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1. Introduction. In this note we consider transcendental entire functions

f(2)= ioanz" W

whose power series contain gaps, i.e.
a,=0 (n¢A), )

where A = {1,} is a suitable set of positive integers. We denote the set of all such functions
f(z) by E(A). As usual M(r) = M(r, f) denotes the maximum modulus of f(z) on the circle
|z| =r. The order p and the lower order A of f(z) are defined by

. loglog M(r)
=1 —c o7\
P IT.S;]p logr ’
loglog M
2 = liminf loglog M(r) ,
- logr

respectively.
The following theorem is due to Macintyre [4].

THEOREM A. Suppose that f(z)e E(A), where

il <o, 3
k=1
Then f(z) is unbounded on z > 0.
Edrei [2] has shown that, if the order of f(z) is taken into account, then the gap condition
(3) may be relaxed. He proves

THEOREM B. Suppose that f(z)e E(A) and is of finite order p, and that
1 1
iminf —— At <—. 4
hir-lvglfk)gsl,és » < 2P ( )
Then f(z) is unbounded on z > 0.

From both theorems we may draw the further conclusion that f(z) has no finite radial
asymptotic values. Both Macintyre and Edrei use an idea of Pélya [6] to show that, even for
this weaker conclusion, their gap conditions are best possible. More precisely, Macintyre
shows that, if A is any set of positive integers for which (3) does not hold, then there exists an

A
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f(2)e E(A) such that f(x) >0 as x> +co. Similarly, Edrei shows that, if A is any set of
positive integers for which (4) does not hold, then there exists an f(z) e E(A) of finite order p
such that f(x) - 0 as x = + 0.

In this note we prove a result which contains those of Macintyre and Edrei quoted above.
We define

¢(s) = (s, f) = log M(¢’). )

It is well-known that ¢(s) is a convex function of s. We shall suppose that (s) is also a convex
function of s which satisfies

fi_s) -+ (5= +©) )
and define

74(s) = mflx {st—y(1)}. @)

The functions y(s) and 7,(s) display a certain duality in so far as 7,(s) is a convex function of
s which satisfies a relation corresponding to (6) and, moreover,

Y(s) = max {st—1,(0)}; ®)
see [5, p. 7). We then have

THEOREM 1. Let A be a set of positive integers. Then a necessary and sufficient condition
that every f(2)e E(A) which satisfies

#(s,/)=0W()) (s> +0) ®
be unbounded on z > 0 is that

liminf{Z 5 A;l-’_*(i)} = —o. (10)

s AnSs N

We define the y-order p (0 < p < o) of an entire function f(z) by
-1
p = limsup l!l———si(i)—) (11)
§—

The y-order reduces to the usual notion of order in the case when  is the exponential function.
We can also define the lower -order of f(2) in a similar way. We then have

COROLLARY 1. Let A be a set of positive integers. Then a sufficient condition that every
f(2)e E(A) which is of finite r-order at most p be unbounded on z > 0 is that
1 1
liminf - At —. 12
s~ sz,.gzw(s) " 2p 13
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If log yi(s) is a convex function of s, the gap condition is also necessary.

COROLLARY 2. Let A be a set of positive integers. A sufficient condition that every
J(z)e E(A) which is of finite lower \y-order at most A be unbounded on z > 0 is that
1 1
limsup ~ <=,
5=+ 00 S An gﬁ(s) 21
If log Y(s) is a convex function of s, the gap condition is also necessary.

In the case when (s) = exps, Corollary 1 reduces to Edrei’s Theorem B and Corollary 2
to a companion theorem. In [2], Edrei noted that his results, although best possible, contain
an imprecision with regard to the type of entire function considered. Such an imprecision is
inevitable in the case of Theorem B, since f(z) is bounded on z > 0 if and only if f(Rz) (R > 0)
is bounded on z > Q. However, Edrei’s result can still be sharpened somewhat by taking into
account the type of f(z). As usual, if £(z) is of finite order p, its type t is defined by

log M(r)
.

CoROLLARY 3. Let A be a set of positive integers. A necessary and sufficient condition that
every f(z) € E (A) which is of finite order at most p and finite type be unbounded on z > 0 is that

1
liminf{ Y l,,“-——z——logs} = —o0.

s~ ApSs P

T = limsup

r—ow

We remark that in all the above results the conclusion that f(z) is unbounded on z > 0
may be replaced by the assertion that there is no polynomial which majorises f(z) on z > 0.

