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Summary

Genome wide association studies (GWAS) have largely succeeded family-based linkage studies in livestock and
human populations as the preferred method to map loci for complex or quantitative traits. However, the type of
results produced by the two analyses contrast sharply due to differences in linkage disequilibrium (LD) imposed
by the design of studies. In this paper, we demonstrate that association and linkage studies are in agreement
provided that (i) the effects from both studies are estimated appropriately as random effects, (ii) all markers are
fitted simultancously and (iii) appropriate adjustments are made for the differences in LD between the study
designs. We demonstrate with real data that linkage results can be predicted by the sum of association effects.
Our association study captured most of the linkage information because we could predict the linkage results with
moderate accuracy. We suggest that the ability of common single nucleotide polymorphism (SNP) to capture the
genetic variance in a population will depend on the effective population size of the study organism. The results
provide further evidence for many loci of small effect underlying complex traits. The analysis suggests a more
informed method for GWAS is to fit statistical models where all SNPs are analysed simultaneously and as
random effects.

1. Introduction methods, but primarily aim to identify influential loci
and sometimes only a selected portion of the genome
is investigated (McKenzie et al., 2001; Daetwyler
et al., 2008). The equivalence between the estimated
effects of loci from the two methods has rarely been
explored. When comparisons of several linkage stu-
dies are made, results are inconsistent (Altmiiller et al.,
2001); implying either false-positive results, system-
atic differences, such as different alleles segregating in
different families, or lack of statistical power (false-
negative results). This paper compares linkage and
GWAS and shows that the results are in agreement,
provided the differences between the methods are ta-
ken into consideration.

A key difference between linkage and association
mapping is in the precision with which they map the
location of quantitative trait loci (QTLs). A linkage

Genome wide association studies (GWAS) and
family-based linkage studies have both been widely
used to map genes causing variation in complex or
quantitative traits. The two approaches have a similar
aim, and so it is surprising that the results from the
two methods have been subjected to little systematic
comparison, particularly with regard to the size of
estimated effects. Both the approaches use genetic
markers to discover loci but differ in their exper-
imental design. Linkage analysis relies on segregation
of alleles within the family, whereas association
analysis simply correlates markers with phenotypes
across a population. Some studies compare the
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analysis uses recombination events only within the
recorded pedigree and so the confidence interval for
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the position of the QTL is typically large (Darvasi
et al., 1993). In contrast, GWAS rely on linkage dis-
equilibrium (LD) between QTLs and markers to de-
tect polymorphisms. As LD extends only for a short
distance (i.e. <80 kb in humans Clark et al., 2003),
the confidence interval for the position of the QTL is
generally smaller for a GWAS than for a linkage
analysis. Thus, although some GWAS find a QTL in
the same region as linkage studies, linkage studies have
found QTL on most chromosomes for extensively
studied traits and regions identified with linkage tend
to extend for long distances (Altmiiller ez al., 2001).

Both GWAS and linkage studies suffer from two
deficiencies when carried out using standard proce-
dures. First, the estimated size of effect for significant
QTLs are overestimated (e.g. Beavis, 1998; Goring
et al., 2001; Xu, 2003h; Zollner & Pritchard,
2007; Goddard ef al., 2009 ; Sun et al., 2011; Xiao &
Boehnke, 2011). This arises because a single dataset is
used for both discovery and parameter estimation,
causing a correlation between the test statistic and
the estimated effect size of alleles (Goring et al., 2001).
Verification of locus effects in an independent popu-
lation can avoid this bias, provided that the validation
results are not conditioned on statistical tests (Goring
et al., 2001). Alternatively, Goddard et al. (2009) ar-
gue that this bias can be overcome by fitting the effect
of a single nucleotide polymorphism (SNP) or chro-
mosome position as a random effect. If the mean of
the posterior distribution of effect size for the estimate
is b, then the expectation of the true effect (b) has the
desirable property of being the mean of the estimates,
i.e. E(b|h)=h (Goddard et al., 2009). This is not the
conventional definition of unbiased, but it leads to
desirable properties. For instance, if the most signifi-
cant effects are re-estimated in an independent data-
set, then, on average, their effects will not change.

