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Abstract

We show that diagrammatically reducible two-complexes are characterized by the property: every finite
subcomplex of the universal cover collapses to a one-complex. We use this to show that a compact
orientable three-manifold with nonempty boundary is Haken if and only if it has a diagrammatically
reducible spine. We also formulate an analogue of diagrammatic reducibility for higher dimensional
complexes. Like Haken three-manifolds, we observe that if n > 4 and M is a compact connected
n-dimensional manifold with a triangulation, or a spine, satisfying this property, then the interior of the
universal cover of M is homeomorphic to Euclidean n -space.
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1. Introduction

In this paper we establish a connection between Haken 3-manifolds and diagrammat-
ically reducible 2-complexes. More precisely, we show that a compact orientable
3-manifold M with nonempty boundary is Haken if and only if it has a diagrammati-
cally reducible spine K (Theorem 4.4).

To carry out this construction, we first give a characterization of diagrammatically
reducible 2-complexes, which is a result of independent significance (Theorem 2.4):
A 2-complex X is diagrammatically reducible if and only if every finite subcomplex
of the universal cover of X collapses to a 1-complex. In the case of finite 2-complexes,
this was conjectured by Brick [Bk].
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Diagrammatically reducible 2-complexes were introduced by Sieradski [Si] and
were subsequently studied by Gersten [Gel, Ge2] and others. They are an interesting
class of aspherical 2-complexes, with applications in equations over groups. Haken
manifolds are an important, well-behaved, class of compact 3-manifolds; see, for
example, [He] as a general reference. Knot complements are examples of orientable
Haken 3-manifolds. Gersten has previously shown [Ge2] that orientable Haken 3-
manifolds have the homotopy type of a diagrammatically reducible 2-complex. And
earlier Chiswell, Collins, and Huebschmann [CCH] had shown that bounded Haken
3-manifolds have the homotopy type of a Diagrammatically Aspherical 2-complex (a
weaker property).

Our equivalent formulation of diagrammatic reducibility makes sense, with a minor
modification, for higher dimensional complexes. With this in mind, we say that a
simplicial complex K satisfies the property P] if: every finite subcomplex of the
universal cover of K is contained in a finite subcomplex that collapses to a 1-complex.
In dimension two it is not necessary to go to a larger subcomplex since subcomplexes
of a finite 2-complex that collapses to a 1-complex also collapse to 1-complexes. In
fact it is easy to see that a finite 2-complex collapses to a 1-complex if and only if every
2-dimensional subcomplex contains a 2-cell with a free face; see Section 2 for this
terminology. Thus, for 2-complexes the Pi condition is equivalent to diagrammatic
reducibility, by Theorem 2.4.

Using this notion we extend a well-known result about Haken manifolds in dimen-
sion three. Namely, if M" is a compact, connected, ^-dimensional manifold with a
triangulation, or a spine, with the property Pi (n > 4), then the interior of M" is
covered by K" (Theorem 3.2). By a spine of a PL manifold M we mean a simplicial
complex K such that some triangulation of M simplicially collapses to a subcomplex
isomorphic to K. For a general reference on piecewise linear topology, we refer the
reader to [RS].

It should be noted that there is also an interesting characterization, due to Ger-
sten [Ge2], of diagrammatic reducibility in terms of branched coverings. It may be
worth investigating what this condition means in higher dimensions, and possibly
comparing with the P\ condition above.

2. Diagrammatically reducible complexes

In this section we work in the category of combinatorial 2-complexes. Thus, for
our purposes every 2-cell of a 2-complex is attached along a (finite) edge-circuit, and
by a map of 2-complexes we mean a combinatorial map (that is, a map in which each
open cell in the domain is mapped homeomorphically onto an open cell in the target).

Let X be a 2-complex. We say that an open (n — l)-cell t is a free face of an
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open n-cell e if it occurs exactly once in the boundary of e and it does not occur in
the boundary of any other n-cell. Recall that under these circumstances, the passage
from X to the subcomplex X \ (e U i) is called an elementary collapse. We say that
X collapses to a subcomplex A if there is a finite sequence of elementary collapses
passing from XtoA. (In this case, of course, X and A have the same homotopy type.)

