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Abstract
The complex field, equipped with the multivalued functions of raising to each complex power, is quasiminimal,
proving a conjecture of Zilber and providing evidence towards his stronger conjecture that the complex exponential
field is quasiminimal.
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1. Introduction

Over 25 years ago, Zilber stated his quasiminimality conjecture for complex exponentiation:

Conjecture 1.1 [34]. The complex field with the exponential function, Cexp := 〈C;+, ·, exp〉, is quasi-
minimal: Every subset of C which is definable in this structure is countable or co-countable.

Definable means in the sense of first-order logic: A formula 𝜑(𝑧) is built from variables, constants
for each complex number (so definable ‘with parameters’), the operations +, ·, exp, and equality = using
the usual Boolean operations and quantifiers. We assume there is only one free variable, z, and then 𝜑(𝑧)
defines the set of complex numbers c for which 𝜑(𝑐) is true. If we do not use quantifiers, then a definable
subset is just a Boolean combination of zero sets of complex exponential polynomials. Such subsets are
easily seen to be countable or co-countable. In the complex field Cfield, without exponentiation, a subset
of C defined without quantifiers is just a Boolean combination of zero sets of polynomials so is finite
or cofinite. By the Tarski–Chevalley quantifier elimination theorem [26], using quantifiers gives no new
definable subsets in this case, so Cfield is minimal: Every definable subset is finite or cofinite. Another
consequence of quantifier elimination is that the definable (or even interpretable) sets in any number of
variables correspond to complex algebraic varieties.

With exponentiation this is far from true. The subset Z of integers is definable in Cexp, and so
the whole arithmetic hierarchy of subsets of Z is definable, and their complexity increases with each
additional quantifier alternation. However, all these subsets are of course countable. It is not known how
complicated the subsets of C can get with increasing quantifier alternations. One possibility mentioned
in [22, p.791] is that the real field R is a definable subset. If so, with R and Z together, every subset
of C or R in the projective hierarchy of descriptive set theory is definable [16, Exercise 37.6], in
particular all continuous functions C → C, so definable sets would generally have nothing to do with
the exponential. If Conjecture 1.1 is true, the picture is very different, and the definable sets should
have a geometric nature, from complex analytic geometry, much closer to algebraic geometry but also
with connections to the transcendence theory and the diophantine geometry related to the complex
exponential.

We note that, in the real case, the definable sets of the real field are the semialgebraic sets and the
structure is so-called o-minimal. By Wilkie’s very influential theorem [27], the real exponential field
Rexp is also o-minimal, and so the definable sets there are geometric in nature.

The quasiminimality conjecture has sparked a lot of mathematical activity. For example, Zilber’s
part of the Zilber–Pink conjecture of diophantine geometry and the related work on functional tran-
scendence around the Ax–Schanuel theorem, came out of his early work towards his conjecture [36].
The Pila–Wilkie theorem for counting integer or rational points is now a major tool in diophantine
geometry, which also came, at least partly, from work towards the conjecture. Indeed, Wilkie [32]
wrote:

. . . my motivation for studying integer points in o-minimally definable sets was, apart from the fun
of it, completely motivated by Boris’ [Zilber’s] quasiminimality problem.

In a third, more model-theoretic direction, quasiminimality is not a property traditionally studied in
model theory because it is not an invariant of the finitary first-order theory of a structure. The importance
of this conjecture has led to a resurgence of interest in the use of infinitary logics and abstract elementary
classes in model theory, as for example in the books of Baldwin [1] and Marker [23].
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While in this paper we do not prove Conjecture 1.1, we do prove a strong result towards it, the
quasiminimality conjecture for complex powers.
Theorem 1.2. For 𝜆 ∈ C, let Γ𝜆 = {(exp(𝑧), exp(𝜆𝑧)) | 𝑧 ∈ C} denote the graph of the multivalued
map 𝑤 ↦→ 𝑤𝜆. Then the structure CC-powers = 〈C;+, ·, (Γ𝜆)𝜆∈C〉 of the complex field equipped with all
complex powers is quasiminimal.

Complex powers are obviously definable in Cexp, so Theorem 1.2 would be a consequence of
Conjecture 1.1 and is the most significant result yet proved towards it. We give some discussion of the
gap between Theorem 1.2 and Conjecture 1.1 after the statement of Theorem 1.3.

For the structure CC-powers itself, a consequence of Theorem 1.2 is that R is not definable, and so
neither is the projective hierarchy of its subsets. So at least on a generic level, the definable sets are
geometric in nature. There is no obvious definition of Z as a ring inCC-powers. Indeed, it follows from [41]
that if we restrict to powers from certain subfields K, the theory is superstable so Z as a ring is not
interpretable and all the definable sets are geometric in nature. Assuming Schanuel’s conjecture, this
conclusion holds for all complex powers. However, we cannot prove it unconditionally.

1.1. Towards the quasiminimality conjecture

Boxall made progress towards Conjecture 1.1 by showing in [9] that certain existential formulas in the
language of exponential rings must define countable or co-countable sets in Cexp.

Wilkie has an approach to proving Conjecture 1.1 via analytic continuation of definable holomorphic
functions, discussed in [31, 32]. In 2008, he gave talks [30] announcing a proof of the quasiminimality
of C with the power i only, that is, of 〈C;+, ·, Γ𝑖〉. However, the method relied heavily on the fact that
𝑖2 = −1 and did not extend to other powers, and the proof has not yet appeared.

Zilber’s own attempts to prove his conjecture led to a construction of a quasiminimal exponential
field [38], now known as Bexp, via the Hrushovski–Fraïssé amalgamation-with-predimension method
[15], which produces a countable structure and then by his own variant [39] (see also [19, 3]) of Shelah’s
excellence method [25], which extends the amalgamation to uncountable cardinalities, in particular to
the continuum-sized modelBexp. Zilber then conjectured thatCexp � Bexp, which implies Conjecture 1.1,
but is much stronger since it incorporates Schanuel’s conjecture of transcendental number theory. In
fact, it is equivalent to that conjecture together with another conjectural property for Cexp, called strong
exponential-algebraic closedness (SEAC) which asserts that certain systems of exponential polynomial
equations in many variables should have complex solutions but also includes a condition that the
solutions should have large enough transcendence degree.

Bays and the second author [6] modified Zilber’s construction and were able to remove the tran-
scendence conjectures from this path to Conjecture 1.1. They were able to show that Conjecture 1.1
follows from exponential-algebraic closedness (EAC) for Cexp, which is like SEAC but without the
transcendence requirement.

The proof of Theorem 1.2 in this paper follows this Bays–Kirby strategy for quasiminimality, adapted
for complex powers rather than complex exponentiation.

1.2. Exponential sums with a field of exponents

We actually prove a slightly stronger form of Theorem 1.2: quasiminimality for the complex field in
Zilber’s exponential sums language, first introduced in [37]. For a subfield 𝐾 ⊆ C, we write C𝐾 for the
complex numbers as a K-powered field, that is, as the 2-sorted structure

C𝐾 -VS
exp
−→ Cfield,

where the image sort is C equipped with the field structure, the covering sort is C equipped only with
its structure as a K-vector space, and the covering map is the usual complex exponentiation.
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Theorem 1.3. The structure CC is quasiminimal. That is, any definable subset of either sort (in one
free variable) is countable or its complement in that sort is countable. Equivalently, for any countable
subfield 𝐾 ⊆ C, the structure C𝐾 is quasiminimal.

The complex power functions Γ𝜆 are definable in CC so Theorem 1.2 follows immediately from
Theorem 1.3.

In analytic number theory, an exponential sum is an expression of the form
∑𝑟
𝑗=1 𝑎 𝑗exp(2𝜋𝑖𝑥 𝑗 ), where

the 𝑎 𝑗 are real coefficients and the 𝑥 𝑗 are real or complex numbers or variables. Generally, one looks to
get bounds on such expressions. A consequence of Theorem 1.3 is that in CC we cannot define absolute
values or indeed the set of reals or the order relation. What we can express are complex exponential
sums equations. For example, if 𝑧1, . . . , 𝑧𝑛 are variables in the K-vector space sort, 𝛼 is an element of
that sort, and 𝜆1, . . . , 𝜆𝑛 ∈ 𝐾 , then exp

(
𝛼 +

∑𝑛
𝑖=1 𝜆𝑖𝑧𝑖

)
is a term in the field sort. Writing 𝑤𝑖 = exp(𝑧𝑖)

and 𝑎 = exp(𝛼), we can informally write this as 𝑎
∏𝑛
𝑖=1 𝑤

𝜆𝑖
𝑖 to get a ‘monomial’ with complex expo-

nents. Applying addition in the field sort, we can then get ‘polynomials’ with complex exponents, and
these terms, treated properly with the variables 𝑧𝑖 from the covering sort, are the exponential sums
whose zero sets are generalisations of complex algebraic varieties and which are the basic definable
sets in C𝐾 .

However, in C𝐾 we cannot iterate exponentiation, and in general there is no way to recover the
embedding of K as a subfield of the field sort Cfield from the structure C𝐾 . Likewise, there is no way to
recover the field structure on the covering sort, let alone identify it with the field sort. If we could do
that, we could iterate the exponential map and CC would be bi-interpretable with Cexp, so Theorem 1.3
would actually prove Conjecture 1.1.

If we take 𝐾 = Q, the structure CQ was axiomatised and shown to be quasiminimal in [40, 8].
Since rational powers are algebraic in nature, there is no analytic content to this structure. If we now
take 𝐾 = Q(𝜆) for some 𝜆 ∈ C, the structure C𝐾 depends on 𝜆. In topological terms, there is a clear
difference between real and nonreal 𝜆. For 𝜆 ∈ R, there is a branch of 𝑤 ↦→ 𝑤𝜆 which fixes the positive
real line setwise, but not for nonreal 𝜆. One might wonder if this distinction shows up in the algebra of
powers: For example, if t is real and transcendental, are the structures CQ(𝑡) and CQ(𝑖𝑡) distinguishable,
or isomorphic? It turns out that not all transcendental powers are isomorphic, and we give an example
in 9.4. However, if Conjecture 1.1 is true, then all but countably many complex powers should give
isomorphic powered fields, and indeed we are able to prove this.

Given a countable field K, we construct a K-powered field E𝐾 of cardinality continuum, analogous
to Zilber’s Bexp. We prove
Theorem 1.4. Let K be a countable field of characteristic 0. Then up to isomorphism, there is exactly
one K-powered field E𝐾 of cardinality continuum which:
(i) has cyclic kernel,

(ii) satisfies the Schanuel property,
(iii) is K-powers closed, and
(iv) has the countable closure property.
Furthermore, it is quasiminimal.

In the case 𝐾 = Q(𝜆) with 𝜆 ∈ C transcendental, we say that 𝜆 is a generic power if C𝐾 � E𝐾 , so
Theorem 1.4 implies that generic powers give rise to isomorphic powered fields. We are able to prove:
Theorem 1.5. If 𝜆 ∈ C is exponentially transcendental, then 𝜆 is a generic power.

There are only countably many complex numbers which are not exponentially transcendental (that
is, which are exponentially algebraic), so this proves the promised corollary of Conjecture 1.1.

We briefly explain the terms used in the statement of Theorem 1.4 and how they are proved in the
complex case. Cyclic kernel just refers to the fact that the kernel of the exponential map is an infinite
cyclic group. The Schanuel property is a form of Schanuel’s conjecture appropriate for powers from
a field K. It was proved for exponentially transcendental 𝜆 in [7]. There is a natural pregeometry on a
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K-powered field, analogous to relative algebraic closure on a field, which we call K-powers closure. The
countable closure property (CCP) asserts that the K-powers closure of a countable set is countable. It
holds on C𝐾 because the K-powers closure of a set A is contained in the exponential algebraic closure
of 𝐴 ∪ 𝐾 , and the exponential algebraic closure has the CCP for topological reasons.

On the other hand, the K-powers closed property does not refer to this pregeometry but is rather
an existential closedness condition: Every system of K-powers (or exponential sums) equations which
can have solutions in a ‘reasonable’ extension of E𝐾 already has solutions inside E𝐾 . So this is the
analogue of a field being (absolutely) algebraically closed and of the EAC property for exponential
fields mentioned above. Zilber [36] was able to prove this property for C𝐾 in the case where K was a
subfield of R and then in the unpublished [41] he proved Theorem 1.5 in the case of real 𝜆. The main
breakthrough which allows us to prove Theorem 1.5 without this restriction to real powers is:

Fact 1.6 [11, Corollary 8.10]. The complex field with complex powers, CC, is powers-closed.

This fact is also essential for the proofs of Theorems 1.2 and 1.3. For these, we use the Bays–Kirby
variation of the Shelah–Zilber excellence method from [6] to construct quasiminimal K-powered fields
E𝐾,tr (𝐷) over a base K-powered field D such that D is in fact relatively K-powers closed in E𝐾,tr (𝐷).
Given a countable subfield 𝐾 ⊆ C, we are able to find a suitable 𝐷 ⊆ C𝐾 such that C𝐾 � E𝐾,tr (𝐷).
Again, one has to show appropriate forms of the conditions (i)—(iv) from Theorem 1.4. The point of
the Bays–Kirby method is we are able to hide the transcendental number theory part of the Schanuel
property inside D and so ignore it. In this way, we are able to prove the quasiminimality of the powered
fields C𝐾 without characterising them all up to isomorphism.

From the excellence method, it follows that each C𝐾 has an uncountably categorical axiomatization
in the infinitary logic L𝜔1 ,𝜔 (𝑄). However, except for the generic cases, we are not able to give any
explicit axiomatization.

1.3. Outline of the paper

The short section 2 explains our terminology and notation for affine algebraic varieties, their linear coun-
terparts and the associated dimension notions. The main technical objects of study, partial K-powered
fields and their extensions, are introducted in section 3. Section 4 introduces the predimensions in the
style of Hrushovski, which are the tool for expressing and using transcendence statements.

The K-powers analogues of algebraicity and transcendence are explained in section 5, and we prove
the first of the main technical steps in the quasiminimality proof, that purely powers-transcendental
extensions can be amalgamated, using a lemma from stable group theory. In section 6, we classify the
finitely generated extensions of partial K-powered fields in terms of the locus of a good basis. This is
possible due to a result of Zilber in Kummer theory.

Section 7 uses Hrushovski–Fraïssé amalgamation to build countable K-powered fields F𝐾 (𝐷0) and
F𝐾,tr (𝐷0), which are then extended to continuum-sized quasiminimal K-powered fields E𝐾 (𝐷0) and
E𝐾,tr (𝐷0) using the Shelah–Zilber excellence method.

In section 8, we explain the K-powers closedness notion and use a theorem of diophantine geometry
known as ‘weak Zilber–Pink’ to show that under a strong transcendence assumption, the analogue of
Schanuel’s conjecture, it implies an algebraic saturation property satisfied by E𝐾 (𝐷0).

In section 9, we put together the earlier work to characterise these E𝐾 (𝐷0) up to isomorphism by a
short list of properties, which includes Theorem 1.4 as a special case. We then give several consequences,
including Theorem 1.5.

While sections 8 and 9 rely on a strong transcendence assumption which holds only for sufficiently
generic subfields K of C, in section 10 we drop this assumption. The second main technical step towards
the quasiminimality proof is to prove the algebraic saturation property for E𝐾,tr (𝐷0) now only with
tools from Ax’s functional transcendence theorem in place of Schanuel’s transcendence conjecture. We
then complete the proof of Theorem 1.2.
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2. Subspaces, loci and dimension conventions

There are two kinds of notions of subspace related to a vector space which we make extensive use of,
which model theorists characterize as semantic and syntactic notions, so to avoid ambiguity we briefly
clarify the terminology and notation we will use. Let K be a field, and V a K-vector space.

By a (K)-vector subspace of V, as usual we mean a subgroup of V closed under scalar multiplication.
Given a subset 𝐴 ⊆ 𝑉 , we write 〈𝐴〉𝐾 for the K-span of A in V, the smallest K-vector subspace of V

containing A.
Given subsets 𝐴, 𝐵 ⊆ 𝑉 , we write ldim𝐾 (𝐴/𝐵), read as the K-linear dimension of A over B, to mean

the cardinality of the smallest set 𝐴0 such that 〈𝐴 ∪ 𝐵〉𝐾 = 〈𝐴0 ∪ 𝐵〉𝐾 ; this is of course equal to the
dimension of the quotient space 〈𝐴 ∪ 𝐵〉𝐾 /〈𝐵〉𝐾 . As usual, we write ldim𝐾 (𝐴) for ldim𝐾 (𝐴/∅).

Now, fix 𝑛 ∈ N. By a K-linear subspace of 𝑉𝑛, we mean a K-vector subspace L of 𝑉𝑛 given as the
set of n-tuples z from V satisfying a matrix equation 𝑀𝑧 = 0. More generally, a K-affine subspace of
𝑉𝑛 is given as the solution set to a matrix equation 𝑀𝑧 = 𝑏, for some matrix 𝑀 ∈ Mat𝑘×𝑛 (𝐾) and
some 𝑏 ∈ 𝑉 𝑘 . We say that a K-affine subspace L is defined over a subset 𝐵 ⊆ 𝑉 if it is defined by some
equation 𝑀𝑧 = 𝑏 with 𝑏 ∈ 〈𝐵〉𝑘𝐾 .

The dimension of a K-affine subspace L of 𝑉𝑛 is defined to be 𝑛 − rk(𝑀), where rk(𝑀) is the rank
of the matrix M.

Now, fix 𝑎 ∈ 𝑉𝑛 and 𝐵 ⊆ 𝑉 . The K-affine locus of a over B, denoted by K-AffLoc(𝑎/𝐵), is the
minimal K-affine subspace of 𝑉𝑛 which is defined over B and contains a. We can regard the finite tuple
a as a finite set, and then ldim𝐾 (𝑎/𝐵) coincides with dim𝐾-AffLoc(𝑎/𝐵).

We have similar conventions for fields and algebraic varieties. Let F be a field, and let 𝐴, 𝐵 be subsets
of F. We write td(𝐴/𝐵) for the cardinality of the smallest subset 𝐴0 of A such that every element of F
which is algebraic over 𝐴 ∪ 𝐵 is also algebraic over 𝐴0 ∪ 𝐵. Equivalently, in characteristic 0, td(𝐴/𝐵)
is the transcendence degree of the field extension Q(𝐴 ∪ 𝐵)/Q(𝐵).

