))- u(x) is weighted homo-
geneous of degree 2. Since 1 = 0 this implies (ii) with suitably modified
z(x).
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