The second problem with both GWAS and linkage
analyses as usually practiced is that the effect of one
position is estimated ignoring all other positions. In
a GWAS, for example, each SNP is tested indepen-
dently for an association with the trait. Consequently
many nearby SNPs may have significant effects
because they are all in LD with the same QTL.
Alternatively, significant SNP may be near several
possible causal polymorphisms (e.g. Barrett er al.,
2008). This can cause confusion about the number,
location and effect size of QTLs that have been
detected. One approach to partially overcome this
problem in a GWAS is to fit all positions simul-
taneously as random effects (Meuwissen et al., 2001),
so that the effect of an SNP is estimated conditional
on the effect of all other positions.

Multiple QTLs also cause confusion for results
from linkage analyses. The simplest interpretation of
a significant peak in the likelihood of a linkage
analysis is that there is a single QTL near the peak.
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However, if more than one QTL contributes to the
linkage signal (Haley & Knott, 1992; Martinez &
Curnow, 1992), this can lead to a wrong conclusion
being drawn and possibly a futile attempt to fine map
a single locus (i.c. a so-called ‘ ghost’ QTL). The effect
estimated in a linkage analysis is actually the com-
bined effect of all QTLs on the chromosome after ac-
counting for recombination between QTLs and the
position being tested. By design, there is strong link-
age between adjacent positions in a linkage analysis
and, if there are many QTLs, it is impossible to dis-
tinguish between adjacent loci because of inadequate
recombination. If the effect of all QTLs detected in a
GWAS could be combined along a chromosome, al-
lowing for recombination between the position being
tested and all other positions, then this effect should
be the same as that estimated by a linkage analysis.
Yang et al. (2010) indicate that common SNP markers
capture approximately half of the genetic variance for
human height. This could cause a discrepancy be-
tween linkage analysis and GWAS as imperfect LD
would affect the association analysis but not linkage
results. Studies with domesticated species indicate
that markers generally capture a higher proportion of
the genetic variance (Daetwyler, 2009; Boyko et al.,
2010; Aitman et al., 2011 ; Haile-Mariam et al., 2012),
suggesting that this discrepancy should be minimized
using a livestock population.

This study tests the hypothesis that effects esti-
mated from a GWAS and from a linkage analysis
agree, provided both are estimated appropriately as
random effects and that SNPs are fitted simul-
taneously in both analysis. To test the hypothesis, we
needed to conduct a linkage analysis and a GWAS in
the same population. We used a sheep population
with large half-sib families because this design max-
imizes power for the linkage analysis and, with ap-
propriate methods, the impact of family structure
in the GWAS can be minimized (MacLeod et al.,
2010). Our approach first demonstrates the conse-
quence of treating the marker effects as random and
of fitting all markers simultaneously. Then we show
how the effects observed in the linkage analysis can be
predicted by combining the effects estimated from
the GWAS and allowing for recombination along a
chromosome.

2. Materials and methods
(1) Data

Genotypes and phenotypes were obtained for 1971
merino sheep from 12 half-sib families from the
SheepGenomics project (White ez al., 2012). The av-
erage family size was 164 animals (range: 68-349).
Genotypes consisted of 48640 SNPs from the
Illumina Ovine SNP50 BeadChip, which were quality
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checked and missing genotypes imputed (see Kemper
et al., 2011). The trait analysed was eye muscle depth
(mm) corrected for body weight, measured by ultra-
sound scanning at approximately 10 months of age.
This trait was chosen because many records were
available and the trait has an approximate normal
distribution. Heritability estimates for eye muscle
depth range between 0-22 (+0-04) and 0-33 (+0-03)
(Safari et al., 2005; Huisman & Brown, 2009;
Mortimer et al., 2010). Full details of the data collec-
tion and procedures can be found in White et al.
(2012). Genotypes for the 48 640 SNP were available
for nine sires, while the genotypes for the remaining
three sires were imputed using a rules-based approach
from the progeny genotypes and ChromoPhase
(Daetwyler et al., 2011). Calculations of LD between
pairs of markers (r%) were made using the correlation
of genotypes.

(i) Assigning inheritance of the paternal alleles

Alleles for sires and their progeny were phased
into paternal and maternal haplotypes using
ChromoPhase (Dactwyler et al., 2011). Although the
sire genotypes were phased, there is no information
on which haplotype is paternal or maternal, and so
they are referred to below as the first and second
chromosome of a sire, where the designation of first
and second is arbitrary. The paternal alleles of each
offspring were assigned to either the first or second
chromosome of their sire based on runs of successive
alleles that matched one of the two chromosomes of
their sire. The algorithm allowed up to one mismatch
per section to account for genotyping and map errors.
Unassigned SNPs were treated as missing data.
Further details of the algorithm are provided in Part
A of the supplementary materials (available at http://
journals.cambridge.org/grh).