Given 𝑎 ∈ 𝐹𝑛 and 𝐵 ⊆ 𝐹, the algebraic locus Loc(𝑎/𝐵) is the smallest Zariski-closed subset of 𝐹𝑛
which is defined over B (or equivalently over the subfield of F generated by B) and contains a. We have
dim Loc(𝑎/𝐵) = td(𝑎/𝐵).

3. K-powered fields

In this section, we introduce K-powered fields and the technical notions of a partial or full K-powered
field and discuss some basic facts about extensions.
Definition 3.1. Let K be a field of characteristic 0. A K-powered field consists of a K-vector space V, a
field F of characteristic 0 and a group homomorphism

exp : (𝑉, +) → (𝐹×, ·).

We say the K-powered field is full if exp is surjective and F is algebraically closed.
Example 3.2. For any subfield 𝐾 ⊆ C, the K-powered field C𝐾 is the structure

C𝐾 -VS
exp
−→ Cfield

described in the Introduction. More generally, if 𝐹exp is an exponential field and 𝐾 ⊆ 𝐹 is a subfield,
we construct a K-powered field

𝐹𝐾 -VS
exp
−→ 𝐹field,

where 𝐹𝐾 -VS is the reduct of 𝐹exp to the K-vector space language, 𝐹field is the reduct to the field language
and exp is the exponential map from 𝐹exp.

The K-powered fields we will mostly be interested in in this paper have the form B𝐾 and C𝐾 , where
Bexp is Zilber’s exponential field and Cexp is the complex exponential field.

https://doi.org/10.1017/fms.2024.82 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.82


Forum of Mathematics, Sigma 7

To classify extensions of K-powered fields it is useful to have a notion of partial K-powered field,
where the exponential is a partial function on V.

Definition 3.3. A partial K-powered field consists of a K-vector space V, a Q-vector subspace D of V,
a field F of characteristic 0 and a group homomorphism exp : 𝐷 → 𝐹× such that:

1. 〈𝐷〉𝐾 = 𝑉 ;
2. exp(𝐷) generates F as a field.

The kernel ker𝐷 of D is the kernel of the exponential function. When it is clear what D is, we will
denote the kernel simply by ker. A K-powered field D has cyclic kernel if ker𝐷 is an infinite cyclic group.

All the K-powered fields considered in this paper, such as C𝐾 and B𝐾 , will have cyclic kernel.
A partial K-powered field is finitely generated if the domain D of the exponential is finite-dimensional

as a Q-vector space.

Example 3.4. Consider a one-dimensional Q-vector space D, generated by an element 𝜏. We take
𝑉 = 𝐷 ⊗Q 𝐾 , 𝐹 = Q(

√
1) the field generated by all roots of unity and define exp : 𝐷 → 𝐹 by mapping

𝜏
𝑛 to a primitive n-th root of unity, for each n, chosen so that for all 𝑚1 and 𝑚2 we have

exp
(

𝜏

𝑚1𝑚2

)𝑚2

= exp
(
𝜏

𝑚1

)
.

This partial K-powered field is unique up to isomorphism. We will refer to this partial, one-dimensional
K-powered field (𝐷,𝑉, exp, 𝐹) as the standard base and denote it by 𝑆𝐵𝐾 .

It is possible to encode all the information of a partial K-powered field in the domain D of the
exponential map.

Definition 3.5. Let K be a field of characteristic 0. Fix a K-vector space V and an algebraically closed
field F, also of characteristic 0. The language L𝐾 is the expansion of the language ofQ-vector spaces by:

1. A unary predicate ker;
2. An n-ary predicate 𝐿(𝑧1, . . . , 𝑧𝑛) for each K-linear subspace 𝐿 ≤ 𝑉𝑛;
3. An n-ary predicate 𝐸𝑊 (𝑤1, . . . , 𝑤𝑛) for each algebraic variety 𝑊 ⊆ 𝐹𝑛 defined and irreducible

over Q.

(The language does not depend on the choices of V and F).

Given a partial K-powered field (𝐷,𝑉, exp, 𝐹), we may see the domain of exponentiation D (which
is a Q-vector space by definition) as a structure in the language L𝐾 as follows. The predicate ker
is interpreted as the kernel of exp; each predicate L is interpreted as the intersection of the K-linear
subspace 𝐿 ≤ 𝑉𝑛 with 𝐷𝑛; each predicate 𝐸𝑊 is interpreted as the preimage under exp of the set of
F-points of W.

Conversely, given the domain of exponentiation D of a partial K-powered field seen as an
L𝐾 -structure we can reconstruct the K-powered field.

Notation 3.6. We will freely use D (or 𝐷1, 𝐷2, 𝐷
′...) to denote a partial K-powered field (𝐷,𝑉, exp, 𝐹).

We will still denote by F (or, according to the notation for the domain, 𝐹1, 𝐹2, 𝐹
′...) the field generated

by the quotient 𝐷/ker, by V (or 𝑉1, 𝑉2, 𝑉
′...) the K-vector space that D embeds in, by exp(𝑧) the coset

𝑧 + ker for some 𝑧 ∈ 𝐷, and write ‘𝑧 ∈ 𝐿’ or ‘exp(𝑧) ∈ 𝑊’ rather than ‘𝐿(𝑧)’ or ‘𝐸𝑊 (𝑧)’.

3.1. Extensions of partial K-powered fields

Definition 3.7. Let 𝐷1 be a partial K-powered field.
An extension of 𝐷1 is an L𝐾 -embedding 𝜑 of 𝐷1 into a partial K-powered field 𝐷2. Equivalently,

it is an embedding of (𝐷1, 𝑉1, exp1, 𝐹1) into (𝐷2, 𝑉2, exp2, 𝐹2) consisting of a K-linear embedding
𝜑𝑉 : 𝑉1 ↩→ 𝑉2 and a field embedding 𝜑𝐹 : 𝐹1 ↩→ 𝐹2 such that 𝜑𝑉 (𝐷1) ⊆ 𝐷2 and 𝜑𝐹 ◦exp1 = exp2◦𝜑𝑉 .
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If 𝜑 is an inclusion, we say that 𝐷1 is a partial K-powered subfield of 𝐷2. We denote this by 𝐷1 ≤ 𝐷2.
If ker𝐷2 = ker𝐷1 , we say that the extension preserves the kernel, or that it is kernel-preserving.
Example 3.8. Observe that a partial K-powered field has cyclic kernel if and only if it is a kernel-
preserving extension of the standard base 𝑆𝐵𝐾 of Example 3.4.

An extension of partial K-powered fields 𝐷1 ≤ 𝐷2 is finitely generated if 𝐷2 is finitely generated
over 𝐷1 as a Q-vector space. A basis for the extension 𝐷2 of 𝐷1 is a Q-linear basis for 𝐷2 over 𝐷1.

We can use bases to determine the isomorphism type of an extension of K-powered fields.
Definition 3.9. Let D be a partial K-powered field, 𝑧 ∈ 𝐷𝑛, 𝐴 ⊆ 𝐷. The K-powers locus of z over A is
the pair (K-AffLoc(𝑧/𝐴),Loc(exp(𝑧)/exp(𝐴))). We denote it by 𝐾-pLoc(𝑧/𝐴).

The following is straightforward.
Lemma 3.10. Let 𝐷1 and 𝐷2 be finitely generated extensions of a partial K-powered field D, and let
𝑏1 ∈ 𝐷𝑛

1 be a basis for 𝐷1 over D.
Then 𝐷1 and 𝐷2 are isomorphic over D if and only if there is a basis 𝑏2 ∈ 𝐷𝑛

2 such that for each
𝑚 ∈ N \ {0}, we have 𝐾-pLoc

(
𝑏1
𝑚 /𝐷

)
= 𝐾-pLoc

(
𝑏2
𝑚 /𝐷

)
.

In Section 6, we will see that in cases of interest it is actually sufficient to consider the loci of 𝑏
𝑚 up

to some finite m, and therefore, by replacing b by 𝑏
𝑚! we can consider only 𝑚 = 1.

4. Predimensions

In this section. we introduce the predimension 𝛿𝐾 on a K-powered field and we use it to define strong
extensions of K-powered fields. We show that these classes of extensions satisfy an amalgamation
property.

We then compare the predimension onB𝐾 with the exponential predimension on Zilber’s exponential
field Bexp and use this comparison to show that if K is a subfield of Bexp of finite transcendence degree,
then B𝐾 has a finitely generated strong substructure.

4.1. The predimension on a K-powered field

Definition 4.1. Let D be a partial K-powered field, 𝐴, 𝐵 subsets of D with ldimQ(𝐴/𝐵) finite.
We define the predimension of A over B as

𝛿𝐾 (𝐴/𝐵) = ldim𝐾 (𝐴/𝐵) + td(exp(𝐴)/exp(𝐵)) − ldimQ(𝐴/𝐵).

We define 𝛿𝐾 (𝐴) := 𝛿𝐾 (𝐴/∅).
When the field of powers is clear, we just write 𝛿 instead of 𝛿𝐾 . We will frequently consider the

predimension of a tuple 𝑧 ∈ 𝐷𝑛 rather than of a set; this is defined in the obvious way.
Note that if 𝐷1 ≤ 𝐷2 is a finitely generated extension of partial K-powered fields, then 𝛿(𝐷2/𝐷1) is

equal to 𝛿(𝑧/𝐷1), where z is a basis for 𝐷2 over 𝐷1.
Lemma 4.2. The predimension function 𝛿𝐾 satisfies the following properties:
1. Finite character: If 𝑧 ∈ 𝐷𝑛 and 𝐴 ⊆ 𝐷, there is a finite subset 𝐴0 ⊆ 𝐴 such that 𝛿(𝑧/𝐴) = 𝛿(𝑧/𝐴0).
2. Addition formula: Given 𝑋 ⊆ 𝑌 ⊆ 𝑍 ⊆ 𝐷,

𝛿(𝑍/𝑋) = 𝛿(𝑍/𝑌 ) + 𝛿(𝑌/𝑋).

3. Submodularity: Given 𝐴1, 𝐴2 ⊆ 𝐷,

𝛿(𝐴1 ∪ 𝐴2/𝐴1) � 𝛿(𝐴2/〈𝐴1〉Q ∩ 〈𝐴2〉Q).

Proof. Straightforward, by the same argument as [6, Lemma 4.2]. �
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4.2. Strong extensions

As usual in Hrushovski–Fraïssé-type constructions, the predimension function is used to define a notion
of strong extension.

Definition 4.3. An extension 𝐷1 ≤ 𝐷2 of partial K-powered fields is strong if it is kernel-preserving
and for all finite tuples z in 𝐷2, we have 𝛿(𝑧/𝐷1) � 0. We denote this by 𝐷1 ⊳ 𝐷2 and say 𝐷1 is a strong
partial K-powered subfield of 𝐷2.

It is straightforward to verify that the composite of strong extensions is strong.

Definition 4.4 (Free amalgam). Let 𝐷2 and 𝐷3 be partial K-powered fields, extending the full K-
powered field 𝐷1.

Let𝑉4 be the K-vector space𝑉2 ⊕𝑉1 𝑉3, and 𝐷4 theQ-vector subspace of𝑉4 generated by 𝐷2 and 𝐷3.
Since 𝐹1 is algebraically closed, there is up to isomorphism a unique amalgam 𝐹4 of 𝐹2 and 𝐹3 such that
𝐹2 is linearly disjoint from 𝐹3 over 𝐹1. Extend exp to 𝐷4 by setting exp(𝑧2 + 𝑧3) = exp(𝑧2) · exp(𝑧3).

We call the partial K-powered field 𝐷4 the free amalgam of 𝐷2 and 𝐷3 over 𝐷1.

Proposition 4.5. Let 𝐷2 and 𝐷3 be partial K-powered fields, extending the full K-powered field 𝐷1. Let
𝐷4 be the free amalgam of 𝐷2 and 𝐷3 over 𝐷1, and suppose 𝐷1 ⊳ 𝐷2. Then 𝐷3 ⊳ 𝐷4. If also 𝐷1 ⊳ 𝐷3,
then 𝐷1 ⊳ 𝐷4.

Proof. First, we note that ker𝐷4 = ker𝐷3 : if exp(𝑧2+𝑧3) = 1 then exp(𝑧2) = 1
exp(𝑧3) ∈ 𝐹3, so exp(𝑧2) ∈ 𝐹1.

Since 𝐷1 ⊳ 𝐷2 and 𝐷1 is full, this implies that 𝑧2 ∈ 𝐷1. Hence, 𝑧2 + 𝑧3 ∈ 𝐷3.
Let now 𝑧4 be a finite tuple in 𝐷4; then 𝑧4 = 𝑧2 + 𝑧3 for some finite tuples 𝑧2 and 𝑧3. Then

𝛿(𝑧4/𝐷3) = 𝛿(𝑧2/𝐷3). Since the amalgam is free, we have 𝛿(𝑧2/𝐷3) = 𝛿(𝑧2/𝐷1), which is nonnegative
because 𝐷1 ⊳ 𝐷2. So indeed 𝐷3 ⊳ 𝐷4.

The last statement follows from the composite of strong extensions being strong. �

4.3. Hulls

Lemma 4.6. Suppose D is a partial K-powered field, J is a set, and for each 𝑗 ∈ 𝐽, 𝐷 𝑗 is a strong
partial K-powered subfield of D.

Then 𝐷𝐽 :=
⋂
𝑗∈𝐽 𝐷 𝑗 is also strong in D.

Proof. By the same argument as [6, Lemma 4.5]. �

Definition 4.7. Let D be a partial K-powered field, 𝐴 ⊆ 𝐷. The hull of A in D is

�𝐴�𝐷𝐾 =
⋂

{𝑋 ⊳ 𝐷 | 𝐴 ⊆ 𝑋}.

Lemma 4.6 shows that the hull of a set in D is a strong partial K-powered subfield of D. When the
field of exponents and the ambient space in which we take the hull are clear, we drop this from the
notation and write �𝐴� rather than �𝐴�𝐷𝐾 .

Lemma 4.8. The hull operator has finite character: If D is a K-powered field and 𝑋 ⊆ 𝐷, then

�𝑋� =
⋃

𝑋0⊆𝑋 finite
�𝑋0� .

Proof. By the same argument as [6, Lemma 4.7]. �

4.4. Strong substructures of B𝐾

In this subsection, we study strong substructures of the K-powered field B𝐾 , coming from Zilber’s
exponential field as explained in Example 3.2. To do so, we compare the predimension 𝛿𝐾 with the
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notion of predimension used in exponential fields. We will explain the properties of Bexp we need as we
use them.

Definition 4.9. Let F be an exponential field. The exponential predimension 𝛿exp on F is the predimen-
sion function defined, for subsets 𝐴, 𝐵 ⊆ 𝐹 with ldimQ(𝐴/𝐵) finite, by

𝛿exp(𝐴/𝐵) = td(𝐴, exp(𝐴)/𝐵, exp(𝐵)) − ldimQ(𝐴/𝐵).

As in the case of the predimension 𝛿𝐾 , we will frequently refer to the predimension of a tuple z in
the exponential field F.

For a set 𝐵 ⊆ 𝐹, we write 𝐵 ⊳exp 𝐹 to denote the fact that 𝛿exp (𝑧/𝐵) � 0 for all finite tuples z in F
and that for all 𝑧 ∈ 𝐹, if exp(𝑧) ∈ exp(〈𝐵〉Q) then 𝑧 ∈ 〈𝐵〉Q. We say that B is exponentially strong in F.

The exponential hull �𝐵�𝐹exp of a set B is the smallest Q-vector subspace of F containing B that is
exponentially strong in F (and it always exists).

In this case too, we will omit the field F from the notation if it is clear from the context.

Lemma 4.10. Let F be an exponential field, 𝐾 ⊆ 𝐹 a subfield, 𝑋 ⊆ 𝐹. Then �𝑋�𝐾 ⊆ �𝑋, 𝐾�exp.

Proof. Let 𝐷 = �𝑋, 𝐾�exp: We have to prove that D is strong in 𝐹𝐾 in the sense of K-powered fields.
So let z be a tuple in F. Then

𝛿𝐾 (𝑧/𝐷) = ldim𝐾 (𝑧/𝐷) + td(exp(𝑧)/exp(𝐷)) − ldimQ(𝑧/𝐷)
� td(𝑧/𝐷) + td(exp(𝑧)/exp(𝐷)) − ldimQ(𝑧/𝐷)
� td(𝑧, exp(𝑧)/𝐷, exp(𝐷)) − ldimQ(𝑧/𝐷)
= 𝛿exp(𝑧/𝐷)
� 0

as required. �

We will use this with 𝐹 = Bexp and 𝑋 = {𝜏}, where 𝜏 is a generator of the kernel in Bexp. Strong
extensions are by definition kernel-preserving, and therefore, 𝜏 is contained in any strong partial K-
powered subfield of B𝐾 . Hence, the hull of the empty set, that is, the minimal strong substructure of
Bexp, coincides with the hull of 𝜏.

Recall that by construction (see [38, Section 5], [6, Section 9]) Bexp satisfies the Schanuel property,
that is, for every finite 𝐴 ⊆ Bexp we have 𝛿exp (𝐴) � 0.

Lemma 4.11. Let 𝐾 ⊆ Bexp be a subfield of transcendence degree d for some 𝑑 ∈ N. Then B𝐾 has a
finitely generated strong partial K-powered subfield (in particular �𝜏�𝐾 is finitely generated).

Proof. Let z be a finite tuple in Bexp. Then we have:

𝛿𝐾 (𝑧) = ldim𝐾 (𝑧) + td(exp(𝑧)) − ldimQ(𝑧)
� td(𝑧/𝐾) + td(exp(𝑧)) − ldimQ(𝑧)
� td(𝑧) − 𝑑 + td(exp(𝑧)) − ldimQ(𝑧)
� td(𝑧, exp(𝑧)) − ldimQ(𝑧) − 𝑑

= 𝛿exp(𝑧) − 𝑑

� −𝑑.