2. Proofs of sufficiency. In this section we show that the gap conditions given are
sufficient that f(z) be unbounded on z > 0.
For an entire function F(z) which satisfies F(0) = 0 we introduce the notation

#Le={[ 1o ]

We require three lemmas, the first of which is a variant of Lemma 1 of [1].

LemMa 1. Let O <y, <py <...<p, Then,foreachv=1,2,...n, there exists a real-
valued function

Bv(x) = i ﬂj,v x™

i=1
such that

.

1 12[ a—u
atpy juy o4y’
J#v

(i) f B2 P = u) .
0 x

@) J: x*B(x) _d})_c =
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LemMma 2. Let A = {A;} be a set of positive integers and define
WFW%ZM+
AjSx

where y; = 2;—4(j=1,...n). Then there exist constants C(2) (A€ A) which are independent
of x and such that the coefficients of each polynomial P(t) of the form

P(ty= Y A;t4

AjSx
satisfy the inequality
‘Avl é C(Av) " P “a(x) ('{v é x)'

Proof of Lemma 2. We write o for a(x) and let P(¢) = *Q(¢). Then, by Lemma 1(i),

dt du: dt
JQ()B<> i 1A‘J~o B(")‘

! dt
= A,- o® J tﬂij(t)_t_
0

1= uM:

i

1 2
Bt o2

Y21, fisx My G B
itv

On employing the inequality e(1-y) < (1+y) (0 < y < 1), we deduce that

izl o3

[+
The convergence of the infinite product follows from that of the infinite series ). uy2. The
j=1
conclusion of Lemma 2 may now be deduced by means of Schwarz’s inequality and Lemma
1(ii).
LeMMA 3. Suppose that f(z)e E(A) and has a power series expansion of the form (1).
Suppose also that (9) and (10) hold. Then, for each fixed R > 0,

v+ i
Mt
By}

liminf max |} a,t*|=0,
X200 0ZtSRe(x) k>x

where o(x) is defined as in Lemma 2.
Proof of Lemma 3. For each r >0,
|ay| < M(r)r*
= exp{$(5)~5k}
< exp {A(s)—sk},
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where A is an appropriate constant and r = ¢.  On minimising the right hand side with respect

to s, we obtain
k
|ak| < exp {—Arw<z)},

where 7,(s) is defined by (7). Since 7,(s) is a convex function of s, s™'z,(s) increases. Hence,

for 0 < t £ Ro(x), .
x40

< pfoerm )]

It follows from (10) that, for each fixed R > 0, the expression inside the braces is smaller than
any pre-assigned positive constant for a set of values of x which is unbounded above. This
completes the proof of Lemma 3.

Z aktk

k>x

Proof of sufficiency in Theorem 1. We fix A€ A and apply Lemma 2 to the function
P(t) = Z (akRk)tk,

kSx
where 1 £ x. We obtain that
|, R*| < CA)|| P ooy

Thus

|a;R* ¥ <€)

Y aptt
ksx

Ra(x)

Y at

k>x

=C) {" S "Ra(x)+

Ra(x)} )

Allowing x — + oo through a suitable sequence of values and employing Lemma 3, we obtain
that

|a,R**| < C() limsup || || rotsy

x—w

0 d %+
gcu){ f lf(x)|2—x—’§} :

But, if f(x) is bounded on x > 0, the right hand side is finite. A contradiction then follows
on letting R — co, unless @, = 0. But this cannot be true for every value of 1€ A because f(2)
is transcendental. Thus f(x) is unbounded on x > 0 and we have proved that the gap condition
of Theorem 1 is sufficient.

Proof of sufficiency in Corollary 1. The inequality
FOEL OB (13)
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is obtained from (7) on taking t = yy"!(s). The gap condition (10) is therefore implied by
liminf{leS l,f‘—t//"(s)} = — o0, (14)
which, in turn, is implied by )
liminfi Y Ait<i (15)
so0  SAsYis)

Suppose now that
1

1
liminf - At<—
S0 slnézlll(s) 2p
as in Corollary 1. Then, for a suitable T > p,
1
liminf- Y A7'<14,

s~ SAns¢(s)

which is inequality (15) with (s) replaced by y(zs). Moreover, since f(2) has y-order p,

(s, ) =0@W(15)) (s +0),

which is equation (9) with Y(s) replaced by ¥(ts). It then follows from Theorem 1 with y(s)
replaced by y(zs) that f(z) is unbounded on z > 0.