For convenience, we say that a 2-complex is closed if it is finite and none of its cells
has a free face. Notice that every finite 2-complex collapses to a closed subcomplex.

Given a closed surface F, we say that a map / : F —> X is a near immersion if F
supports a combinatorial cell structure for which/ is a combinatorial map and/ \F\F°
is an immersion. Here F° denotes the 0-skeleton of the cell structure of F, and by an
immersion we mean a local embedding. Then we have:

DEFINITION. A 2-complex X is diagrammatically reducible (abbreviated DR) if
there is no near immersion of S2 into X.

The next lemma is used in the proof of the main result in this section. For use in the
proof we make a definition: A complete set of cutting curves on a closed orientable
surface F is a collection of disjoint simple closed curves such that cutting the surface
along these curves yields a genus zero surface*

LEMMA 2.1. Suppose f : F -> X is a near immersion, where F is a closed surface
and X is a l-connected 2-complex. Then there exists a near immersion S2 -*• X (that
is, X is not DR).

PROOF. By first subdividing X, and F correspondingly, we may assume that X is a
simplicial complex. We may also assume, by taking an orientable double cover, that
F is orientable.

Choose a complete set of cutting curves y\. • • • > Yk for F such that each curve
avoids the finitely many points at which / is not a local embedding. Then each
/ (y,) is an immersed curve in X. By appropriately subdividing X (and pulling back
the subdivision to F), we can arrange that the y, lie in the 1-skeleton and thus are
embedded edge-circuits. Since X is simply connected, each / (y,) is null-homotopic
and hence bounds a van Kampen diagram (D,-, <j>t) in X. Recall that a van Kampen
diagram (D, <j>) in X is a finite l-connected planar 2-complex D and a combinatorial
map (j> : D —> X; see, for example, [LS] for more details.

Form a 2-complex L by 'attaching' the diagram £), to F along y,, for each i =
1, . . . , k. It should be noted that under this 'attaching' some identifications of F
along y, may be performed. Define a combinatorial map </> : L -> X by (j>\F — f and
0|D. = 0t (1 < i < ^). Note that L is a closed, l-connected 2-complex and that L
embeds in S3 (as shown in Figure 1) such that S3 \ L is a disjoint union of open 3-cells
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(a) (b)

FIGURE 1. Embedding of L in the 3-sphere in the case where F is the torus. In (a) the attached diagrams
are disks however in general, as in (b), they are 'pinched' disks.

(two of them in this case). Furthermore, the map / factors through L, f = <p o i,
where i : F -*• L is the natural map into the adjunction space L.

Hence, there exists a 2-complex K with the following four properties:

(1) A" is a closed 1-connected 2-coiriplex embedded in S3.
(2) S3 \ K is a disjoint union of open 3-cells, each of which is attached to AT by an

immersion S2 —• K.
(3) The m a p / factors through K; that is, there exist combinatorial maps g : F —> K

and h : K -> X such that / = h o g.
(4) Amongst all 2-complexes satisfying 1-3, K has a minimal number of 2-cells.

Now let j : S2 -*• K be the attaching map (immersion) of one of the 3-cells in
S3 \ K. We claim that the map hoj : S2 -> X is a near immersion.

To see this, suppose hoj is not a near immersion. Then there exists a pair of
distinct closed 2-cells a and r, in the pull-back cell structure of S2, such that a 0 x
contains a 1-cell e and h(j (a)) = h(j ( T ) ) . Thus, for each point x e a, there is a
unique point*' 6 r such that h(j (x)) = h(j (x')), and* = x' if x e e. Let K' denote
the 2-complex obtained by identifying j (x) andy (x'), for each x e a.