Thus, there is a tuple a containing 𝜏 such that 𝛿𝐾 (𝑎) is minimal. Then for any z we have 𝛿𝐾 (𝑧/𝑎) � 0,
so 〈𝑎〉Q is a finitely generated strong partial K-powered subfield. �

Remark 4.12. By [6, Theorem 1.3], there are many choices of K for which �𝜏�𝐾 � 𝑆𝐵𝐾 ; for instance,
this holds when 𝐾 = Q(𝜆) for all but countably many 𝜆’s in Bexp.
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5. The K-powers-closure pregeometry

As usual in Hrushovski–Fraïssé amalgamation constructions, we use the predimension to define a
pregeometry on K-powered fields. We introduce two kinds of extensions of K-powered fields: The
powers-algebraic and powers-transcendental extensions, analogous to algebraic and purely transcen-
dental extensions of fields. Finally, we show that on C𝐾 the pregeometry satisfies the CCP using the
corresponding property of exponential-algebraic closure.

5.1. The pregeometry on a K-powered field

Definition 5.1. Let D be a partial K-powered field, and let 𝐴 ⊆ 𝐷. The K-powers-closure of A in D,
denoted pcl𝐷𝐾 (𝐴), is the smallest partial K-powered subfield of D which contains A such that if 𝐵 ⊆ 𝐷
and 𝛿(𝐵/pcl𝐷𝐾 (𝐴)) � 0, then 𝐵 ⊆ pcl𝐷𝐾 (𝐴).

If the field of exponents is clear, then we only write pcl𝐷 (𝐴).

Proposition 5.2. Let D be a partial K-powered field. Then

pcl𝐷𝐾 (𝐴) =
⋃

{𝑧 ∈ 𝐷 | ∃𝑛 ∈ N, 𝑧′ ∈ 𝐷𝑛 : 𝛿(𝑧, 𝑧′/�𝐴�𝐷𝐾 ) = 0}

and pcl𝐷 is a pregeometry on D. Moreover, if D is full and 𝐴 ⊆ 𝐷, then the powers-closure pcl𝐷 (𝐴) is
a full K-powered subfield of D.

Proof. The description of pcl𝐷𝐾 (𝐴) is straightforward. Finite character is by the same argument as
[6, Lemma 4.12]. Exchange can be obtained by the same argument as in [6, Lemma 4.14], but we
remark that in this context it has a shorter, direct proof which we leave to the reader. The ‘moreover’
statement is by the same argument as [6, Lemma 4.10(2)]. �

As with all pregeometries, we can associate to powers-algebraic closure a dimension function.

Definition 5.3. We call the dimension function associated to pcl𝐷 powers-transcendence degree and
denote it by 𝐾-td𝐷 .

If 𝑧 ∈ 𝐷 and 𝐴 ⊆ 𝐷, we say that z is powers-algebraic over A in D if 𝐾-td𝐷 (𝑧/𝐴) = 0, and powers-
transcendental over A in D otherwise.

We have defined pcl𝐷𝐾 as a closure operator on the covering sort D of a partial K-powered field.
For a full K-powered field, we extend it to a closure operator on the disjoint union of the covering and
field sorts 𝐷 � 𝐹 by also closing under exp and exp−1. If we now restrict to the field sort F, we get a
pregeometry there which we denote by pcl𝐹𝐾 .

In the case 𝐾 = Q, we have 𝛿Q(𝑧/𝐴) = td(exp(𝑧)/exp(𝐴)) and it is easy to see that pcl𝐹
Q

is equal to
algebraic closure on F, that is, given 𝑏 ∈ 𝐹 and a subfield 𝐴 ⊆ 𝐹, we have 𝑏 ∈ pcl𝐹

Q
(𝐴) if and only if b

is a zero of a nontrivial polynomial 𝑝(𝑋) ∈ 𝐴[𝑋].
Now, consider𝐾 ≠ Q and suppose 𝑏 ∈ 𝐹 is a zero of a ‘K-powered polynomial’ over a subfield 𝐴 ⊆ 𝐹,

that is, there is a nonzero polynomial 𝑝(𝑋1, . . . , 𝑋𝑟 ) ∈ 𝐴[𝑋1, . . . , 𝑋𝑟 ], there are Q-linearly independent
𝜆1, . . . , 𝜆𝑟 ∈ 𝐾 , and there are 𝑎1, . . . , 𝑎𝑟 ∈ exp−1(𝑏) such that 𝑝(exp(𝜆1𝑎1), . . . , exp(𝜆𝑟𝑎𝑟 )) = 0. We
also write this informally as 𝑝(𝑏𝜆1 , . . . , 𝑏𝜆𝑟 ) = 0.

Then one can check easily that 𝛿𝐾 (𝜆1𝑎1, . . . , 𝜆𝑟𝑎𝑟/�exp−1 (𝐴)�𝐷𝐾 ) = 0 and so 𝑏 ∈ pcl𝐹𝐾 (𝐴).
However, we can also have 𝑏 ∈ pcl𝐹𝐾 (𝐴) without satisfying a K-powers polynomial over A due to a

lack of elimination theory for K-powered polynomials.
For example, if we take 𝜆1, 𝜆2, 𝑐1, . . . , 𝑐8 to be a sufficiently generic 10-tuple in Bexp, for example

exponentially-algebraically independent, then we can find 𝑎1, 𝑎2 ∈ Bexp such that

𝑐1exp(𝑎1) + 𝑐2exp(𝜆1𝑎1) + 𝑐3exp(𝑎2) + 𝑐4exp(𝜆2𝑎2)
= 𝑐5exp(𝑎1) + 𝑐6exp(𝜆1𝑎1) + 𝑐7exp(𝑎2) + 𝑐8exp(𝜆2𝑎2) = 0.
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So taking 𝐾 = Q(𝜆1, 𝜆2) and 𝐶 = Q(𝑐1, . . . , 𝑐8), we see that 𝑎1, 𝑎2 satisfy two different K-powered
polynomials in two variables, and one can see that 𝑎1, 𝑎2 ∈ pclBexp

𝐾 (𝐶).
However, using the arguments of [20, Proposition 7.5], one can check that neither 𝑎1 nor 𝑎2 satisfies

any one-variable K-powered polynomial over C.
The predimension and the pregeometry are related in the usual way.

Lemma 5.4. Let D be a partial K-powered field. Suppose 𝐷1 ⊳𝐷 and 𝐷2 is a finitely generated extension
of 𝐷1 contained in D. Then:

(1) 𝐷2 ⊳ 𝐷 if and only if 𝐾-td𝐷 (𝐷2/𝐷1) = 𝛿(𝐷2/𝐷1);
(2) 𝐾-td𝐷 (𝐷2/𝐷1) = min{𝛿(𝐷 ′/𝐷1) | 𝐷2 ⊆ 𝐷 ′ ⊆ 𝐷};
(3) �𝐷2�𝐷 is finitely generated over 𝐷2.

Proof. These are standard facts about the pregeometry attached to a predimension. A proof of the first
two assertions follows the same argument as [6, Lemma 4.15] (although in this setting there is no need
to apply [6, Lemma 4.13].)

The last statement is a consequence of the first two: The extension finitely generated over 𝐷2 by the
elements of a pcl-basis of pcl𝐷 (𝐷2) over 𝐷1 is strong in D. �

Unlike the usual transcendence and algebraicity, the ambient D does matter in general. However, the
following lemma, standard for predimension constructions, shows that as long as extensions are strong
we can forget the ambient D.

Lemma 5.5. Let 𝐷0 ⊳ 𝐷1 ⊳ 𝐷2 be partial K-powered fields. For every tuple a in 𝐷1, 𝐾-td𝐷1 (𝑎/𝐷0) =
𝐾-td𝐷2 (𝑎/𝐷0).

Proof. Follows from Lemma 5.4(2). �

5.2. Powers-algebraic extensions

Definition 5.6. A strong extension 𝐷1 ⊳ 𝐷2 of partial K-powered fields is powers-algebraic if every
element in 𝐷2 is powers-algebraic over 𝐷1; equivalently, if for all finite tuples z in 𝐷2 there is a finite
tuple 𝑧′ in 𝐷2 extending z such that 𝛿(𝑧′/𝐷1) = 0.

Proposition 5.7. Let 𝐷1 be a full K-powered field, and let 𝐷2 and 𝐷3 be powers-algebraic extensions
of 𝐷1. The free amalgam 𝐷4 of 𝐷2 and 𝐷3 over 𝐷1 is a powers-algebraic extension of 𝐷1.

Proof. By Proposition 4.5, 𝐷1 ⊳ 𝐷4 is a strong extension. By definition of free amalgam, any tuple
z in 𝐷4 has the form 𝑧2 + 𝑧3, where 𝑧2, 𝑧3 are tuples from 𝐷2 and 𝐷3, respectively. By powers-
algebraicity of the extensions 𝐷1 ≤ 𝐷2 and 𝐷1 ≤ 𝐷3, up to extending 𝑧2 and 𝑧3 we may assume that
𝛿(𝑧2/𝐷1) = 𝛿(𝑧3/𝐷1) = 0.

Now, we have that

𝛿(𝑧2 + 𝑧3/𝐷1) = 𝛿(𝑧2 + 𝑧3/𝐷1, 𝑧3) + 𝛿(𝑧3/𝐷1)
= 𝛿(𝑧2 + 𝑧3/𝐷1, 𝑧3).

Write 𝑧𝑖 = (𝑧1
𝑖 , . . . , 𝑧

𝑛
𝑖 ) for 𝑖 = 2, 3. Now, let 𝜆1, . . . , 𝜆𝑛 ∈ 𝐾 . If

∑𝑛
𝑗=1 𝜆 𝑗 (𝑧

𝑗
2 + 𝑧

𝑗
3) ∈ 〈𝐷1, 𝑧3〉𝐾 , then∑𝑛

𝑗=1 𝜆 𝑗 𝑧
𝑗
2 ∈ 〈𝐷1, 𝑧3〉𝐾 and hence by freeness of the amalgam

∑𝑛
𝑗=1 𝜆 𝑗 𝑧

𝑗
2 ∈ 𝐷1. Hence, ldim𝐾 (𝑧2/𝐷1) ≤

ldim𝐾 (𝑧2 + 𝑧3/𝐷1, 𝑧3). Conversely, if
∑𝑛
𝑗=1 𝜆 𝑗 𝑧

𝑗
2 ∈ 𝐷1 then

∑𝑛
𝑗=1 𝜆 𝑗 (𝑧

𝑗
2 + 𝑧

𝑗
3) ∈ 〈𝐷1, 𝑧3〉𝐾 . Hence,

ldim𝐾 (𝑧2 + 𝑧3/𝐷1, 𝑧3) = ldim𝐾 (𝑧2/𝐷1).
Similar considerations hold for transcendence degree andQ-linear dimension, so 𝛿(𝑧2 + 𝑧3/𝐷1, 𝑧3) =

𝛿(𝑧2/𝐷1) = 0. �
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5.3. Purely powers-transcendental extensions

Definition 5.8. Let 𝐷1 be a partial K-powered subfield of 𝐷2. We say 𝐷1 is K-powers-closed in 𝐷2 if for
all finite tuples z in 𝐷2 we have that either 𝛿(𝑧/𝐷1) > 0, or z is in 𝐷1. Equivalently, if 𝐷1 = pcl𝐷2 (𝐷1).

In this case we say that 𝐷2 is a purely powers-transcendental extension of 𝐷1. We denote this by
𝐷1 ⊳cl 𝐷2.

We next prove an amalgamation result for purely powers-transcendental extensions of a fixed, full
K-powered field. This is one of the two key technical steps in the Bays-Kirby method which allows us
to prove quasiminimality of C𝐾 without Schanuel’s conjecture.

Proposition 5.9. Let 𝐷0 be a full, countable K-powered field; let 𝐷1, 𝐷2, 𝐷3 be purely powers-
transcendental extensions of 𝐷0 with 𝐷1 full, 𝐷1 ⊳ 𝐷2 and 𝐷1 ⊳ 𝐷3, and let 𝐷4 be the free amalgam of
𝐷2 and 𝐷3 over 𝐷1. Then 𝐷4 is a purely powers-transcendental extension of 𝐷0.

We are going to use two versions of a technical result on stable groups due to Ziegler.

Lemma 5.10 [33, Theorem 1]. Vector space version. Let V be a K-vector space, 𝑉 ′ ≤ 𝑉 a vector
subspace, and let 𝑣1, 𝑣2, 𝑣3 ∈ 𝑉𝑛. Suppose that 𝑣1 + 𝑣2 + 𝑣3 = 0𝑉 𝑛 and that

ldim𝐾 (𝑣𝑖/𝑉 ′𝑣 𝑗 ) = ldim𝐾 (𝑣𝑖/𝑉 ′)

for each 𝑖, 𝑗 in {1, 2, 3} with 𝑖 ≠ 𝑗 .
Then there is a K-linear subspace 𝐿 ≤ 𝑉𝑛 such that 𝑣1, 𝑣2, 𝑣3 are generic points over 𝑉 ′ of 𝑉 ′-cosets

of L; in particular, ldim𝐾 (𝑣𝑖/𝑉 ′) = dim 𝐿 for 𝑖 = 1, 2, 3.
Algebraic group version. Let H be a commutative algebraic group defined over an algebraically

closed field F, and let ℎ1, ℎ2, ℎ3 ∈ 𝐻. Suppose that ℎ1 + ℎ2 + ℎ3 = 0𝐻 and that

td(ℎ𝑖/𝐹ℎ 𝑗 ) = td(ℎ𝑖/𝐹)

for each 𝑖, 𝑗 in {1, 2, 3} with 𝑖 ≠ 𝑗 .
Then there is an algebraic subgroup G of H such that ℎ1, ℎ2, ℎ3 are generic points over F of F-cosets

of G; in particular, td(ℎ𝑖/𝐹) = dim𝐺 for 𝑖 = 1, 2, 3.

Proof of Proposition 5.9. We will show that 𝛿(𝑏/𝐷0) > 0 for every tuple b in 𝐷4 \ 𝐷0. Without loss
of generality, we may assume that the tuple b is Q-linearly independent over 𝐷0. Assume first that
〈𝐷0, 𝑏〉Q ∩ 𝐷2 ≠ 𝐷0. Then we have

𝛿(𝑏/𝐷0) = 𝛿(𝑏/〈𝐷0, 𝑏〉Q ∩ 𝐷2) + 𝛿(〈𝐷0, 𝑏〉Q ∩ 𝐷2/𝐷0)
� 𝛿(𝑏/𝐷2) + 𝛿(〈𝐷0, 𝑏〉Q ∩ 𝐷2/𝐷0) (by submodularity of 𝛿)
� 0 + 1 > 0

because 𝐷2 ⊳𝐷4 and 〈𝐷0, 𝑏〉Q∩𝐷2 is contained in 𝐷2 which is a purely powers-transcendental extension
of 𝐷0.

Now, we assume 〈𝐷0, 𝑏〉Q ∩ 𝐷2 = 𝐷0 and, symmetrically, 〈𝐷0, 𝑏〉Q ∩ 𝐷3 = 𝐷0.
By definition of free amalgam, there are 𝑏2 ∈ 𝐷𝑛

2 and 𝑏3 ∈ 𝐷𝑛
3 such that 𝑏 = 𝑏2 + 𝑏3. We denote

by 𝐷 ′
2 and 𝐷 ′

3 the partial K-powered fields 〈𝐷0, 𝑏2〉Q and 〈𝐷0, 𝑏3〉Q, respectively. We claim that
𝐷2 ∩ 𝐷 ′

3 = 𝐷 ′
2 ∩ 𝐷3 = 𝐷0.

To see this, let 𝑣 ∈ 𝐷2 ∩ 𝐷 ′
3. Since it is in 𝐷 ′

3, we may write it as 𝑣0 +
∑𝑛
𝑖=1 𝑞𝑖𝑏

𝑖
3 for some 𝑣0 ∈ 𝐷0,

𝑞1, . . . , 𝑞𝑛 ∈ Q, where 𝑏3 = (𝑏1
3, . . . , 𝑏

𝑛
3 ). Let then 𝑢3 = 𝑣 − 𝑣0 =

∑𝑛
𝑖=1 𝑞𝑖𝑏

𝑖
3, and define analogously

𝑢2 =
∑𝑛
𝑖=1 𝑞𝑖𝑏

𝑖
2 and 𝑢 = 𝑢2 + 𝑢3 =

∑𝑛
𝑖=1 𝑞𝑖𝑏

𝑖 . Since 𝑏2 ∈ 𝐷𝑛
2 , we have 𝑢 = 𝑢2 + 𝑢3 ∈ 𝐷2: But we have

assumed that 〈𝐷0, 𝑏〉Q ∩ 𝐷2 = 𝐷0, and therefore 𝑢 ∈ 𝐷0. Therefore, all the 𝑞𝑖’s are actually 0, and we
have 𝑣 = 𝑣0 ∈ 𝐷0. Hence, 𝐷2 ∩ 𝐷 ′

3 = 𝐷0; the same argument proves that 𝐷 ′
2 ∩ 𝐷3 = 𝐷0.

Consider now the K-powered field 𝐶 = 〈𝐷 ′
2, 𝑏〉Q, and note that since 𝑏 = 𝑏2 + 𝑏3, 𝐶 = 〈𝐷 ′

2, 𝑏3〉Q =
𝐷 ′

2 + 𝐷 ′
3. Consider the following extensions of Q-vector spaces:
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𝐷0

𝐷 ′
2 〈𝐷0, 𝑏〉Q 𝐷 ′

3

𝐶

By assumption, ldimQ(𝑏/𝐷0) = 𝑛. By modularity of Q-linear dimension applied to the half-square
diagrams, we have

ldimQ(𝐶/𝐷 ′
3) = ldimQ(𝐶/𝐷 ′

2) = ldimQ(𝑏/𝐷0) = 𝑛

and

ldimQ(𝐷 ′
2/𝐷0) = ldimQ(𝐶/〈𝐷0, 𝑏〉Q) = ldimQ(𝐷 ′

3/𝐷0)

while applying modularity to the full square we get

ldimQ(𝐷 ′
2/𝐷0) = ldimQ(𝐶/𝐷 ′

3)
ldimQ(𝐷 ′

3/𝐷0) = ldimQ(𝐶/𝐷 ′
2).