Proof of sufficiency in Corollary 2. Suppose that
1 1
lim sup — e —
S0 p sz,.gz.:p(s) " 2,0
as in Corollary 2. Then, for an appropriate t > p,
) 1
limsup~ ) A7'<i.
s=o Sa.5y(ss)

But, since f(z) has lower y-order p, the inequality ¢(s) < Y (zs) holds for a set of values of s
which is unbounded above. It follows that

1
liminf- Y A7'<%
swo  S1n54(s) -
Since f(z) has ¢-order 1, it follows from Corollary 1 that f(z) is unbounded on z > 0.

Proof of sufficiency in Corollary 3. We take y(s) = ¢** in Theorem 1. The equality (10)
holds in this case, as can be seen by writing Y(s) = e** in (14). Moreover, since f(z) has finite
order p and finite type,

P(s, ) = O(e”)
and so condition (9) holds. Theorem 1 then yields that f(z) is unbounded on z > 0.
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3. Proofs of necessity. In this section we use a construction discussed at length in [2] and
[4]1. If A is a given set of positive integers we define the function F(z) by

X G(—4,) .
F@*El{m}z" (16)

where G(z) is defined by

w0

G(z) = "]:[l (1 —f;) exp i

This is the notation used by Edrei in [2]. The function F(z)e E(A) and
F(x)-»0  (x— +o0).

The proof is precisely as in Section 7 of [2].
Fuchs [3] has given an estimate for the coefficients in (16). He shows that they are
majorised by

exp {Ai,,—ZA,, y /1,:‘},
k=1

where A is a constant depending only on A. We let Fy(z) = F(yz) wherey = exp {—(a+A+1)},
a being a real constant to be chosen later. Then Fy(z)e E(A) and is bounded on z > 0.

Moreover
@(s, Fo) = O (max {(s—a)x —xA(x)}), an
where )
AMx)=2 2 At
ASX

Proof of necessity in Theorem 1. Suppose that (10) does not hold. Then, for an appro-
priate constant b,

10— 5 _p,
X
for all x> 0. Thus
max {(s—a)x —xA(x)} £ max {(s—a+b)x—1,(x)} = Y(s—a+b)
by (8). Thus, if a = b, the function Fy(z)€ E(A), is bounded on z > 0 and satisfies (9). Thus
(10) is a necessary condition.
Proof of necessity in Corollaries 1 and 2. We take a =0in (17). Now
max {sx —xA(x)} = max {x(s—A(x))} < A7(s)s, (18)
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because the maximum is evidently attained for a value of x which satisfies A(x) <s. Since
A(s) is a step function, the notation 1~ (s) needs some explanation. We define
A™Y(s) = sup {x| A(x) < s}.

Suppose that

1 1
liminf= Y A7'z—,
v S 2,50(s) 2p
as in Corollary 1. Then, given any 7 > p,

A(Y(rs)) 2 s
for all large values of s. Hence,
Yes) z 27'(s)
for all large s. Also, by (6), given any ¢ > 0,
Y(es) = s

for all large s. Since log y/(s) is a convex function of s
sATH(s) < Yleshi(zs) < Y((e+1)s)

for all large s. It now follows, from (18), that F,(z) defined above has -order p. Since,
moreover, Fy(x) —» 0 (x — oo) this proves that the gap condition in Corollary 1 is necessary.
A similar argument suffices to prove the necessity of the gap condition in Corollary 2.

Proof of necessity in Corollary 3. 1t is not difficult to show that, if log y/(s) is convex, then
condition (10) is equivalent to the condition

liminf{Z Y l,,"—l//“(s)} = —o0.
) s AnSSs
If we take yi(s) = e, the necessity of the gap condition in Corollary 3 follows from that of the
gap condition in Theorem 1.

The function f(z) = z7*sinz”? (with 2p a positive integer) is an example of an entire
function for which f(x) - 0 (x — oo) and such that

2y, A,,"—ilogs=0(1) (s— +00).
AnSS 2p

A suitable modification yields a simpler proof of the necessity of the gap condition in Corollary
Jinthecase 4, =2np (n=1,2,...).
In conclusion, it is a pleasure to thank the referee for his very helpful comments.
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