There are four ways in which the 2-cells a and r can meet: in one edge, the union
of two edges, one edge and a disjoint vertex, or the three edges making up the entire
(common) boundary of the 2-cells. In any case, observe that the embedding of K in
S3 can be continuously deformed to an embedding of K', folding j (CT) U j (r) at e in
the the direction of the 3-cell bounded by the immersion j . In the first two cases, the
number of 3-cells in S3 \ K' is the same as in S3 \ K. In the third case, the number of
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3-cells is increased by one. And in the last case, the number of 3-cells is decreased
by one.

The complement of this embedding of K' is again a disjoint union of open 3-cells,
and after collapsing any 2-cells of K' with a free edge that may have been introduced,
we see that (1) and (2) hold. Also (3) holds for K', since h factors through K'. But K'
has one less 2-cell than K, contradicting (4). Our claim therefore follows, and hence
X is not DR. •

REMARK. AS an alternative to viewing K as embedded in S3 in the above proof, the
conditions (1) and (2) can be replaced by simply requiring the existence of a collection
of immersions S2 ->• K such that each open 2-cell of K is hit exactly twice.

We note two easy consequences before turning to the theorem.

COROLLARY 2.2. Suppose f : F —*• X is a near immersion, where F is a closed
surface and X is DR. Then the image offt : TTI(F) -> n\(X) is nontrivial.

PROOF. If /„ is the trivial homomorphism, then / lifts to the universal cover X.
But X is DR, contradicting Lemma 2.1. •

COROLLARY 2.3. Let X be a closed 2-complex. IfX isDR, thennx(X,x0) isinfinite
{and torsion-free).

PROOF. By [CT1, Theorem 2.1] there is a near immersion/ : F -> X, where F is
some closed surface. Thus, n\(X, xQ) ^ 1 by Corollary 2.2. The result now follows
since X is an aspherical 2-complex; see [Gel]. •

THEOREM 2.4. A 2-complex X is DR if and only if every finite subcomplex of the
universal cover X collapses to a I -complex.

PROOF. First assume that X is DR and let L be a finite subcomplex of X. Then
L collapses to a closed subcomplex Lo, which we claim is a 1-complex. For if LQ
were 2-dimensional, then by [CT1, Theorem 2.1] there would be a near immersion
/ : F —*• Lo, for some closed surface F. But that would imply, by Lemma 2.1, that
X is not DR, a contradiction. (Clearly a 2-complex is DR if and only if its universal
cover is DR.)

Conversely, suppose / : S2 -» X is a near immersion. Then / lifts to a near
immersion / ' : S1 -> X in the universal cover. But the image of a near immersion
of a closed surface is a closed 2-dimensional subcomplex. Thus the image of/ ' is a
finite subcomplex of X that does not collapse to a 1-complex. •
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In the case of a finite 2-complex X (or any 2-complex whose universal cover
has only a countable number of cells), note that Theorem 2.4 can be stated as was
conjectured by Brick [Bk]: X is DR if and only if the universal cover of X is the
union of an ascending sequence of finite subcomplexes, each of which collapses to a
1-complex.

3. Generalization of diagrammatic reducibility

Henceforth, we consider only simplicial complexes. Thus by a fc-complex we now
mean a simplicial complex of dimension < k. To indicate that a simplicial complex
L (simplicially) collapses to a subcomplex K, we write L \ K. See the book by
Rourke and Sanderson [RS] for a general reference on piecewise linear topology.

DEFINITION. For each nonnegative integer k, we say that a simplicial complex K
satisfies the property Pk provided: every finite subcomplex of K is contained in a
finite subcomplex that collapses to a ^-complex.

We are only interested here in the cases k = 0 and k = 1. As we noted in the
introduction, a 2-complex X satisfies P, if and only if it is DR. Thus the condition
P\ can be viewed as a generalization of diagrammatic reducibility, for simplicial
complexes of arbitrary dimension.

The next lemma is true for any nonBegative integer k.

LEMMA 3.1. Suppose K is a subcomplex of a finite simplicial complex L and that
L \ K. If K satisfies property Pk, then L also satisfies Pk.