Combined, these imply that 𝑏2 and 𝑏3 are bothQ-linearly independent over 𝐷0 and in fact over 𝐷1 since
𝐷1 ∩ 𝐷 ′

2 ⊆ 𝐷3 ∩ 𝐷 ′
2 = 𝐷0 (and similarly for 𝐷1 ∩ 𝐷 ′

3).
We now consider some inequalities.

ldim𝐾 (𝑏/𝐷1) � ldim𝐾 (𝑏/𝐷1𝑏3) = ldim𝐾 (𝑏2/𝐷1𝑏3) = ldim𝐾 (𝑏2/𝐷1), (1)

where the first equality holds because 𝑏 = 𝑏2+𝑏3 and the second one because𝐷2 and𝐷3 are amalgamated
freely in 𝐷4, and therefore, 𝑏2 and 𝑏3 are independent over 𝐷1 in the sense of K-vector spaces. With
similar reasoning, we obtain

ldim𝐾 (𝑏/𝐷1) � ldim𝐾 (𝑏3/𝐷1) (2)

td(exp(𝑏)/𝐹1) � td(exp(𝑏2)/𝐹1) (3)

td(exp(𝑏)/𝐹1) � td(exp(𝑏3)/𝐹1). (4)

Moreover, we have

ldim𝐾 (𝑏/𝐷0) � ldim𝐾 (𝑏/𝐷1) (5)

td(exp(𝑏)/𝐹0) � td(exp(𝑏)/𝐹1) (6)

simply because linear dimension and transcendence degree do not increase when we extend the
base.
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Now, if one of Inequalities (5) and (6) is a strict inequality, we obtain

𝛿(𝑏/𝐷0) = ldim𝐾 (𝑏/𝐷0) + td(exp(𝑏)/𝐹0) − ldimQ(𝑏/𝐷0)
> ldim𝐾 (𝑏/𝐷1) + td(exp(𝑏)/𝐹1) − 𝑛

� ldim𝐾 (𝑏2/𝐷1) + td(exp(𝑏2)/𝐹1) − ldimQ(𝑏2/𝐷1)
= 𝛿(𝑏2/𝐷1) � 0

and therefore 𝛿(𝑏/𝐷0) > 0, as we wanted.
Assume then that Inequalities (5) and (6) are both equalities and that one of Inequalities (1) and (3)

is strict. Again, we obtain

𝛿(𝑏/𝐷0) = ldim𝐾 (𝑏/𝐷0) + td(exp(𝑏)/𝐹0) − ldimQ(𝑏/𝐷0)
= ldim𝐾 (𝑏/𝐷1) + td(exp(𝑏)/𝐹1) − 𝑛

> ldim𝐾 (𝑏2/𝐷1) + td(exp(𝑏2)/𝐹1) − 𝑛

= 𝛿(𝑏2/𝐷1) � 0

and therefore again 𝛿(𝑏/𝐷0) > 0. If Inequalities (5) and (6) are equalities and one of Inequalities (2) and
(4) is strict, we obtain the same replacing 𝑏2 with 𝑏3. Thus, we assume that none of the six inequalities
is strict.

In this case, we obtain that

ldim𝐾 (𝑏/𝐷1) = ldim𝐾 (𝑏/𝐷1𝑏2)
ldim𝐾 (𝑏/𝐷1) = ldim𝐾 (𝑏/𝐷1𝑏3)
td(exp(𝑏)/𝐹1) = td(exp(𝑏)/𝐷1exp(𝑏2))
td(exp(𝑏)/𝐹1) = td(exp(𝑏)/𝐷1exp(𝑏3))

which together with the fact that 𝐷4 is a free amalgam imply that 𝑏, 𝑏2, 𝑏3, and exp(𝑏), exp(𝑏2), exp(𝑏3)
satisfy the assumptions of the two versions of Lemma 5.10. Thus, there are a K-linear subspace 𝐿 ≤ 𝑉𝑛4
and an algebraic subgroup 𝐻 ⊆ G𝑛𝑚 such that 𝑏, 𝑏2, 𝑏3 are generic (over 𝐷1) points of 𝐷1-translates
of L and exp(𝑏), exp(𝑏2), exp(𝑏3) are generic (over 𝐹1) points of 𝐹1-cosets of H. Thus, we have
dim 𝐿 = ldim𝐾 (𝑏/𝐷1) and dim𝐻 = td(exp(𝑏)/𝐹1), and as we are assuming that Inequalities (5) and
(6) are equalities this says that dim 𝐿 = ldim𝐾 (𝑏/𝐷0) and dim𝐻 = td(exp(𝑏)/𝐹0); in other words,

𝛿(𝑏/𝐷0) = dim 𝐿 + dim𝐻 − 𝑛.

Since ldimQ(𝑏/𝐷0) = 𝑛, we must have 𝑏 ∉ 𝐷𝑛
0 , so ldim𝐾 (𝑏/𝐷0) > 0.

Assume now that 𝑚1, . . . , 𝑚𝑛 ∈ Z satisfy

exp(𝑏1)𝑚1 · · · exp(𝑏𝑛)𝑚𝑛 = 𝑐

for some 𝑐 ∈ 𝐹0; then 𝑐 = exp(𝑎) for some 𝑎 ∈ 𝐷0 (since 𝐷0 is full) and therefore

exp(𝑚1𝑏
1 + · · · + 𝑚𝑛𝑏

𝑛) = exp(𝑎)
exp(𝑚1𝑏

1 + · · · + 𝑚𝑛𝑏
𝑛 − 𝑎) = 1

so 𝑚1𝑏
1 + · · · + 𝑚𝑛𝑏

𝑛 − 𝑎 ∈ ker𝐷2+𝐷3 . All extensions are strong and therefore kernel-preserving, so
ker𝐷2+𝐷3 = ker𝐷0 ⊆ 𝐷0: Hence, this implies that 𝑚1𝑏

1 + · · · + 𝑚𝑛𝑏
𝑛 ∈ 𝐷0, which can only hold for

𝑚1 = · · · = 𝑚𝑛 = 0, again because ldimQ(𝑏/𝐷0) = 𝑛. Therefore, exp(𝑏) is not contained in any 𝐹0-coset
of a proper algebraic subgroup of G𝑛𝑚; hence, dim𝐻 = 𝑛. So we have
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𝛿(𝑏/𝐷0) = dim 𝐿 + dim𝐻 − 𝑛

> 0 + 𝑛 − 𝑛 = 0.

This completes the proof. �

5.4. The countable closure property

Definition 5.11. Let A be a set with a pregeometry cl. We say (𝐴, cl) has the countable closure property
(CCP) if for all finite 𝑋 ⊆ 𝐴, cl(𝑋) is countable.

We sum up in the following statement the main results obtained by the second author in [18].

Theorem 5.12 [18, Theorems 1.1 and 1.2]. Any exponential field F has a pregeometry operator ecl𝐹 ,
with associated dimension etd𝐹 such that every ecl𝐹 -closed subset of F is an exponential subfield; if C
is such a set, then every 𝑧 ∈ 𝐹𝑛 satisfies

𝛿exp(𝑧/𝐶) = td(𝑧, exp(𝑧)/𝐶) − ldimQ(𝑧/𝐶) � etd𝐹 (𝑧/𝐶).

The fact that Bexp has the CCP is true by construction of Bexp (see, for example, [39, Lemma 5.11]).
The CCP for Cexp is [39, Lemma 5.12].

Consider now a countable subfield K of an exponential field F with the CCP. For any exponential
subfield 𝐶 ⊆ 𝐹 containing K we may consider the K-powered field 𝐶𝐾 .

Proposition 5.13. Let F be an exponential field which is algebraically closed such that exp is surjective,
with the CCP for ecl𝐹 . Let K be a countable subfield of F, and 𝐶 ⊆ 𝐹 an ecl𝐹 -closed exponential
subfield of F containing K.

Then 𝐶𝐾 is a pcl𝐹𝐾 -closed, full K-powered subfield of 𝐹𝐾 .

Proof. Since C is ecl𝐹 -closed, it inherits algebraic closedness and surjectivity of exp from F. Hence,
𝐶𝐾 is a full K-powered field.

Now, let 𝑧 ∈ 𝐹𝑛. Then 𝛿𝐾 (𝑧/𝐶) � 𝛿exp(𝑧/𝐶) � 0, with equality holding if and only if 𝑧 ∈ 𝐶𝑛.
Hence, C is pcl𝐹𝐾 -closed. �

Corollary 5.14. Let F be an exponential field with the CCP for ecl, 𝐾 ⊆ 𝐹 a countable subfield. Then
(𝐹𝐾 , pcl𝐹𝐾 ) satisfies the CCP.

In particular, if K is a countable subfield of Bexp (resp. C) then B𝐾 (resp. C𝐾 ) has the CCP.

Proof. Let 𝐴 ⊆ 𝐹 be finite. Then pcl𝐹𝐾 (𝐴) ⊆ ecl𝐹 (𝐴 ∪ 𝐾), which is countable. �

6. Classification of extensions

In this section, we introduce good bases of finitely generated extensions, that is, bases which determine
the extension up to isomorphism.

Definition 6.1. Let 𝐷1 ≤ 𝐷2 be a finitely generated, kernel-preserving extension of partial K-powered
fields. A good basis for the extension, or a good basis of 𝐷2 over 𝐷1, is a Q-vector space basis b of 𝐷2
over 𝐷1 such that if 𝑏′ is a tuple in some extension D of 𝐷1 satisfying𝐾-pLoc(𝑏/𝐷1) = 𝐾-pLoc(𝑏′/𝐷1),
the partial K-powered field 〈𝐷1, 𝑏

′〉Q is isomorphic to 𝐷2 over 𝐷1.

For any 𝑘 ∈ N+, let [𝑘] : (𝐹×)𝑛 → (𝐹×)𝑛 denote the componentwise multiplication-by-k map.

Definition 6.2. Let F be a field, W an algebraic subvariety of G𝑛𝑚 defined over F. We say W is Kummer-
generic over F if for all 𝑘 ∈ N+, [𝑘]−1 (𝑊) is irreducible over F.

This notion was introduced by Zilber (see [40, Corollary 1.5]), while the terminology ‘Kummer-
generic’ is due to Hils [13, Definition 4.1] (who, however, only defines Kummer-genericity over alge-
braically closed fields.)
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Lemma 6.3. Let 𝐷1 ≤ 𝐷2 be a finitely generated, kernel-preserving extension of partial K-powered
fields, b a basis for the extension. We have that b is a good basis if and only if Loc(exp(𝑏)/𝐹1) is
Kummer-generic over 𝐹1.

Proof. Let b be a basis for 𝐷2 over 𝐷1 and D an extension of 𝐷1 with a basis 𝑏′ such that
𝐾-pLoc(𝑏/𝐷1) = 𝐾-pLoc(𝑏′/𝐷1); we denote this common K-powers locus by (𝐿,𝑊).

For any 𝑘 ∈ N+, we have that Loc
(
exp

(
𝑏
𝑘

)
/𝐹1

)
is an irreducible component of [𝑘]−1 (𝑊), and thus,

the K-powers loci of the points 𝑏
𝑘 and 𝑏′

𝑘 coincide for every k if and only if [𝑘]−1 (𝑊) has exactly one
irreducible component over 𝐹1 for each k, that is, if W is Kummer-generic over 𝐹1. Hence, we conclude
by Lemma 3.10. �

Using Lemma 6.3, we will prove that if D is a K-powered field that is finitely generated or full then
every finitely generated extension of D has a good basis.

If D is full, we get it as a consequence of the following result of Zilber.

Theorem 6.4 [40, Corollary 1.5], see also [2]. Let F be an algebraically closed field, 𝑊 ⊆ (𝐹×)𝑛 an
algebraic subvariety. If W is not contained in a coset of an algebraic subgroup of (𝐹×)𝑛, then there is
𝑚 ∈ N+ such that [𝑚]−1 (𝑊) is Kummer-generic over F.

If D is finitely generated, then we follow the method of proof of [6, Section 3.3]. Recall the notion of
a division sequence for a point in the multiplicative group of a field.

Definition 6.5. Let F be a field, 𝑤 ∈ (𝐹×)𝑛. A division sequence for w is a sequence (𝑤𝑘 )𝑘∈N+ such
that 𝑤1 = 𝑤 and for all ℎ, 𝑘 ∈ N+ we have (𝑤ℎ𝑘 )ℎ = 𝑤𝑘 .

We denote by 𝑇 the group of division sequences of 1 ∈ (Qalg)𝑛 with componentwise multiplication.

Proposition 6.6. Let D be a partial K-powered field with cyclic kernel that is either finitely generated or
a finitely generated extension of a full K-powered field, let 𝐷1 be a finitely generated, kernel-preserving
extension of D and let b be a basis for the extension.

Then there is 𝑚 ∈ N+ such that Loc
(
exp

(
𝑏
𝑚

)
/𝐹

)
is Kummer-generic over F.

Proof. Let 𝜉𝑏 : Gal(𝐹alg
1 /𝐹1) → 𝑇 denote the Kummer map defined by

𝜎 ↦→
����
𝜎
(
exp

(
𝑏
𝑘

))
exp

(
𝑏
𝑘

) ����𝑘∈N+

.

The image of 𝜉𝑏 has finite index in 𝑇 : This is proved in [4, Proposition A.9] in the case of a finitely
generated K-powered field and in [2, Section 3, Claim 2] in the case of full K-powered field (see also
[6, Proposition 3.24]). Let m be the exponent of the finite quotient 𝑇/im(𝜉𝑏): then 𝑇𝑚 ⊆ im(𝜉𝑏).

Let then 𝜉 𝑏
𝑚

be defined analogously to 𝜉𝑏 on Gal
(
𝐹

alg
1 /𝐹

(
exp

(
𝑏
𝑚

)))
. We claim 𝜉 𝑏

𝑚
is surjective.

In fact, if 𝑡 = (𝑡𝑘 )𝑘∈N+ is a division sequence of 1, then 𝑡𝑚 ∈ im(𝜉𝑏), and thus, there is 𝜎 such that
𝜉𝑏 (𝜎) = 𝑡𝑚. Hence, we see that 𝜎

(
exp

(
𝑏
𝑚

))
= exp

(
𝑏
𝑚

)
, that is, 𝜎 ∈ Gal

(
𝐹

alg
1 /𝐹

(
exp

(
𝑏
𝑚

)))
, and that

for every 𝑘 ∈ N+ we have

𝜎

(
exp

(
𝑏

𝑚𝑘

))
= 𝑡𝑚𝑚𝑘exp

(
𝑏

𝑚𝑘

)
= 𝑡𝑘exp

(
𝑏

𝑚𝑘

)
where the first inequality holds by definition of 𝜉𝑏 and the second one by definition of division sequence.
Hence, 𝜉 𝑏

𝑚
(𝜎) = 𝑡. Since t was arbitrary, this proves surjectivity.
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Then for all 𝑘 ∈ N+, all the values of [𝑘]−1
(
exp

(
𝑏
𝑚

))
are in the same orbit under Gal(𝐹alg

1 /𝐹).

Hence, [𝑘]−1
(
Loc

(
exp

(
𝑏
𝑚

)))
is irreducible over F. �

Putting these results together we obtain the existence of good bases.

Proposition 6.7. Let D be a partial K-powered field with cyclic kernel that is either finitely generated
or full. Every finitely generated, kernel-preserving extension of D has a good basis.

Proof. Let b be a basis for an extension 𝐷 ≤ 𝐷1, and (𝐿,𝑊) := 𝐾-pLoc(𝑧/𝐷1). Since the extension is
kernel-preserving, exp(𝑏) does not satisfy any multiplicative relation, and as it is a generic point of W,
this implies that W is not contained in any coset of an algebraic subgroup.

If D is full, then F is algebraically closed and by Theorem 6.4, there is some m such that [𝑚]−1 (𝑊)
is Kummer-generic. If D is finitely generated, then the same follows from Proposition 6.6. Either way,
we conclude applying Lemma 6.3. �

Corollary 6.8. Let D be a countable partial K-powered field with cyclic kernel that is either finitely
generated or full. Up to isomorphism, there are only countably many finitely generated extensions of D.

Proof. A finitely generated extension is determined up to isomorphism by the locus of a good basis.
Since D is countable, there are only countably many possible loci of points over it; therefore, there can
only be countably many finitely generated extensions. �

We conclude by using good bases to prove two statements which will be needed later on.

Lemma 6.9 (Uniqueness of the generic type). Let 𝐷0 ⊳ 𝐷 be an extension of K-powered fields, with 𝐷0
partial and D full. If 𝑣 ∈ 𝐷 \ pcl(𝐷0), then 〈𝐷0, 𝑣〉Q ⊳ 𝐷. Moreover, v is a good basis for 〈𝐷0, 𝑣〉Q over
𝐷0, and hence, 〈𝐷0, 𝑣〉Q � 〈𝐷0, 𝑣

′〉Q for all 𝑣′ ∈ 𝐷 \ pcl(𝐷0).

Proof. Let 𝑧 ∈ 𝐷𝑛. Then 𝛿(𝑧/𝐷0𝑣) = 𝛿(𝑣𝑧/𝐷0) − 𝛿(𝑣/𝐷0) = 𝛿(𝑣𝑧/𝐷0) − 1. By assumption 𝑣𝑧 ∉
(pcl(𝐷0))𝑛+1 and therefore 𝛿(𝑣𝑧/𝐷0) > 0. Hence, 𝛿(𝑧/𝐷0𝑣) � 0, and 〈𝐷0, 𝑣〉Q ⊳ 𝐷.

To see that v is a good basis, we just notice that since it is not in pcl(𝐷0) its locus over A must be
the pair (𝑉, 𝐹×). 𝐹× coincides with its preimages under multiplication-by-k maps, and it is irreducible:
Hence, v is a good basis. �

Proposition 6.10 (Existence and uniqueness of full closures). Let D be a partial K-powered field with
cyclic kernel. Then there exists a full K-powered field 𝐷 𝑓 that strongly extends D such that there are no
intermediate full K-powered fields 𝐷1 with 𝐷 ⊆ 𝐷1 ⊆ 𝐷 𝑓 .