(ii1) Within-family linkage analysis — fixed
effect model

A fixed effects model was fitted sequentially for all
SNP positions. The model was

y=Xb+Zv+Wa+e, )

where y is a vector of phenotypes, X is a design matrix
assigning progeny to fixed effects (including covari-
ates), b is a vector of fixed effect solutions, Z is a de-
sign matrix allocating phenotypes to sires, v is a vector
of sire solutions, W is an incidence matrix assigning
progeny to groups according to the allele inherited
from their sire, a is a vector of effects contrasting each
sire’s first and second chromosome and e is a vector of
residuals distributed N(0, To?). Fixed effects in b were
year of birth (2 levels), a regression coefficient for age
(in days, mean age 304 days), birth and rearing type
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(three levels), sex nested within year (four levels) and
four regression coefficients for the first four principal
components from the genomic relationship matrix
(Yang et al., 2010). Principal components were fitted
as covariates to account for population structure
within the maternal haplotypes as maternal pedigree
was unknown (Patterson et al., 2006). Thus, the esti-
mate of the effect of the sire’s allele (@) is

a=(W'W) '"W'(y—Xb —Z), )

where b and ¥ are the estimates for the fixed effects
and sire solutions. The false discovery rate was cal-
culated as (1 —s)p/[s(1—p)] (Storey, 2002; Bolormaa
et al., 2011), where s and p are the realized and ex-
pected proportion of significant SNP.

(iv) Within-family linkage analysis — random
effect model

The model is similar to the fixed effect analysis (i.e.
(1)) except that a is treated as a vector of random
effects distributed o~ N(0, 10%icsnp), Where I is an
identity matrix and 0% snp 1S the sire segregation
variance. That is, 0%csnp is the variance in the trait
attributed to the segregation of alleles within sire
families, estimated across all families. To estimate this
variance, we took the average variance component
estimated using restricted maximum likelihood over
all positions with ASReml (Gilmour et al., 2006). To
avoid an upward bias, imposed by the default settings
in ASReml, both positive and negative estimates of
O%ire.snp Were permitted. This variance component was
then fixed and used to calculate the allele effect at each
position for each sire. The solutions vector, from
Henderson’s mixed model equations (Henderson,
1950; Mrode, 2005), was

a=(WW+AD "W (y—Xb —Z%), (3)

where terms are as described in (1), A=02,,,/0% . ap

and 02, is the residual variance. This was computed
with ASReml for all positions. An alternative cross-
validation method to estimate the sire segregation
variance, with respect to the error variance, and
therefore the degree of overestimation in the fixed ef-
fect model is given in Part B of the supplementary
materials (available at http://journals.cambridge.org/

grh).

(v) Association analysis — fixed effect model

A regression of phenotype on allele dosage was made
at each SNP position. That is, the SNP marker effect
was fitted as fixed following a conventional linkage
analysis. The model was

y=Xb + Zv'+Ty+e, 4)
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where X, Z and e were as defined in (1), v’ is a vector
of random sire effects [distributed N(0, To%.)], T is
a vector assigning progeny to their SNP genotype
(i.e. 0, 1 or 2 copies of an SNP allele) and y is the SNP
allele effect (a scalar). The solution for 7 was esti-
mated using ASReml (Gilmour et al., 2006), where
the sire variance (0%;.) was estimated at each position.

(vi) Association analysis — simultaneous effect of all
SNPs with random SNP effects

Simultaneous estimates of all SNP effects were
obtained using the Bayesian approach (BayesA) of
Meuwissen et al. (2001). The model is

y=Ty+Zv' +e ®)

where T, Z, v’ and e are as defined above (4), y'is a
vector of phenotypes corrected for fixed effects (i.e.
y’=y—Xl;, as described in (1)) and 7y is a vector of
marker effects assumed to be N(0, Io%,;), where 6%, is
the variance for the ith SNP. This method assumes
that allele effects (y) come from a #-distribution with
4-012 df following Meuwissen et al. (2001). This
model, in contrast to (4), directly accounts for the LD
between nearby markers, the overestimation bias in
the marker effects and, by extrapolation of Kang et al.
(2010) and Yang et al. (2011), spurious results due
to population stratification. Fitting all SNPs simul-
taneously indirectly accounts for population stratifi-
cation because SNP effects are estimated conditional
on all other SNPs, whereby eliminating spurious
associations (e.g. associations caused by SNP in LD
with QTL on different chromosomes). SNP allele
effects were estimated as the posterior mean of 10 re-
plicates of a Gibbs chain with 30000 iterations, with
5000 iterations discarded in each replicate as burn-in.