PROOF. We may assume that L = K U {sn, sn~1}, where sn and s"~l are open
simplices that are not contained in K and s"~l is a face of s". Let X be a finite
subcomplex of L. Observe that L is obtained from K by attaching lifts of s", each
of which has a free face projecting to s"~l. So X \ A where A is the subcomplex
of X obtained by deleting all the lifts of s" and s"~l. Since A C K, there is a
finite subcomplex B of K, containing A, such that B collapses to a ^-complex. Put
Y = B U X, a finite subcomplex of L containing X. Then Y \ B (by collapsing
away each lift of s") which then collapses to a ^-complex. D

In the next section we show that every Haken 3-manifold has a triangulation
satisfying property Pi, and it is well known that the interior of every Haken 3-manifold
is covered by K3. We observe next that the same is true in higher dimensions.

THEOREM 3.2. Let M" be a compact, connected, n-dimensional manifold (n > 4)
that has a triangulation or spine with the property P\. Then the universal cover of
IntM" is (topologically) homeomorphic to W1.
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PROOF. If M" has a spine satisfying Pi, then by Lemma 3.1 it also has a triangulation
with this property. So let M" be triangulated in this fashion.

Let C be a compact subset of M. We show that C is contained in a PL n-cell.
By property Pu there is a finite connected subcomplex X of M, that collapses to a
1-complex, such that C c X. Let V be a regular neighbourhood of X in M. Then V
is an n-dimensional handlebody (a 0-handle with 1-handles attached).

Since M is simply connected, there exists a finite connected subcomplex Y of M,
containing X, such that TTI(X) —• 7ti(Y) is the trivial homomorphism. Let Wbea
regular neighbourhood of Y, so that W is an n-dimensional handlebody and V C W
induces a trivial homomorphism of fundamental groups.

Now, since n > 4, it follows by a general position argument that V is ambient
isotopic in W to a subset of the 0-handle of W. This is a special case of the Zeeman
Engulfing Theorem; see for example [Ru, Theorem 4.6.1]. Therefore, V is contained
in an n-cell, and hence this n-cell contains C.

Thus, every compact subset of M is contained in an n-cell. It follows that Int M
is the union of an ascending sequence of open n-cells. The proof is completed by
appealing to Brown's Theorem [Bn]. •

As a consequence we have the following (the case n = 3 is handled in the next
section): Let K be a finite, connected, diagrammatically reducible 2-complex. If M
is any n-dimensional thickening of K, that is, triangulated n-manifold that collapses
to K, then Int M is covered by R". Of course, not every finite 2-complex has a 3-
dimensional thickening, but they all have n-dimensional thickenings, for every n > 4.

4. Haken three-manifolds

Turning to 3-dimensional manifolds we next show that an orientable Haken 3-
manifold with nonempty boundary has a spine which is DR, in a strong sense.

THEOREM 4.1. Let M be an orientable Haken 3-manifold with nonempty boundary.
Then M has a 2-dimensional spine K satisfying the property Po (in particular, K is
DR).

We first establish two preliminary results. Here, and elsewhere, we say that an
embedding j : A -> X, or its image j (A), is incompressible if j * : JTI(A) -*• 7ti(X)
is injective for any choice of base point in j (A).

LEMMA 4.2. Suppose K and S are finite simplicial complexes and g : E x
{—1,1} -> K is a simplicial map such that gbxi-i) and g|i;x(i} are incompress-
ible embeddings. IfK and £ both have the property Po, then L = K U g ( E x [ - l , l ] )
also satisfies PQ.
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PROOF. We may assume that L and E are connected, and that K has one or two
components. Then 7Ti (L) is either an HNN extension of ny (AT) or an amalgamated free
product of the fundamental groups of the distinct components of AT; in each case the
splitting is over a subgroup isomorphic to ^ ( E ) . The universal cover of L therefore
consists of copies of the universal covers of the components of K connected by copies
of the universal cover of E x [—1, 1] in a 'tree-like' fashion.