Moreover, if D is finitely generated or a finitely generated extension of a countable full K-powered
field, then 𝐷 𝑓 is unique up to isomorphism.

Proof. We only sketch the proof, as it is essentially the same as [20, Theorem 2.18] (see also [6, Theorem
4.17].)

For existence, we embed V into a large K-vector space V and F in a large algebraically closed field
F . We extend the exponential with an iterated procedure: We coherently map theQ-span of any element
of V that is not in D to rational powers of an element of F that is transcendental over F. Moreover, for
each element 𝑤 ∈ F× that is algebraic over the image of exp at any given step, we take an element in V
that is not in V and map its Q-span (again, coherently) to rational powers of w. This procedure yields a
strong extension, and iterating we produce a full K-powered field. It is clear from the construction that
no intermediate 𝐷1 exists.

If D is finitely generated or a finitely generated extension of a countable full K-powered field, we
assume that there are two full K-powered field containing D as in the statement. We then break up one
of them into a countable union of finitely generated extensions of D, and embed each of these extensions
into the other full K-powered field using the good bases given by Proposition 6.7. These embeddings
will produce an isomorphism. �
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Given a partial K-powered field D, any full K-powered field obtained as in the proof of Proposi-
tion 6.10 will be called a full closure of D.

Lemma 6.11. Let 𝐷0 be a full K-powered field, D a purely powers-transcendental extension of 𝐷0.
If 𝐷 𝑓 is a full closure of D, then 𝐷0 ⊳cl 𝐷

𝑓 .

Proof. 𝐷 𝑓 is obtained from D by an iterated construction, so it is sufficient to check that at every step
we have a purely powers-transcendental extension of 𝐷0. If 𝑧 ∈ 𝑉 \ 𝐷, then 𝛿(𝑧/𝐷0) = 1. Similarly, if
𝑤 ∈ 𝐹× \ exp(𝐷) and 𝑧′ ∈ 𝐷 𝑓 is a point with exp(𝑧′) = 𝑤, then 𝛿(𝑧′/𝐷0) = 1. Hence, the statement
holds. �

7. Amalgamation and excellence

Fraïssé’s original amalgamation theorem [14, Chapter 7] gives the existence and uniqueness of a
countable ℵ0-saturated model F in a class C of relational structures which is specified by saying that all
finite substructures are from a certain subclass. The uniqueness is by the older back-and-forth technique,
and the existence is from an amalgamation construction.

The first aim of this section is to use a variant of Fraïssé’s Theorem to show that two categories of
K-powered fields, denoted C (𝐷0) and Ctr(𝐷0), have Fraïssé limits F𝐾 (𝐷0) and F𝐾,tr (𝐷0).

The second aim is to construct quasiminimal K-powered fields E𝐾 (𝐷0) and E𝐾,tr (𝐷0) of size
continuum, and the last aim is to characterize these models semantically in the categories C (𝐷0) and
Ctr(𝐷0). We achieve these using the theory of quasiminimal excellent classes developed in [38], [19],
[3], showing that the Fraïssé limits F𝐾 (𝐷0) and F𝐾,tr (𝐷0) generate such classes.

7.1. Amalgamation to a Fraïssé limit

There are many variants and generalisations of Fraïssé’s theorem, all with essentially the same proof.
We use a version from [17, Theorem 2.18], extending [10], which allows us to replace the class C by a
category of countable structures where we can specify which embeddings we allow, and finite becomes
finitely generated in a suitable sense.

Definition 7.1. Let K be a countable field, 𝐷0 be a partial K-powered field with cyclic kernel.

1. C (𝐷0) is the category of partial K-powered fields strongly extending 𝐷0, with strong embeddings of
𝐷0 as the morphisms;

2. Ctr(𝐷0) is the full subcategory of C (𝐷0) whose objects are purely powers-transcendental extensions
of 𝐷0.

Definition 7.2. Let 𝐷0 be a partial K-powered field, and let C be one of the categories C (𝐷0) and
Ctr(𝐷0). An object A of C is ℵ0-saturated in C if for every finitely generated subobject 𝐴1 and every
finitely generated extension 𝐴2 of 𝐴1 in C, 𝐴2 embeds into A over 𝐴1 in C.

A Fraïssé limit for C is a countable, ℵ0-saturated object of C.

Remark 7.3. The usual back-and-forth argument shows that if an object D is ℵ0-saturated in C, then
it is also ℵ1-universal in C (every object generated by a set of cardinality at most ℵ0 embeds in M)
and ℵ0-homogeneous in C (every isomorphism between finitely generated substructures extends to an
automorphism).

Theorem 7.4. Let C be C (𝐷0) for a finitely generated or countable full K-powered field 𝐷0, or Ctr(𝐷0)
for a countable full K-powered field 𝐷0.

Then C has a Fraïssé limit.

Notation 7.5. We denote by F(𝐷0) and Ftr(𝐷0) the Fraïssé limits of C (𝐷0) and Ctr(𝐷0), respectively.
We write just F𝐾 for F(𝑆𝐵𝐾 ).
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Proof. By [17, Theorem 2.18], it suffices to prove that C is an amalgamation category in the sense
of [17, Definition 2.17]. We use the numbering of the axioms of an amalgamation category from
[6, Definition 5.3].

(AC1) translates here as all morphisms in the category being embeddings and (AC2) to the category
being closed under unions of 𝜔-chains; these are verified immediately.

(AC4) states in this context that every finitely generated object of C has countably many finitely
generated extensions up to isomorphism, and it holds by Corollary 6.8. (AC3) states that there are only
countably many finitely generated objects in C up to isomorphism, and it follows from (AC4) as 𝐷0 is
an object of C.

(AC5) is the amalgamation property for finitely generated objects, and it implies (AC6), the joint
embedding property for finitely generated objects. Hence, it remains to prove (AC5).

Let 𝐷1, 𝐷2, 𝐷3 be finitely generated objects of C, with strong embeddings of 𝐷1 into 𝐷2 and 𝐷3.
By Proposition 6.10, each of the objects has a full closure that is unique up to isomorphism, which we
denote by 𝐷

𝑓
1 , 𝐷

𝑓
2 , 𝐷

𝑓
3 .

By Proposition 6.10, the full closures of 𝐷1 inside 𝐷 𝑓
2 and 𝐷 𝑓

3 are both isomorphic to 𝐷 𝑓
1 , so we can

choose strong embeddings as in the dashed arrows in the diagram. Thus, we let 𝐷4 be the free amalgam
of 𝐷 𝑓

2 and 𝐷
𝑓
3 over 𝐷 𝑓

1 .

𝐷1 𝐷
𝑓
1 𝐷4

𝐷2

𝐷3

𝐷
𝑓
2

𝐷
𝑓
3

⊳

⊳

⊳

⊳

⊳

By Proposition 4.5, 𝐷4 is a strong extension of 𝐷 𝑓
2 and 𝐷

𝑓
3 , and thus, it is a strong extension of 𝐷2

and 𝐷3. We take 𝐷 = �𝐷2 ∪ 𝐷3�𝐷4
𝐾 , which is a finitely generated strong extension of 𝐷2 and 𝐷3 over

𝐷0 and is the amalgam we need.
Now, assume 𝐷1, 𝐷2 and 𝐷3 are purely powers-transcendental extensions of the full K-powered

field 𝐷0. By Lemma 6.11 𝐷
𝑓
1 , 𝐷

𝑓
2 and 𝐷

𝑓
3 are also purely powers-transcendental over 𝐷0. Then by

Proposition 5.9, 𝐷4 is a purely powers-transcendental extension of 𝐷0. Hence, D is a finitely generated,
purely powers-transcendental extension of 𝐷0, with embeddings as in the definition of the amalgamation
property. �

7.2. The models E𝐾 (𝐷0) and E𝐾,tr (𝐷0)

Definition 7.6. Let M be an L-structure for a countable language L, equipped with a pregeometry cl.
We say that M is a quasiminimal pregeometry structure if it satisfies the following axioms, in which
qftp denotes the quantifier-free type:

(QM1) (The pregeometry is determined by the language) If a and b are finite tuples with qftp(𝑎) =
qftp(𝑏), then a and b have the same cl-dimension.

(QM2) (Infinite dimensionality) M is infinite-dimensional with respect to cl.
(QM3) (CCP) If 𝐴 ⊆ 𝑀 is finite, then cl(𝐴) is countable.
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(QM4) (Uniqueness of the generic type) If 𝐶,𝐶 ′ are countable closed substructures of M, they are
enumerated so that qftp(𝐶) = qftp(𝐶 ′), 𝑎 ∈ 𝑀 \ 𝐶 and 𝑎′ ∈ 𝑀 ′ \ 𝐶 ′, then qftp(𝐶, 𝑎) =
qftp(𝐶 ′, 𝑎′).

(QM5a) (ℵ0-homogeneity over the empty set) Let 𝑎, 𝑏 be finite tuples in M such that qftp(𝑎) = qftp(𝑏),
and let 𝑎′ ∈ cl(𝑎). Then there is 𝑏′ ∈ cl(𝑏) such that qftp(𝑎, 𝑎′) = qftp(𝑏, 𝑏′).

(QM5b) (Nonsplitting over a finite set) Let C be a closed subset, and let b be a finite tuple. Then there
is a finite tuple c in C such that for all finite tuples 𝑎, 𝑎′ in C, if qftp(𝑎/𝑐) = qftp(𝑎′/𝑐), then
qftp(𝑎/𝑐𝑏) = qftp(𝑎′/𝑐𝑏).

A weakly quasiminimal pregeometry structure is an L-structure which satisfies all the axioms except
possibly (QM2) (it is not necessarily infinite-dimensional).

Definition 7.7. Given weakly quasiminimal pregeometry structures (𝑀1, cl𝑀1) and (𝑀2, cl𝑀2) (in
the same language), an embedding 𝜃 : 𝑀1 ↩→ 𝑀2 is a closed embedding if for every 𝑋 ⊆ 𝑀1,
cl𝑀2 (𝜃 (𝑋)) = 𝜃 (cl𝑀1 (𝑋)).

Given a quasiminimal pregeometry structure M in a language L, we denote byK(𝑀) the smallest class
of L-structures which contains M and all its closed substructures and is closed under isomorphisms and
under taking unions of directed systems of closed embeddings. Such a class is called the quasiminimal
class attached to M.

Fact 7.8 [3, Theorem 2.3]. If K is a quasiminimal class, then every structure 𝐴 ∈ K is a weakly
quasiminimal pregeometry structure. For every cardinal 𝜅, there is exactly one structure of dimension 𝜅
in K (up to isomorphism); in particular, K is uncountably categorical.

Definition 7.9. Let K be a countable field, and let L𝐾 be the language of K-powered fields from
Definition 3.5.

Let 𝐷0 be a countable K-powered field that is either finitely generated or full.
We extend this to a language L𝐾,𝑄𝐸 (𝐷0) by adding constant symbols for all elements of 𝐷0 and,

for every pair (𝐿,𝑊) where L is a K-linear subspace of 𝑉𝑛+𝑘0 and W is an algebraic subvariety of G𝑛+𝑘𝑚

defined over Q, a k-ary predicate 𝜑𝐿,𝑊 ,𝑛 (𝑥). We interpret 𝜑𝐿,𝑊 ,𝑛 (𝑎) as

∃𝑏
[
(𝑏, 𝑎, exp(𝑏, 𝑎)) ∈ 𝐿 ×𝑊 ∧ ldimQ(𝑏/𝐷0𝑎) = 𝑛

]
.

Lemma 7.10. Let D be an object of C (𝐷0) or Ctr(𝐷0), and let 𝑎, 𝑏 ∈ 𝐷𝑘 . Then qftp(𝑎) = qftp(𝑏) if
and only if there is an isomorphism of partial K-powered fields 𝜃 : �𝐷0, 𝑎�𝐷𝐾 � �𝐷0, 𝑏�𝐷𝐾 fixing 𝐷0
pointwise and sending a to b.

Proof. (⇐) is obvious.
For (⇒), let 𝑎, 𝑏 be k-tuples in Fwith the same L𝐾,𝑄𝐸 (𝐷0)-quantifier free type. Let 𝐷𝑎 = �𝐷0, 𝑎�F𝐾 ,

and let 𝑎′ ∈ 𝐷𝑛
𝑎 be a good basis for 𝐷𝑎 over 𝐷0. Then let (𝐿,𝑊) := 𝐾-pLoc(𝑎′, 𝑎/𝐷0). By def-

inition of L𝐾,𝑄𝐸 (𝐷0), F � 𝜑𝐿,𝑊 ,𝑛 (𝑎), and therefore, since a and b have the same quantifier-free
type, F � 𝜑𝐿,𝑊 ,𝑛 (𝑏), that is, there is 𝑏′ ∈ F𝑛 such that (𝑏′, 𝑏, exp(𝑏′), exp(𝑏)) ∈ 𝐿 × 𝑊 and
ldimQ(𝑏′/𝐷0𝑏) = 𝑛. We want to show that (𝐿,𝑊) = 𝐾-pLoc(𝑏′, 𝑏/𝐷0), so let (𝐿 ′,𝑊 ′) be the K-
powers locus of (𝑏′, 𝑏) over 𝐷0. Again, a and b have the same quantifier-free type so there is 𝑎′′ ∈ F𝑛
such that (𝑎′′, 𝑎, exp(𝑎′′), exp(𝑎)) ∈ 𝐿 ′ ×𝑊 ′ and ldimQ(𝑎′′/𝐷0𝑎) = 𝑛. Then

dim 𝐿 ′ + dim𝑊 ′ = 𝛿(𝑎′′, 𝑎/𝐷0) + ldimQ(𝑎′′, 𝑎/𝐷0)
= 𝛿(𝑎′′/𝐷0) + 𝑛 + ldimQ(𝑎/𝐷0)
� 𝛿(𝑎′/𝐷0) + ldimQ(𝑎′, 𝑎/𝐷0)
= 𝛿(𝑎′, 𝑎/𝐷0) + ldimQ(𝑎′, 𝑎/𝐷0)
= dim 𝐿 + dim𝑊.
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Therefore, we have that (𝐿 ′,𝑊 ′) = (𝐿,𝑊) = 𝐾-pLoc(𝑏′, 𝑏/𝐷0), and from this we deduce that
𝐾-pLoc(𝑎′/𝐷0) = 𝐾-pLoc(𝑏′/𝐷0). Since 𝑎′ is a good basis for 𝐷𝑎, there is an isomorphism between
𝐷𝑎 and the K-powered field 〈𝐷0, 𝑏

′〉Q which fixes 𝐷0 and maps 𝑎′ to 𝑏′ and hence a to b. Note that
by the above 𝛿(𝑏′, 𝑏/𝐷0) = 𝛿(𝑎′, 𝑎/𝐷0), and by the same proof for every tuple 𝑏′′ in D we must have
𝛿(𝑏′′, 𝑏/𝐷0) � 𝛿(𝑏′, 𝑏/𝐷0). Hence, 〈𝐷0, 𝑏

′〉Q = �𝐷0, 𝑏�𝐷𝐾 . �

Theorem 7.11. Let K be a countable field; let F be one of the Fraïssé limits F𝐾 (𝐷0) and F𝐾,tr (𝐷0) (the
latter only if 𝐷0 is a countable full K-powered field).

Then F in the language L𝐾,𝑄𝐸 (𝐷0) and with the pregeometry pclF𝐾 is a quasiminimal pregeometry
structure.

Proof. We denote by C the category of which F is the Fraïssé limit (so C (𝐷0) or Ctr(𝐷0)).
The arguments are then similar to the proof of [6, Theorem 6.9].
(QM3) holds because F is countable.
For (QM1) and (QM5a), we use Lemma 7.10: Let a and b be tuples in F with qftp(𝑎) = qftp(𝑏),

𝐷𝑎 = �𝐷0, 𝑎�F𝐾 and 𝐷𝑏 = �𝐷0, 𝑏�F𝐾 . Then there is an isomorphism 𝜃 : 𝐷𝑎 → 𝐷𝑏 which fixes 𝐷0
pointwise and maps a to b, hence 𝐾-td𝐷𝑎 (𝑎/𝐷0) = 𝐾-td𝐷𝑏 (𝑏/𝐷0). By Lemma 5.5 then 𝐾-tdF (𝑎/𝐷0) =
𝐾-tdF (𝑏/𝐷0), so (QM1) holds. For (QM5a), we have that, since F is a Fraïssé limit and hence is ℵ0-
homogeneous, 𝜃 extends to an automorphism 𝜃 ′ of F, so for every 𝑎′ ∈ pclF𝐾 (𝑎) there is 𝑏′ ∈ pclF𝐾 (𝑏)
such that qftp(𝑎, 𝑎′) = qftp(𝑏, 𝑏′).

Now, we prove (QM2). Let 𝑛 ∈ N. Then there is a strong extension 𝐷𝑛 of 𝐷0 which is generated by
an n-tuple a that is generic over 𝐷0, so 𝐾-td𝐷𝑛 (𝑎/𝐷0) = 𝛿𝐾 (𝑎/𝐷0) = 𝑛; 𝐷𝑛 is an object of C. Since F
is ℵ0-universal in C, 𝐷𝑛 embeds into F, which thus contains a tuple a with 𝐾-tdF (𝑎/𝐷0) = 𝑛. Hence, F
is infinite-dimensional.

For (QM4), suppose 𝐷1 and 𝐷2 are countable pcl-closed full K-powered subfields of F, enumerated
so that qftp(𝐷1) = qftp(𝐷2), and let 𝑎 ∈ F \ 𝐷1 and 𝑏 ∈ F \ 𝐷2. By Lemma 6.9, the extensions
𝐷1 ⊳ 〈𝐷1, 𝑎〉Q and 𝐷2 ⊳ 〈𝐷2, 𝑏〉Q are isomorphic, hence qftp(𝐷1, 𝑎) = qftp(𝐷2, 𝑏).