Denote by p : L -»• L the universal covering map, and let X be a finite connected
subcomplex of L. Then X meets only finitely many closures of components of
p~'(E x (—1, 1)), each of which is acopy of E x [—1, 1]. Denote these components
(E x [—1, 1])],. . . , (E x [—1, l])m. By hypothesis, we can choose a subcomplex
of the form A, = 7] x [—1, 1] of (E x [—1, 1]), where Tt is a finite collapsible
subcomplex of E, large enough that X n (E x [— 1, 1]), c A,- (for i = 1, . . . , m).
Put Y = X U Ai U A2 • • • U Am, a finite subcomplex of Z.

Then Y meets only finitely many components of p~l(K), say Ku ... , Kn, each of
which is a copy of the universal cover of a component of K. Choose, as we may by
the hypothesis on AT, a collapsible subcomplex Bj of AT, such that Y D Kj C Bj for
each j = 1, . . . , n. Set Z = fli U • • • U 5n U Ai U • • • U Am, a finite subcomplex
of L containing X. Note that Z consists of the complexes B, joined by 'generalized
1-handles' Aj in a 'tree-like' manner.

We complete the proof by observing that Z is collapsible. Initially collapse each
Aj = 7] x [—1, 1] onto the subcomplex (7) x {—1, 1}) U (*, x [—1, 1]) where *j is
some vertex of 7). In this way we collapse Z onto a subcomplex consisting of the
parts Bj joined together by arcs (in a 'tree-like' fashion). Then we can collapse each
part Bj onto a spanning tree in its 1-skeleton, thus collapsing Z onto a tree in its
1-skeleton. Finally we collapse this tree to a vertex, as required. •

It is obvious that 1-dimensional simplicial complexes have property PQ. We next
observe that the same is true for triangulations of compact aspherical surfaces.

LEMMA 4.3. If E /5 a 2-dimensional simplicial complex homeomorphic to a com-
pact aspherical surface, then E satisfies property PQ.

PROOF. If E has nonempty boundary, then E has a 1-dimensional spine and the
result follows from Lemma 3.1. So assume that E is a closed surface. Then each
component of E is a triangulation of the plane, and it is easy to see that every finite
subcomplex of a triangulation of the plane is contained in a collapsible one. •

PROOF OF THEOREM 4.1. We assume, without loss of generality, that M is con-
nected.

It is well known (see [He, Theorem 13.3]) that M admits a hierarchy of the following
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form:

M = M0DMl D-DMn = B \

where Af, is obtained from Mt_i by cutting along a properly embedded surface F c
Af,_, which satisfies:

(1) F, is incompressible in A#,-_i;
(2) Fj is compact, connected, and orientable;
(3) 3F / 9 6 0;
(4) (implicit from Mn = B3) F, does not separate Af,_i.

We now associate to such a hierarchy of M a 2-dimensional spine—which satisfies
property Po.

To begin, let Kt denote a 1-dimensional spine for each Fh i = 1 , . . . , n. For
simplicity, we assume that Kt is collapsed as much as possible. In particular, Kt is a
point if Ft = D2. Recall that 'M, is obtained from M,_! by cutting along F,' means
that we view F, x [—1,1] C M,_i such that

( F x [ - 1 , 1]) n aM,_! = 3(F, x [ - 1 , 1]) n dM^ = 3F, X [ - 1 , 1]

and M, = A/,-_j — [ F X (—1, 1)]. Evidently, there are two copies of F, in dMt : F,+ =
F x {1} and F~ = F, x {-1}. Let AT,+ and K~ denote the copies of Kt in F+ and
F~, respectively.

We next construct certain 1-complexes C, c 3M, for i = 1 , . . . , n. Initially, set
C\ = K^ U K+. We assume (without loss) that F2 meets C\ transversely in a finite
number of points, say {p i,... , pk}. For i = 1 , . . . , k, let A, denote an embedded arc
in F2 such that A, joins p, to A"2, Int A, misses /ST2 U 9^2, and A, D A; = 0 if i # j .
SetS2 = tf2U(U-=i^.)-