Finally, we prove (QM5b). Suppose D is a pcl-closed full K-powered subfield of F, and let b be a finite
tuple inF; without loss of generality we assume that b is a good basis for the extension𝐷⊳�𝐷, 𝑏�F𝐾 =: 𝐷𝑏 .
Let c be a finite tuple in D such that𝐾-pLoc(𝑏/𝐷) is defined over 〈𝐷0, 𝑐〉Q, and let 𝑎, 𝑎′ be finite tuples in
D such that qftp(𝑎/𝑐) = qftp(𝑎′/𝑐). By Lemma 7.10, there is an isomorphism 𝜃0 : 𝐷𝑎,𝑐 � 𝐷𝑎′,𝑐 , where
𝐷𝑎,𝑐 = �𝐷0, 𝑎, 𝑐�F𝐾 and 𝐷𝑎′,𝑐 = �𝐷0, 𝑎

′, 𝑐�F𝐾 . Since 𝐾-pLoc(𝑏/𝐷) is defined (and Loc(exp(𝑏)/𝐹) is
Kummer-generic) over 〈𝐷0, 𝑐〉Q, we have that b is a good basis of 𝐷𝑎,𝑐 ≤ 〈𝐷𝑎,𝑐 , 𝑏〉Q. Hence, 𝜃0 extends
to an isomorphism 𝜃1 : 〈𝐷𝑎,𝑐 , 𝑏〉Q � 〈𝐷𝑎′,𝑐 , 𝑏〉Q.

Now, we claim that 〈𝐷𝑎,𝑐 , 𝑏〉Q ⊳ 𝐷𝑏 . To see this, let z be a finite tuple in 𝐷𝑏: as we assumed that
b is a basis for the extension 𝐷 ⊳ 𝐷𝑏 , z is the sum of a tuple 𝑧𝐷 in D and a tuple 𝑧𝑏 in 〈𝑏〉Q, and
thus 𝛿(𝑧/𝐷𝑎,𝑐 , 𝑏) = 𝛿(𝑧𝐷/𝐷𝑎′,𝑐 , 𝑏). However, 𝑧𝐷 and 𝐷𝑎,𝑐 are contained in the pcl-closed K-powered
field D, while b is Q-linearly independent over D, so 𝛿(𝑧𝐷/𝐷𝑎,𝑐 , 𝑏) = 𝛿(𝑧𝐷/𝐷𝑎,𝑐). Since 𝐷𝑎,𝑐 ⊳ 𝐷,
this is nonnegative. Hence, 〈𝐷𝑎,𝑐 , 𝑏〉Q ⊳ 〈𝐷, 𝑏〉Q as we wanted. By the same argument, 〈𝐷𝑎′,𝑐 , 𝑏〉Q
is also strong in 𝐷𝑏 , and since the latter is strong in F we have that 〈𝐷𝑎,𝑐 , 𝑏〉Q and 〈𝐷𝑎′,𝑐 , 𝑏〉Q are
finitely generated objects in C, strong in F, with the isomorphism 𝜃1 between them. Hence, there is an
isomorphism �𝐷0, 𝑎, 𝑏, 𝑐�F𝐾 � �𝐷0, 𝑎

′, 𝑏, 𝑐�F𝐾 . This extends 𝜃1, so it fixes b and c and maps a to 𝑎′; this
implies qftp(𝑎′/𝑏𝑐) = qftp(𝑎/𝑏𝑐), as we wanted. �

By Fact 7.8 and Theorem 7.11, each of the quasiminimal classes generated by F𝐾 (𝐷0) and F𝐾,tr (𝐷0)
contains a unique model of cardinality continuum (up to isomorphism). We denote these by E𝐾 (𝐷0)
and E𝐾,tr (𝐷0). As with the Fraïssé limit, we write E𝐾 for E𝐾 (𝑆𝐵𝐾 ).

7.3. Algebraic saturation

In this subsection, we introduce a notion of algebraic saturation and use it to characterize the models
E𝐾 (𝐷0) and E𝐾,tr (𝐷0).
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Definition 7.12. Let C denote C (𝐷0) or Ctr(𝐷0). An object D in C is algebraically saturated in C if for
all finitely generated 𝐷1 ⊳ 𝐷, and all finitely generated, powers-algebraic extensions 𝐷1 ⊳ 𝐷2 in C, 𝐷2
embeds (strongly) in D over 𝐷1.

Theorem 7.13. Let K be a countable field. Let 𝐷0 be a finitely generated or full, countable K-powered
field (resp. a full, countable K-powered field).

The K-powered field E𝐾 (𝐷0) (resp. E𝐾,tr (𝐷0)) is up to isomorphism the unique full K-powered field
of cardinality continuum which strongly extends 𝐷0 (resp. is a purely powers-transcendental extension
of 𝐷0), is algebraically saturated in C (𝐷0) (resp. Ctr(𝐷0)) and has the CCP.

Proof. Let E denote E𝐾 (𝐷0) or E𝐾,tr (𝐷0), and let C and F accordingly denote C (𝐷0) or Ctr(𝐷0) and
F𝐾 (𝐷0) or F𝐾,tr (𝐷0).

(⇒) AsF isℵ0-saturated, it is also algebraically saturated, and thus, any of its pcl-closed substructures
is also algebraically saturated. Since E is the union of a directed system of closed embeddings of closed
substructures of F, the statement follows.

(⇐) Let D be a full object of C of size continuum that is algebraically saturated in C and has the
CCP. Any finite pcl-dimensional, pcl-closed substructure C of D is countable, and hence, it embeds into
F as a pcl-closed substructure by ℵ1-universality of the Fraïssé limit. Hence, C lies in the quasiminimal
class K(F). As D is the union of its finite pcl-dimensional, pcl-closed substructures, D is also in K(F)
and is therefore isomorphic to E. �

8. K-powers-closed fields

In this section, we introduce a notion of strong K-powers closedness and prove that it is equivalent to
algebraic saturation in the category C (𝐷0) and that when 𝐷0 is finitely generated, so we have a Schanuel
property in C (𝐷0), it can be reduced to the simpler notion of K-powers-closedness.

8.1. Classification of strong extensions

Definition 8.1. Let D be a partial K-powered field, 𝐿 ≤ 𝑉𝑛 a K-linear subspace, and 𝑊 ⊆ G𝑛𝑚 an
algebraic subvariety defined and irreducible over F.

If W is absolutely irreducible, then we say the pair (𝐿,𝑊) is free if L is not contained in any Q-affine
subspace of 𝑉𝑛 and W is not contained in an 𝐹alg-coset of a proper algebraic subgroup of G𝑛𝑚. If W is
just irreducible over F, we say (𝐿,𝑊) is free if (𝐿,𝑊0) is free for some (any) absolutely irreducible
component 𝑊0 of W.

The pair (𝐿,𝑊) is rotund if for every Q-linear subspace Q of 𝑉𝑛 with projections 𝜋𝑄 : 𝑉𝑛 � 𝑉𝑛/𝑄
and 𝜋exp(𝑄) : G𝑛𝑚 � G𝑛𝑚/exp(𝑄) we have

dim 𝜋𝑄 (𝐿) + dim 𝜋exp(𝑄) (𝑊) � 𝑛 − dim𝑄

and it is strongly rotund if for every proper Q we have

dim 𝜋𝑄 (𝐿) + dim 𝜋exp(𝑄) (𝑊) > 𝑛 − dim𝑄.

The dimension of the pair (𝐿,𝑊) is the sum of the dimension of L as a K-vector subspace of 𝑉𝑛 and
of W as an algebraic subvariety of G𝑛𝑚.

Remark 8.2. By taking 𝑄 = 〈0〉Q, we have that in particular a rotund pair always satisfies dim 𝐿 +
dim𝑊 � 𝑛 and a strongly rotund pair always satisfies dim 𝐿 + dim𝑊 > 𝑛.

Proposition 8.3. Let D be a partial K-powered field, 𝐿 ≤ 𝑉𝑛 a K-linear subspace,𝑊 ⊆ G𝑛𝑚 an algebraic
subvariety defined and irreducible over F.

If the pair (𝐿,𝑊) is free, there is a finitely generated, kernel-preserving extension 𝐷1 of D, with a
basis b of 𝐷1 over D such that 𝐾-pLoc(𝑏/𝐷) = (𝐿,𝑊). Moreover:
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(1) The extension is strong if and only if (𝐿,𝑊) is rotund;
(2) If the extension is strong, it is powers-algebraic if and only if dim 𝐿 + dim𝑊 = 𝑛;
(3) The extension is purely powers-transcendental if and only if (𝐿,𝑊) is strongly rotund.

Proof. The first part of the statement is by the same argument as [37, Lemma 3.4].
For the ‘moreover’ part, (1) and (3) are obtained by the same argument as [6, Proposition 7.3]; (2)

follows easily. �

8.2. K-powers-closedness

Definition 8.4. Let 𝐷0 ⊳ 𝐷 be an extension of partial K-powered fields.
D is K-powers-closed if it is full and for every free, rotund, n-dimensional pair (𝐿,𝑊) in 𝐷𝑛, we

have that exp(𝐿) ∩𝑊 is Zariski-dense in W.
D is strongly K-powers-closed over 𝐷0 if it is full and for every free, rotund, n-dimensional pair (𝐿,𝑊)

in 𝐷𝑛 and every finite tuple a in D there is 𝑏 ∈ 𝐷𝑛 such that (𝑏, exp(𝑏)) ∈ 𝐿×𝑊 and ldimQ(𝑏/𝐷0𝑎) = 𝑛.

The main result obtained by the first author in [11] is that CC is C-powers-closed.

Proposition 8.5. Let 𝐷0 be either a finitely generated partial K-powered field or a full countable
K-powered field. Recall that C (𝐷0) denotes the category of partial K-powered fields strongly extend-
ing 𝐷0.

An object in C (𝐷0) is algebraically saturated in C (𝐷0) if and only if it is strongly K-powers-closed
over 𝐷0.

Proof. (⇒) Let D be an object of C (𝐷0) that is algebraically saturated in C (𝐷0). It is straightforward
to show that D is full, so we show that it is strongly K-powers-closed.

Let (𝐿,𝑊) be a free, rotund, n-dimensional pair in 𝐷𝑛 and 𝑎 ∈ 𝐷𝑘 a tuple. Replacing a by a basis for
�𝐷0, 𝑎�𝐷𝐾 if necessary, we may assume that 𝐷1 := 〈𝐷0, 𝑎〉Q⊳𝐷. Add to 𝐷1 a point b such that (𝑏, exp(𝑏))
is generic in 𝐿 ×𝑊 over 𝐷1; by Proposition 8.3, this generates a strong, powers-algebraic extension 𝐷2
of 𝐷1. By algebraic saturation of D, 𝐷2 embeds into D over 𝐷1. Hence, there is a point 𝑏′, the image of
b under the embedding, such that (𝑏′, exp(𝑏′)) ∈ 𝐿×𝑊 , and (by genericity) ldimQ(𝑏′/𝐷1) = 𝑛. Hence,
D is strongly K-powers-closed.

(⇐) Let D be an object of C (𝐷0) that is strongly K-powers-closed over 𝐷0. Let 𝐷1 = 〈𝐷0, 𝑎〉Q be a
finitely generated, strong extension of 𝐷0 that is strong in D, and let 𝐷2 be a finitely generated, strong,
powers-algebraic extension of 𝐷1. By Proposition 6.7, we may find a good basis b for 𝐷2 over 𝐷1, so
𝐷2 = 〈𝐷1, 𝑏〉Q.

We prove that 𝐷2 strongly embeds into D over 𝐷1 by induction on 𝑛 := dimQ(𝐷2/𝐷1). Let
(𝐿,𝑊) = 𝐾-pLoc(𝑏/𝐷1).

If (𝐿,𝑊) is free, since the extension 𝐷1 ⊳ 𝐷2 is strong and powers-algebraic, by Proposition 8.3
we have that (𝐿,𝑊) is rotund and n-dimensional. By strong K-powers-closedness of D there is a point
𝑏′ ∈ 𝐷𝑛 such that (𝑏′, exp(𝑏′)) ∈ 𝐿 × 𝑊 and ldimQ(𝑏′/𝐷1) = 𝑛. Since D strongly extends 𝐷1, it
must be the case that ldim𝐾 (𝑏′/𝐷1) + td(exp(𝑏′)/𝐹1) � 𝑛. As dim 𝐿 + dim𝑊 = 𝑛, this implies that
(𝐿,𝑊) = 𝐾-pLoc(𝑏′/𝐷1). Since b is a good basis, the extension 〈𝐷1, 𝑏

′〉Q of 𝐷1 is then isomorphic to
𝐷2 over 𝐷1, and it is contained in D, so 𝐷2 embeds in D over 𝐷1.

If (𝐿,𝑊) is not free, then without loss of generality we may assume that either L is contained in a Q-
affine subspace over 𝐷1 of the form 𝑧𝑖 = 𝑐 for some 𝑐 ∈ 𝑉1, or W is contained in an algebraic subvariety
of the form 𝑤𝑖 = 𝑑 for some 𝑑 ∈ 𝐹

alg
1 . In the first case, we replace 𝐷1 by 𝐷 ′

1 := �𝐷1, 𝑐�𝐷𝐾 and consider
𝐷2 as a powers-algebraic strong extension of 𝐷 ′

1 of lower dimension (hence, we may apply induction);
the second case is treated analogously. �

Strong K-powers-closedness implies K-powers-closedness: Given (𝐿,𝑊) free, rotund and n-
dimensional, and some Zariski-closed subset 𝑊 ′ of W, one may find a finite tuple a in D such that
W and𝑊 ′ are defined over 𝐷0𝑎 and that 𝐷0𝑎 ⊳ 𝐷. Then if D is strongly K-powers-closed over 𝐷0, there
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is 𝑏 ∈ 𝐷𝑛 such that (𝑏, exp(𝑏)) ∈ 𝐿 ×𝑊 and ldimQ(𝑏/𝐷0𝑎) = 𝑛, from which it easily follows that
td(exp(𝑏)/𝐹0exp(𝑎)) = dim𝑊 and thus that exp(𝑏) ∉ 𝑊 ′.

The rest of this subsection will be dedicated to proving the converse under a transcendence
assumption.
Proposition 8.6. Let D be a full K-powered field. If D has a strong finitely generated partial K-powered
subfield 𝐷0 and it is K-powers-closed, then it is strongly K-powers-closed over 𝐷0 and hence also
algebraically saturated in C (𝐷0).

We recall some basics from the theory of atypical intersections.
Definition 8.7. Let 𝑊 ⊆ G𝑛𝑚 be an algebraic subvariety, J a coset of an algebraic subgroup of G𝑛𝑚. An
irreducible component X of the intersection 𝑊 ∩ 𝐽 is typical if dim 𝑋 = dim𝑊 + dim 𝐽 − 𝑛, and it is
atypical otherwise.

We recall the following result, usually referred to as the weak conjecture on intersections with tori
(weak CIT) or weak multiplicative Zilber–Pink.
Theorem 8.8 [36, Corollary 3], see also [17, Theorem 4.6]. Let 𝑊 ⊆ G𝑛𝑚 be an algebraic subvariety.
There is a finite set T𝑊 = {𝐽1, . . . , 𝐽𝑙} of algebraic subgroups of G𝑛𝑚 such that for any coset 𝑐 · 𝐽 of an
algebraic subgroup J of G𝑛𝑚 and any atypical component X of an intersection𝑊 ∩ 𝑐 · 𝐽, there is 𝐽𝑖 ∈ T𝑊
such that X is contained in a coset 𝑤 · 𝐽𝑖 .

Moreover, X is typical with respect to 𝑐 · 𝐽, meaning that

dim 𝑋 = dim(𝑊 ∩ 𝑐 · 𝐽) + dim((𝑤 · 𝐽𝑖) ∩ (𝑐 · 𝐽)) − dim(𝑐 · 𝐽).

Remark 8.9 (See [41, Lemma 4.1]). With notation as in the statement of Theorem 8.8, if W is defined
over a field 𝐹0 then we may assume that w is algebraic over 𝐹0 (𝑐). This is because the irreducible
component X of 𝑊 ∩ 𝑐 · 𝐽 is an algebraic variety defined over some finite extension of 𝐹0 (𝑐), and
therefore, it contains points that are algebraic over this field.
Lemma 8.10. Let F be an algebraically closed field, 𝑊 ⊆ (𝐹×)𝑛 an algebraic subvariety, 𝐽 ≤ (𝐹×)𝑛
an algebraic subgroup. There is a Zariski-closed proper subset 𝑊 ′ of W such that for each 𝑤 ∈ 𝑊 \𝑊 ′,
dim(𝑤 · 𝐽) ∩𝑊 = dim𝑊 − dim 𝜋𝐽 (𝑊).
Proof. By applying the fibre dimension theorem to the projection 𝜋𝐽 : 𝑊 → (𝐹×)𝑛/𝐽. �

Lemma 8.11. Let D be a full K-powered field with a strong, finitely generated, partial K-powered
subfield 𝐷0. Suppose (𝐿,𝑊) is a free pair in 𝐷𝑛, defined over 𝐷0, with dim 𝐿 + dim𝑊 � 𝑛. Then:
(a) There is a Zariski-closed proper subset 𝑊 ′ of W such that if exp(𝑏) ∈ exp(𝐿) ∩ (𝑊 \𝑊 ′), then

td(exp(𝑏)/𝐹0) > 0.
(b) There is a Zariski-closed proper subset 𝑊 ′′ of W such that if exp(𝑏) ∈ exp(𝐿) ∩ (𝑊 \𝑊 ′′), then

ldimQ(𝑏/𝐷0) = 𝑛.
These proofs are inspired by Section 5 of the unpublished preprint [41].

Proof of (𝑎). Let 𝐻0 denote the maximal Q-affine subspace over 𝐷0 contained in L; then 𝐻0 is a
translate of some Q-linear subspace H. Let 𝜋𝐻 : 𝐷𝑛 � 𝐷𝑛/𝐻 and 𝜋exp(𝐻 ) : (𝐹×)𝑛 � (𝐹×)𝑛/exp(𝐻)
denote the projections. Then

dim 𝜋𝐻 (𝐿) + dim 𝜋exp(𝐻 ) (𝑊) � (dim 𝐿 − dim𝐻) + dim𝑊

� 𝑛 − dim𝐻.

By fixing aQ-linear isomorphism between 𝐷𝑛/𝐻 and 𝐷𝑛−dim𝐻 and the corresponding isomorphism
of tori between (𝐹×)𝑛/exp(𝐻) and (𝐹×)𝑛−dim𝐻 we may treat the pair (𝜋𝐻 (𝐿), 𝜋exp(𝐻 ) (𝑊)) as a pair
in 𝐷𝑛−dim𝐻 .

Assume that (𝜋𝐻 (𝐿), 𝜋exp(𝐻 ) (𝑊)) satisfies the Lemma, and let Z be the corresponding Zariski-
closed proper subset of 𝜋exp(𝐻 ) (𝑊). Let𝑊 ′ := 𝜋−1

exp(𝐻 ) (𝑍), and assume exp(𝑏) ∈ (exp(𝐿) ∩ (𝑊 \𝑊 ′)).
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Then 𝜋exp(𝐻 ) (exp(𝑏)) ∉ 𝑍 , so td(𝜋exp(𝐻 ) (exp(𝑏))/𝐹0) > 0. Thus, we obtain td(exp(𝑏)/𝐹0) > 0, as we
wanted.

Hence, we may assume without loss of generality that L does not contain any positive-dimensional
Q-affine subspaces over 𝐷0.

Since 𝐷0 is finite-dimensional as a Q-vector space, exp(𝐷0) is a finite rank subgroup of (𝐹×)𝑛. By
Laurent’s Theorem [21, Theorème 1] (the multiplicative group case of the Mordell–Lang conjecture)
there is a finite union M of cosets of proper algebraic subgroups of (𝐹×)𝑛 such that every point of
𝑊 ∩ exp(𝐷𝑛

0 ) lies in M. Since (𝐿,𝑊) is free, 𝑊 ′ := 𝑊 ∩ 𝑀 is a proper Zariski-closed subset of W.
Suppose exp(𝑏) ∈ exp(𝐿) ∩ (𝑊 \𝑊 ′). Then in particular 𝑏 ∉ 𝐷𝑛

0 , and ldimQ(𝑏/𝐷0) > 0.
Let 𝑄 = Q-AffLoc(𝑏/𝐷0). Since we assumed that L does not contain any positive-dimensional

Q-affine subspaces over 𝐷0, dim(𝐿 ∩𝑄) < dim𝑄. Then we have

ldim𝐾 (𝑏/𝐷0) � dim(𝐿 ∩𝑄) < dim𝑄 = ldimQ(𝑏/𝐷0).

Since 𝐷0 ⊳ 𝐷, we have that 𝛿(𝑏/𝐷0) � 0. Then

td(exp(𝑏)/𝐹0) � ldimQ(𝑏/𝐷0) − ldim𝐾 (𝑏/𝐷0) > 0. �

Proof of (𝑏). For each Q-linear subspace H of 𝐷𝑛, with projections 𝜋𝐻 : 𝐷𝑛 → 𝐷𝑛/𝐻 and 𝜋exp(𝐻 ) :
(𝐹×)𝑛 → (𝐹×)𝑛/exp(𝐻), let 𝑊𝐻 denote the empty set whenever dim(𝜋𝐻 (𝐿)) + dim(𝜋exp(𝐻 ) (𝑊)) >
𝑛 − dim𝐻, and the Zariski-closed subset obtained applying (𝑎) to the pair (𝜋𝐻 (𝐿), 𝜋exp(𝐻 ) (𝑊))
otherwise (again, we can do this by identifying 𝐷𝑛/𝐻 with 𝐷𝑛−dim𝐻 ). Note that for the trivial subspace
𝐻 = {0}, 𝑊{0} is the Zariski-closed set obtained by applying (𝑎) to (𝐿,𝑊) itself.

By Theorem 8.8, there is a finite setH ofQ-linear subspaces of 𝐷𝑛 such that every atypical component
of an intersection between W and an algebraic subgroup of (𝐹×)𝑛 is contained in a coset of exp(𝐻) for
some 𝐻 ∈ H. By applying Lemma 8.10 to each of the projection maps 𝜋exp(𝐻 ) : 𝑊 → (𝐹×)𝑛/exp(𝐻)
for 𝐻 ∈ H and taking the union of all the (finitely many) Zariski-closed sets thus obtained, we
find a Zariski-closed proper subset 𝑊𝜋 of W such that for each 𝑤 ∈ 𝑊 \ 𝑊𝜋 and each 𝐻 ∈ H,
dim(𝑤 · exp(𝐻)) ∩𝑊 = dim𝑊 − dim 𝜋exp(𝐻 ) (𝑊).

Let then

𝑊 ′′ := 𝑊𝜋 ∪𝑊{0} ∪
⋃
𝐻 ∈H

𝜋−1
exp(𝐻 ) (𝑊𝐻 ).

Let 𝑏 ∈ 𝐷𝑛 be a point such that exp(𝑏) ∈ exp(𝐿) ∩ (𝑊 \𝑊 ′′); we aim to show that ldimQ(𝑏/𝐷0) = 𝑛.
Let 𝑄 = Q-AffLoc(𝑏/𝐷0), and let S be the irreducible component of 𝑊 ∩ exp(𝑄) which contains
exp(𝑏). Since exp(𝑏) ∉ 𝑊{0}, exp(𝑏) is not algebraic over 𝐹0, so dim 𝑆 > 0.

Since S is positive-dimensional, there is a Q-linear space 𝐻 ∈ H ∪ {𝐷𝑛} such that 𝑆 ⊆ exp(𝑏 + 𝐻),
and S is typical with respect to exp(𝑏 + 𝐻). By Remark 8.9, the coset exp(𝑏 + 𝐻) is defined over 𝐹alg

0 .
The preimage of 𝐹alg

0 under exp is an infinite-dimensional Q-vector subspace of D, and hence, we may
find c in exp−1 (𝐹alg

0 ) such that:

(i) 𝑏 + 𝐻 = 𝑐 + 𝐻,
(ii) ldimQ(𝑐/𝐷0) = ldimQ(𝑏/𝐷0) = dim𝑄, and

(iii) ldimQ(𝑐/𝐷0𝑏) = dim(𝑄 ∩ 𝑏 + 𝐻),

from which we obtain that ldimQ(𝑏/𝐷0𝑐) = dim(𝑄 ∩ 𝑐 + 𝐻).
Moreover, S is a typical component of the intersection (𝑊 ∩ (exp(𝑐 +𝐻))) ∩ (exp(𝑄) ∩ exp(𝑐 +𝐻))

with respect to exp(𝑐 + 𝐻): This means that

dim 𝑆 = dim(𝑊 ∩ exp(𝑐 + 𝐻)) + dim(exp(𝑄 ∩ 𝑐 + 𝐻)) − dim(exp(𝑐 + 𝐻))
= dim(𝑊 ∩ exp(𝑐 + 𝐻)) + dim(𝑄 ∩ 𝑐 + 𝐻) − dim𝐻. (7)
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Note that we are allowing the possibility that 𝐻 = 𝐷𝑛, that is, that S is typical: We will see that under
our assumptions this is the only possible case.

Since exp(𝑐) is algebraic over 𝐹0 and 𝐷0 ⊳ 𝐷, 𝛿(𝑐/𝐷0) = 0: This implies that 𝛿(𝑏/𝐷0𝑐) =
𝛿(𝑏, 𝑐/𝐷0) � 0. Then we have

0 � 𝛿(𝑏/𝐷0𝑐)
= ldim𝐾 (𝑏/𝐷0𝑐) + td(exp(𝑏)/𝐹0) − ldimQ(𝑏/𝐷0𝑐)
� dim(𝐿 ∩𝑄 ∩ (𝑐 + 𝐻)) + dim 𝑆 − dim(𝑄 ∩ (𝑐 + 𝐻)).

Combining this with Inequality (7), we find that

0 � dim(𝐿 ∩𝑄 ∩ (𝑐 + 𝐻)) + dim(𝑊 ∩ exp(𝑐 + 𝐻)) − dim𝐻

� dim(𝐿 ∩ (𝑐 + 𝐻)) + dim(𝑊 ∩ exp(𝑐 + 𝐻)) − dim𝐻.

Therefore,

dim𝐻 � dim(𝐿 ∩ (𝑐 + 𝐻)) + dim(𝑊 ∩ exp(𝑐 + 𝐻)).

Since exp(𝑏) ∉ 𝑊𝜋 and exp(𝑐) · exp(𝐻) = exp(𝑏) · exp(𝐻), we have

dim(𝜋exp(𝐻 ) (𝑊)) = dim𝑊 − dim(𝑊 ∩ exp(𝑐 + 𝐻)).

Hence,

dim 𝜋𝐻 (𝐿) + dim 𝜋exp(𝐻 ) (𝑊) = (dim 𝐿 − dim(𝐿 ∩ 𝑐 + 𝐻))
+ (dim𝑊 − dim(𝑊 ∩ exp(𝑐 + 𝐻)))

= (dim 𝐿 + dim𝑊)
− (dim(𝐿 ∩ 𝑐 + 𝐻) + dim(𝑊 ∩ exp(𝑐 + 𝐻))
� 𝑛 − dim𝐻.

Thus, (𝜋𝐻 (𝐿), 𝜋exp(𝐻 ) (𝑊)) satisfies the assumptions the Lemma. However, as the irreducible com-
ponent S is contained in a translate of exp(𝐻) by an element that is algebraic over 𝐹0, we have that
td(𝜋exp(𝐻 ) (exp(𝑏))/𝐹0) = 0. As we have taken b so that exp(𝑏) ∉ 𝑊𝐻 𝑗 for each 𝐻 𝑗 ∈ H, by part (𝑎)
of the lemma this is only possible if 𝐻 = 𝐷𝑛. Hence, S is a typical component of 𝑊 ∩ exp(𝑄), that is,
dim 𝑆 = dim𝑊 + dim𝑄 − 𝑛.

Since 𝐷0 ⊳ 𝐷, we have

0 � 𝛿(𝑏/𝐷0)
= ldim𝐾 (𝑏/𝐷0) + td(exp(𝑏)/𝐹0) − ldimQ(𝑏/𝐷0)
� dim(𝐿 ∩𝑄) + dim 𝑆 − dim𝑄

� dim 𝐿 + dim 𝑆 − dim𝑄

� 𝑛 − dim𝑊 + dim 𝑆 − dim𝑄

= 0,

where the last equality holds by typicality of the intersection. Therefore, the chain of inequalities
collapses, and dim(𝐿 ∩𝑄) = dim 𝐿: since (𝐿,𝑊) is free, this only holds for 𝑄 = 𝐷𝑛. Hence, 𝐷𝑛 = Q-
AffLoc(𝑏/𝐷0), so ldimQ(𝑏/𝐷0) = 𝑛, as required. �

This yields the proof that in this setting K-powers-closedness implies strong K-powers-closedness.
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Proof of Proposition 8.6. Suppose 𝐷0 is a finitely generated strong substructure of the full K-powered
field D; let (𝐿,𝑊) be a free, rotund, n-dimensional pair in 𝐷𝑛, 𝑎 ∈ 𝐷𝑘 .

Extending a if necessary, we may assume that (𝐿,𝑊) is defined over 〈𝐷0, 𝑎〉Q and that 〈𝐷0, 𝑎〉Q ⊳ 𝐷.
By Lemma 8.11, there is a proper Zariski-closed subset 𝑊 ′′ of W such that if exp(𝑏) ∈ exp(𝐿) ∩ (𝑊 \
𝑊 ′′), then ldimQ(𝑏/𝐷0, 𝑎) = 𝑛. Since D is K-powers-closed, exp(𝐿) ∩𝑊 is Zariski-dense in W, and
therefore, such a point exp(𝑏) exists. Now, apply Proposition 8.5 to deduce D is algebraically saturated
in C (𝐷0). �

9. Generic powers

In this section, we explore the consequences of our work for the K-powered fields C𝐾 and B𝐾 for which
we know an appropriate Schanuel statement. For particularly nice K, we can prove C𝐾 � B𝐾 . Note that
the field K plays different roles. In E𝐾 or in a general K-powered field, it is an abstract field. We define
C𝐾 and B𝐾 by taking K as a subfield of C (or B) and taking account of how the exponential interacts
with that subfield.

We first give the categoricity and quasiminimality result we have proved. It includes Theorem 1.4 as
the special case in which 𝐷0 is the standard base 𝑆𝐵𝐾 introduced in Example 3.4.

Theorem 9.1. Let K be a countable field of characteristic 0, 𝐷0 a finitely generated K-powered field
with cyclic kernel.

Then up to isomorphism there is exactly one K-powered field E𝐾 (𝐷0) of cardinality continuum
which:

(i) is a strong extension of 𝐷0,
(ii) is K-powers closed, and

(iii) has the CCP.

Furthermore, it is quasiminimal.

Proof. By Theorem 7.13, there is only one K-powered field which satisfies (i) and (iii), and which
is algebraically saturated in the category C (𝐷0). By Propositions 8.5 and 8.6, algebraic saturation in
C (𝐷0) is equivalent to K-powers closedness. �

Theorem 9.2. If 𝐾 ⊆ Bexp has finite transcendence degree, then there is a finitely generated partial
K-powered subfield 𝐷0 ⊳ B

𝐾 such that B𝐾 � E𝐾 (𝐷0).

Proof. By Lemma 4.11, if K has finite transcendence degree, then B𝐾 has a finitely generated strong
substructure 𝐷0 ⊆ �𝐾�exp. Proposition 5.14 gives the CCP. For K-powers-closedness of B𝐾 , let (𝐿,𝑊)
be a free, rotund, n-dimensional pair. Consider the algebraic subvariety 𝐿 ×𝑊 of B𝑛exp × (B×exp)𝑛. Since
Bexp satisfies exponential-algebraic closedness (see [39, Section 5] and [6, Section 9] for the precise
definition of this property; note that freeness and rotundity of the pair (𝐿,𝑊) in the sense of Definition
8.1 imply that 𝐿 ×𝑊 is free and rotund in the sense of [6, Definition 7.1]), 𝐿 ×𝑊 contains a Zariski-
dense subset of points of the form (𝑏, exp(𝑏)), and hence, exp(𝐿) ∩𝑊 is Zariski-dense in W. Then we
may apply Theorem 9.1. �

We pick out those subfields K where 𝐷0 can be taken to be trivial.

Definition 9.3. Let F be Cexp or Bexp. We say that a subfield 𝐾 ⊆ 𝐹 of finite transcendence degree acts
as a subfield of generic powers if 𝐹𝐾 � E𝐾 .

If 𝜆 ∈ 𝐹 is transcendental and such that Q(𝜆) acts as a subfield of generic powers, we say that 𝜆 is a
generic power.

Examples 9.4. (i) The generator 𝜏 of the kernel in Bexp is a generic power. If we consider the predimen-
sion 𝛿Q(𝜏) , we obtain:

https://doi.org/10.1017/fms.2024.82 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.82


Forum of Mathematics, Sigma 29

𝛿Q(𝜏) (𝑧/𝜏) = ldimQ(𝜏) (𝑧/𝜏) + td(exp(𝑧)) − ldimQ(𝑧/𝜏)
� td(𝑧/𝜏) + td(exp(𝑧)) − ldimQ(𝑧/𝜏)
� td(𝑧, exp(𝑧)/𝜏) − ldimQ(𝑧/𝜏)
= 𝛿exp (𝑧/𝜏)
= 𝛿exp (𝑧, 𝜏) − 𝛿exp (𝜏)
= 𝛿exp (𝑧, 𝜏)
� 0,

where we have used that 𝛿exp(𝜏) = td(𝜏) − ldimQ(𝜏) = 0. This implies that �∅�Q(𝜏) = 𝑆𝐵Q(𝜏) , and
hence BQ(𝜏) � EQ(𝜏) .

(ii) A similar argument shows that the number 𝜋 = 𝜏
2𝑖 in Bexp is a generic power.

(iii) Not all transcendental 𝜆 ∈ Bexp are generic powers. Let 𝜆1 = log
√

2, 𝜆2 = log
√

3, 𝜆 = 𝜆1
𝜆2

.
Then:

𝛿Q(𝜆) (𝜆1, 𝜆2/𝜏) = ldimQ(𝜆) (𝜆1, 𝜆2/𝜏) + td(exp(𝜆1), exp(𝜆2)) − ldimQ(𝜆1, 𝜆2/𝜏)
= 1 + 0 − 2
= −1.

Therefore, BQ(𝜆) � EQ(𝜆) .

The question of isomorphism between Cexp and Bexp is considered out of reach as it requires
Schanuel’s Conjecture. However, for ‘sufficiently generic’ tuples of complex numbers, we can prove the
corresponding statement for powers.

Theorem 9.5. Let 𝐾 = Q(𝜆1, . . . , 𝜆𝑛) be the field of rational functions, and choose embeddings of K
into Cexp and into Bexp such that the 𝜆𝑖 are exponentially-algebraically independent.

Then K acts as a field of generic powers, so we have C𝐾 � E𝐾 � B𝐾 .

Proof. By [7, Theorem 1.3], we have 𝑆𝐵𝐾 ⊳ C𝐾 and 𝑆𝐵𝐾 ⊳ B𝐾 . Hence, by Theorem 9.2, B𝐾 � E𝐾 .
C𝐾 is K-powers-closed by [11, Corollary 8.10], and it has the CCP by Corollary 5.14. Therefore, by
Theorem 9.1 C𝐾 � E𝐾 . �

Theorem 1.5 follows from Theorem 9.5.

10. Quasiminimality

In this last section, we focus on the category Ctr(𝐷0), for 𝐷0 a countable full K-powered field: We
show that in this category algebraic saturation is equivalent to a notion of generic strong K-powers-
closedness, which in turn follows from K-powers-closedness as we show using the Weak CIT again,
although in a different way. As a consequence, we obtain that every K-powers-closed field with the CCP
(in particular C𝐾 for any countable subfield K of C, and thus, CC) is quasiminimal. The method of the
proof and the terminology are similar to the ones used in [6, Section 11] to reduce Conjecture 1.1 to
exponential-algebraic closedness, but the technical details are different.

We note that the usage of the word ‘generic’ in generic K-powers-closedness is not related to the
usage in the notion of generic power discussed in the previous section.

Definition 10.1. Suppose 𝐷0 is a full countable K-powered field and D is a purely powers-transcendental
extension of 𝐷0.