Since F2 meets C\ transversely, we may assume that C\ D (F2 x [—1, 1]) =
{/?!,... ,pk) x [ - 1 , 1]; that is, that Q meets F2 x [ - 1 , 1] in [ - 1 , l]-fibers. Now
C2 is defined by cutting C\ along [pu... ,pk] and gluing Sf and 5^ to this cut
1-complex, where Sf are the copies of S2 in F*, respectively. In other words,
C2 = [C, - ({/>„ ...,pk)x [ - 1 , 1])] U Sf U 52

+.
The process of passing from Q to C2 is now repeated in obtaining C,+i from C,

for i = 1 , . . . , n — 1.
We now describe the spine K for M by stating the intersection of K with the

'generalized handles' of M associated to its hierarchy: K is defined by the property
that K n Mn is the cone on Cn, and JT D (F, x [ - 1 , 1]) is 5, x [ - 1 , 1] if i > 1, and
KH(Fi x [-1,1]) is AT, x [ -1 ,1 ] .

It is relatively straightforward to see that K is a spine for M. First of all, F\ x [—1,1 ]
collapses to {Ki x [—1, 1]) U (Ft x {—1, 1}). Note that 52 is a spine of F2 and
F2 x [—1, 1] collapses to (52 x [—1, 1]) U (F2 x {—1, 1}). Proceeding sequentially in
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this manner we obtain M \ (K U Mn) and finally M \ K since K D Mn is the cone
over Cn.

We show that K satisfies property Po inductively. Note that the preceding paragraph
actually shows more, namely that K C\ Af, is a spine of Af, for z = 1 , . . . , n. The
induction starts at K n Mn, which is collapsible and hence satisfies Po. Then observe
that 5,+, 5," °->- K n Mt are incompressible embeddings and K D Af,-_i = (AT n
Af,-) U (5, x [—1, 1]). The inductive step, and hence the proof, is thus completed by
Lemma 4.2.

We next observe that the converse of Theorem 4.1 holds, thus giving a characteri-
zation of orientable Haken 3-manifolds with boundary.

THEOREM 4.4. A compact orientable 3-manifold M with nonempty boundary is
Haken if and only if it has a diagrammatically reducible 2-dimensional spine K.

PROOF. Suppose Af is a compact 3-manifold with a DR spine K, and choose a
triangulation of Af that collapses to K. Then, by Lemma 3.1, the triangulation of Af
satisfies the condition P\ (as K satisfies P\ by Theorem 2.4). Recall that K, and hence
Af, is aspherical. It is well known that an irreducible, compact, aspherical 3-manifold
with boundary is Haken. Thus, the proof is completed by the claim (which also holds
for closed manifolds): Every compact 3-manifold with a triangulation satisfying Px

is irreducible.
To see this, let 5 be a PL 2-sphere in Af. Then S lifts to a 2-sphere 5 in Af which, by

property P{, is contained in some finite connected subcomplex X of Af that collapses
to a 1-complex. Then a regular neighbourhood of X in Af must be a 3-dimensional
handlebody (consisting of a 0-handle and 1-handles). Since such handlebodies are
irreducible, we conclude that S bounds a 3-cell which projects to a 3-cell in Af bounded
by S, as required. •

REMARK 4.5. For closed 3-manifolds the situation is more complicated. On the one
hand, a construction similar to that of the spine for Theorem 4.1, using induction on
the length of a hierarchy, shows that every closed Haken 3-manifold has a triangulation
satisfying Po (and thus Pt). However, the converse is false for the following reason.
There are closed 3-manifolds which are not Haken, but for which some finite sheeted
cover is Haken (virtually Haken manifolds). Let Af be such a 3-manifold and let Af'
be a finite cover of Af which is Haken. Then Af' supports a triangulation satisfying
the property Po- By a standard fact from PL topology, there is a subdivision of the
triangulation of Af' and a triangulation of Af for which the covering projection is a
simplicial map. This subdivided triangulation of Af' also satisfies Po, which follows
from the fact that every subdivision of a 3-dimensional collapsible simplicial complex
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remains collapsible [Ch]. Since M and M' have the same universal cover, it follows
that the triangulation of M also satisfies Po.

We do not know whether every closed 3-manifold with a triangulation satisfying Po

is virtually Haken.
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