Let (𝐿,𝑊) be a free, rotund, n-dimensional pair in 𝐷𝑛 that is defined over some 𝑎 ∈ 𝐷𝑘 such
that ldimQ(𝑎/𝐷0) = 𝑘 and such that for all (𝑐, exp(𝑐)) generic in 𝐿 × 𝑊 over 𝐷0, 𝑎 we have that
𝐾-pLoc(𝑐, 𝑎/𝐷0) is free and strongly rotund.
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D is generically strongly K-powers-closed over 𝐷0 if it is full and for every (𝐿,𝑊) and a as above,
there is (𝑏, exp(𝑏)) ∈ 𝐿 ×𝑊 such that 𝑏 ∈ 𝐷𝑛 and ldimQ(𝑏/𝐷0𝑎) = 𝑛.

We have an analogue of Proposition 8.5, replacing C (𝐷0) by Ctr(𝐷0).

Proposition 10.2. Let 𝐷0 be a full countable K-powered field. Recall that Ctr(𝐷0) denotes the full
subcategory of C (𝐷0) whose objects are purely powers-transcendental extensions of 𝐷0.

An object in Ctr(𝐷0) is algebraically saturated in Ctr(𝐷0) if and only if it is generically strongly
K-powers-closed over 𝐷0.

Proof. (⇒) Let D be an object of Ctr(𝐷0) that is algebraically saturated in Ctr(𝐷0). It is straightforward
to show that D is full. We show that it is generically strongly K-powers-closed.

Let 𝑎 ∈ 𝐷𝑘 with ldimQ(𝑎/𝐷0) = 𝑘 , and let (𝐿,𝑊) be a pair as in Definition 10.1 and 𝑎′ a basis
for �𝐷0, 𝑎�𝐷𝐾 over 𝐷0, say a tuple of length 𝑘 ′. Let c be generic in 𝐿 ×𝑊 over 𝐷0𝑎

′; then the tuple
(𝑐, 𝑎′) satisfies ldimQ(𝑐, 𝑎′/𝐷0) = 𝑛 + 𝑘 ′. The extension it generates over 𝐷0 is a proper extension,
and it is contained in D, so it is purely powers-transcendental; hence, the locus 𝐾-pLoc(𝑐, 𝑎′/𝐷0) is
strongly rotund. Hence, if necessary we may replace a by 𝑎′ (and k by 𝑘 ′) preserving the assumptions
of Definition 10.1, and thus, we assume that a is a basis for 𝐷1 := �𝐷0, 𝑎�𝐷𝐾 ⊳ 𝐷 over 𝐷0.

Add to 𝐷1 a point b such that (𝑏, exp(𝑏)) is generic in 𝐿 × 𝑊 over 𝐷1; by Proposition 8.3, this
generates a strong, powers-algebraic extension 𝐷2 of 𝐷1, which is purely powers-transcendental over
𝐷0 and hence is an object of Ctr(𝐷0). By algebraic saturation of D, 𝐷2 embeds into D over 𝐷1. Hence,
there is a point 𝑏′, the image of b under the embedding, such that (𝑏′, exp(𝑏′)) ∈ 𝐿 × 𝑊 , and (by
genericity) ldimQ(𝑏′/𝐷1) = 𝑛. Hence, D is generically strongly K-powers-closed.

(⇐) Let D be an object of Ctr(𝐷0) that is generically strongly K-powers-closed over 𝐷0. Let
𝐷1 = 〈𝐷0, 𝑎〉Q be a finitely generated, purely powers-transcendental extension of 𝐷0 that is strong in
D, and let 𝐷2 be a finitely generated, strong, powers-algebraic extension of 𝐷1 that is purely powers-
transcendental over𝐷0. By Proposition 6.7, we may find a good basis b for𝐷2 over𝐷1, so𝐷2 = 〈𝐷1, 𝑏〉Q.

We prove that 𝐷2 strongly embeds into D over 𝐷1 by induction on 𝑛 := dimQ(𝐷2/𝐷1). Let
(𝐿,𝑊) = 𝐾-pLoc(𝑏/𝐷1) and (𝐿1,𝑊1) = 𝐾-pLoc(𝑏, 𝑎/𝐷0).

If (𝐿,𝑊) is free, then since the extension𝐷1⊳𝐷2 is strong and powers-algebraic, we have that (𝐿,𝑊) is
rotund and n-dimensional. Moreover, since 𝐷0 ⊳cl𝐷2, (𝐿1,𝑊1) is strongly rotund; by genericity of b over
𝐷1 then (𝐿,𝑊) satisfies the assumptions in Definition 10.1, so by generic strong K-powers-closedness
of D there is a point 𝑏′ ∈ 𝐷𝑛 such that (𝑏′, exp(𝑏′)) ∈ 𝐿 ×𝑊 and ldimQ(𝑏′/𝐷1) = 𝑛. Since D strongly
extends 𝐷1, it must be the case that ldim𝐾 (𝑏′/𝐷1) + td(exp(𝑏′)/𝐹1) � 𝑛. As dim 𝐿 + dim𝑊 = 𝑛, this
implies that (𝐿,𝑊) = 𝐾-pLoc(𝑏′/𝐷1). Since b is a good basis, the extension 〈𝐷1, 𝑏

′〉Q of 𝐷1 is then
isomorphic to 𝐷2 over 𝐷1, and it is contained in D, so 𝐷2 embeds in D over 𝐷1.

If (𝐿,𝑊) is not free, then without loss of generality we may assume that either L is contained in a Q-
affine subspace over 𝐷1 of the form 𝑧𝑖 = 𝑐 for some 𝑐 ∈ 𝑉1, or W is contained in an algebraic subvariety
of the form 𝑤𝑖 = 𝑑 for some 𝑑 ∈ 𝐹

alg
1 . In the first case, we replace 𝐷1 by 𝐷 ′

1 := �𝐷1, 𝑐�𝐷𝐾 and consider
𝐷2 as a powers-algebraic strong extension of 𝐷1 of lower dimension (hence, we may apply induction);
the second case is treated analogously. �

We also have the analogue of Proposition 8.6. Some of the ideas in the proof are similar, but overall
the argument is different.

Proposition 10.3. Let D be a purely powers-transcendental extension of a countable full K-powered
field 𝐷0.

If D is K-powers-closed, then it is generically strongly K-powers-closed.

Before proving this proposition, we prove two lemmas about atypical intersections, the second a
uniform version of the first.

Lemma 10.4. Let D be a full K-powered field, and let (𝐿,𝑊) be a free, strongly rotund pair in 𝐷𝑛.
Suppose W is defined over an algebraically closed subfield 𝐹0 of F.

https://doi.org/10.1017/fms.2024.82 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.82


Forum of Mathematics, Sigma 31

For every Q-linear proper subspace 𝑄 ≤ 𝐷𝑛, there is a Zariski-closed proper subset 𝑊 ′ ⊆ 𝑊 ,
defined over 𝐹0 such that if 𝑤 ∈ 𝑊 \𝑊 ′, then

dim(𝑊 ∩ 𝑤 · exp(𝑄)) < dim𝑊 + dim 𝐿 − 𝑛 − dim(𝑄 ∩ 𝐿) + dim𝑄.

This is similar to an atypical intersection statement, but we do not require the intersection 𝑊 ∩ 𝑤 ·
exp(𝑄) to be typical – it is allowed to be atypical within a certain margin, determined by the interplay
of Q with L.

Proof. Let 𝜋𝑄 : 𝐷𝑛 � 𝐷𝑛/𝑄 and 𝜋exp(𝑄) : (𝐹×)𝑛 � (𝐹×)𝑛/exp(𝑄) denote the projections. By strong
rotundity of the pair, we have

dim 𝜋𝑄 (𝐿) + dim 𝜋exp(𝑄) (𝑊) > 𝑛 − dim𝑄.

By the fibre dimension theorem applied to the restriction of 𝜋exp(𝑄) to W, there is a Zariski-closed
proper subset 𝑊 ′

𝜋 of 𝜋exp(𝑄) (𝑊), defined over 𝐹0, such that for all 𝑤 · exp(𝑄) ∈ 𝜋exp(𝑄) (𝑊) \𝑊 ′
𝜋 ,

dim
((
𝜋−1

exp(𝑄) (𝑤 · exp(𝑄))
)
∩𝑊

)
= dim𝑊 − dim 𝜋exp(𝑄) (𝑊).

Let𝑊 ′ = 𝜋−1
exp(𝑄) (𝑊

′
𝜋) ∩𝑊 . We know 𝜋−1

exp(𝑄) (𝑤 · exp(𝑄)) ∩𝑊 is by definition equal to 𝑤 · exp(𝑄) ∩𝑊
for all 𝑤 ∈ 𝑊 . On the other hand, since 𝜋𝑄 (𝐿) is a linear projection of a linear space, the dimension
of the fibres of the points in its image does not depend on the choice of point, and it is always equal to
dim(𝐿 ∩𝑄) = dim 𝐿 − dim 𝜋𝑄 (𝐿).

Combining the fibre equalities, we obtain that for 𝑤 ∈ 𝑊 \𝑊 ′,

dim(𝐿 ∩𝑄) + dim(𝑊 ∩ 𝑤 · exp(𝑄)) = dim𝐿 − dim 𝜋𝑄 (𝐿)+
dim𝑊 − dim 𝜋exp(𝑄) (𝑊)

and thus using the inequality obtained by strong rotundity

dim(𝐿 ∩𝑄) + dim(𝑊 ∩ 𝑤 · exp(𝑄)) < dim 𝐿 + dim𝑊 − 𝑛 + dim𝑄

from which we obtain the statement. �

Using the finiteness given by the weak CIT, we show that the set 𝑊 ′ can in fact be chosen uniformly
in Q.

Lemma 10.5. Let D be a full K-powered field, and let (𝐿,𝑊) be a free, strongly rotund pair. Suppose
W is defined over an algebraically closed subfield 𝐹0 of F.

There is a Zariski-closed proper subset𝑊 ′ of W, defined over 𝐹0, such that for everyQ-linear proper
subspace Q of 𝐷𝑛 and every 𝑤 ∈ 𝑊 \𝑊 ′,

dim(𝑊 ∩ 𝑤 · exp(𝑄)) < dim𝑊 + dim 𝐿 − 𝑛 − dim(𝐿 ∩𝑄) + dim𝑄.

Proof. By Theorem 8.8, there is a finite list H = {𝐻1, . . . , 𝐻𝑙} of Q-linear subspaces of 𝐷𝑛 such that
every positive-dimensional atypical component of an intersection between W and a coset of an algebraic
subgroup of (𝐹×)𝑛 is contained in a coset of exp(𝐻 𝑗 ) for some 𝐻 𝑗 ∈ H, and it is typical with respect
to this coset.

For each Q-linear subspace 𝐻 ∈ H, let 𝑊 ′
𝐻 denote the Zariski-closed proper subset defined over 𝐹0

given by Lemma 10.4. Let𝑊 ′ :=
⋃
𝐻 ∈H𝑊 ′

𝐻 . This is a union of sets defined over 𝐹0, so it is also defined
over 𝐹0.

Suppose 𝑤 ∈ 𝑊 \ 𝑊 ′, let 𝑄 ≤ 𝐷𝑛 be a proper Q-linear subspace, and let X be an irreducible
component of 𝑊 ∩ 𝑤 · exp(𝑄).
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Assume X is a typical component of the intersection so that it satisfies dim 𝑋 = dim𝑊 + dim𝑄 − 𝑛.
Then, since (𝐿,𝑊) is free and Q is a proper subspace, dim 𝐿 − dim 𝐿 ∩𝑄 > 0 and therefore

dim 𝑋 < dim𝑊 + dim 𝐿 − 𝑛 − dim 𝐿 ∩𝑄 + dim𝑄

as required. Thus, we assume that X is atypical.
Then there is a Q-linear subspace 𝐻 ∈ H such that

dim 𝑋 = dim𝑊 ∩ 𝑤 · exp(𝐻) + dim𝑄 ∩ 𝐻 − dim𝐻. (8)

Since 𝑤 ∉ 𝑊 ′
𝐻 𝑗

for any 𝐻 𝑗 ∈ H, and thus, in particular 𝑤 ∉ 𝑊 ′
𝐻 , we must have

dim𝑊 ∩ 𝑤 · exp(𝐻) < dim𝑊 + dim 𝐿 − 𝑛 − dim 𝐿 ∩ 𝐻 + dim𝐻 (9)

The combination of (8) and (9) gives

dim 𝑋 < dim𝑊 + dim 𝐿 − 𝑛 − dim 𝐿 ∩ 𝐻 + dim𝑄 ∩ 𝐻. (10)

Since dim 𝐿 ∩ 𝐻 � dim 𝐿 ∩𝑄 ∩ 𝐻,

dim𝑄 ∩ 𝐻 − dim 𝐿 ∩ 𝐻 � dim𝑄 ∩ 𝐻 − dim 𝐿 ∩ (𝑄 ∩ 𝐻)
= dim(𝐿 + (𝑄 ∩ 𝐻)) − dim 𝐿

� dim(𝐿 +𝑄) − dim 𝐿

= dim𝑄 − dim 𝐿 ∩𝑄. (11)

So combining Inequalities (10) and (11),

dim 𝑋 < dim𝑊 + dim 𝐿 − 𝑛 − dim 𝐿 ∩𝑄 + dim𝑄

in this case as well. �

Now, we can prove that K-powers-closedness implies generic strong K-powers-closedness.

Proof of Proposition 10.3. Suppose D is a K-powers closed K-powered field which is a purely powers-
transcendental extension of a countable, full K-powered subfield 𝐷0. Let (𝐿,𝑊) be a free, rotund,
n-dimensional pair in 𝐷𝑛 defined over 𝐷0𝑎 for some 𝑎 ∈ 𝐷𝑘 that is as in the definition of generic
strong K-powers-closedness. Then for (𝑐, exp(𝑐)) generic in 𝐿 ×𝑊 over D we have that (𝐿1,𝑊1) :=
𝐾-pLoc(𝑐, 𝑎, exp(𝑐, 𝑎)/𝐷0) is free and strongly rotund in 𝐷𝑛+𝑘 . Let 𝑊 ′

1 be the Zariski-closed proper
subset of 𝑊1 defined over 𝐹0 given by Proposition 10.5. Let 𝑊◦

1 := 𝑊1 \𝑊 ′
1.

Consider the set

𝑊◦ :=
{
𝑤 ∈ 𝑊 | (𝑤, exp(𝑎)) ∈ 𝑊◦

1
}
.

Since exp(𝑎) is generic over 𝐹0 in the projection of 𝑊1 to the last k coordinates, 𝑊◦ is a Zariski-open
dense subset of W. By K-powers-closedness of D, there is a point (𝑏, exp(𝑏)) ∈ 𝐿 ×𝑊◦; note that then
exp(𝑏, 𝑎) ∈ 𝑊◦

1 and (𝑏, 𝑎) ∈ 𝐿1. We will prove that ldimQ(𝑏/𝐷0𝑎) = 𝑛.
Let 𝑄 := AffLocQ(𝑏/𝐷0𝑎) and 𝑄1 := AffLocQ(𝑏, 𝑎/𝐷0). Extending a if necessary, we assume that

𝐷0𝑎 ⊳ 𝐷 (we may do so by the same argument as the one at the beginning of the proof of Proposition
10.2.) Therefore, we have
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0 � 𝛿(𝑏/𝐷0𝑎)
= ldim𝐾 (𝑏/𝐷0𝑎) + td(exp(𝑏)/𝐹0exp(𝑎)) − ldimQ(𝑏/𝐷0𝑎)
= ldim𝐾 (𝑏, 𝑎/𝐷0) − ldim𝐾 (𝑎/𝐷0) + td(exp(𝑏, 𝑎)/𝐷0) − td(exp(𝑎)/𝐷0)

− ldimQ(𝑏, 𝑎/𝐷0) + ldimQ(𝑎/𝐷0)
� dim(𝐿1 ∩𝑄1) + dim(𝑊1 ∩ exp(𝑄1)) − dim𝑄1

− (ldim𝐾 (𝑎/𝐷0) + td(exp(𝑎)/𝐹0) − 𝑘)
= dim(𝐿1 ∩𝑄1) + dim(𝑊1 ∩ exp(𝑄1)) − dim𝑄1 − 𝛿(𝑎/𝐷0). (12)

From the fibre dimension theorem, we get that ldim𝐾 (𝑎/𝐷0) = dim 𝐿1 − dim 𝐿 and td(exp(𝑎)/𝐹0) =
dim𝑊1 − dim𝑊 , and we also have that dim 𝐿 + dim𝑊 = 𝑛, thus

𝛿(𝑎/𝐷0) = dim 𝐿1 + dim𝑊1 − 𝑛 − 𝑘 (13)

Therefore, combining (12) and (13) we obtain

0 � dim(𝐿1 ∩𝑄1) + dim(𝑊1 ∩ exp(𝑄1)) − dim𝑄1 − (dim 𝐿1 + dim𝑊1 − 𝑛 − 𝑘)

so

dim(𝑊1 ∩ exp(𝑄1)) � dim 𝐿1 − dim(𝐿1 ∩𝑄1) + dim𝑊1 − 𝑛 − 𝑘 + dim𝑄1.

Recall that exp(𝑄1) is a coset of some algebraic subgroup by exp(𝑏, 𝑎): Since exp(𝑏, 𝑎) ∈ 𝑊◦
1 , this

inequality together with Proposition 10.5 implies that 𝑄1 is not a proper subspace, so 𝑄1 = 𝐷𝑛+𝑘 . Then
𝑄 = 𝐷𝑛, and ldimQ(𝑏/𝐷0𝑎) = 𝑛, as we wanted. �

Finally, we put everything together to prove our main quasiminimality theorems.

Proof of Theorem 1.3. Let K be a countable subfield of C, and 𝐷0 = pclC𝐾 (∅). Then C𝐾 is K-powers-
closed by [11, Corollary 8.10], so by Propositions 10.2 and 10.3 it is algebraically saturated in Ctr(𝐷0). It
has the CCP by Proposition 5.14, and it has cardinality continuum, so by Theorem 7.13 it is isomorphic
to E𝐾,tr (𝐷0) and hence is quasiminimal. �

As noted in the Introduction, Theorem 1.2 follows directly from Theorem 1.3.
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