(vil) Predicting linkage results from the association
analysis

The estimates of SNP effects from (5) were used
to predict the linkage effects at each position. The
predicted effect at position j for sire k& (1;,) was cal-
culated as

M M
Nik= Z YiDi,jXi ka1 — Z YiPi,jXi k, 25 (6)
i=1 i=1

where 9; is the estimate of the SNP allele effect at
positions i, p;; is the probability of co-inheritance of
positions 7 and j, x;,, and X, are sire k’s allele at
position i (i.e. 0 or 1) for the first and second chro-
mosomes and M is the total number of SNP positions
on the chromosomes. Thus, (6) is the difference be-
tween the sum of allele effects for the first and
second chromosome at each position, where the sum
of allele effects on each chromosome accounts for
the probability of recombination events along the
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chromosome. The probability of co-inheritance of
positions i and j was calculated as p; ;=1-2¢;;, where
¢;; was the recombination fraction from Haldane’s
mapping function (Haldane, 1919), ie. ¢;;=0-5
[1 —exp(—2 m)] where m is the distance (in Morgans)
between 7/ and j and assuming cM = 1 Mbp (Botstein
et al., 1980 citing Renwick, 1969). The regression co-
efficient of the observed effect on the predicted linkage
effect will be one if (1) the association analysis cap-
tures all of the genetic information in the linkage
analysis, (2) SNP allele effects are additive and
(3) Haldane’s mapping function is an accurate pre-
dictor of recombination.

(viil) Predicting linkage results from the association
analysis with independent data

The data from the association analysis used to predict
the linkage effects in (5) are not independent of the
data used in the linkage analysis. This is because the
segregating alleles from the linkage analysis in the 12
sires also contribute to the association analysis. To
achieve complete independence between the associ-
ation and linkage analyses, it was necessary to ex-
clude, in turn, the offspring of each sire from the
association analysis. That is, model (5) was run 12
times. SNP marker effects were then used to predict
the linkage results using (6) for the sire excluded from
the association analysis. For comparison, an analysis
that predicts the between sire differences using marker
effects estimated with data from all sires and excluding
the sire to be predicted (i.e. independent data) is de-
scribed in Part C of the supplementary materials
(available at http://journals.cambridge.org/grh).

3. Results
(1) Tracking the paternal alleles

Paternal alleles were assigned to either the 1st or 2nd
chromosome of the sire at 92-1 % of positions (range
per sire: 81-:5-95:8 %), excluding uninformative posi-
tions (Supplementary Fig. S1, available at http://
journals.cambridge.org/grh). There was an average of
7-2% unassigned progeny per SNP per sire.

(i1) Linkage analysis and GWAS using conventional
methods

Using the conventional fixed effect linkage analysis
(1), 3109 positions were identified as significant on 15
of 26 chromosomes at a false discovery rate of 14-8 %
(P<0-01, Fig. 1). When significant SNPs were tested
using the genome-wide association analysis (4), there
are 132 SNPs identified as significant with a false-
discovery rate of 22-8% (P<0-01, SNP details in
Supplementary Table S1, available at http://journals.
cambridge.org/grh). The false-discovery rate suggests
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Fig. 1. Comparison of the test statistics across the genome for linkage (grey) and the association (black) analyses.
Markers significant in both analyses are highlighted in red (P <0-01).

many true discoveries, although the closer inspection
below creates some confusion for QTLs underlying
our trait.

Doubts over the results from the conventional
analysis arise because some chromosomes suggest
discrete QTL, while for other chromosomes the re-
sults are inconsistent. For example, consider chro-
mosomes 3 and 6 (Fig. 2). Chromosome 3 presents
seemingly reliable answers where the 43 positions
significant in both analyses appear to cluster near two
likely QTLs, one at (approx) 30 Mbp and another at
50 Mbp. The effect of the SNP with the highest sig-
nificance from the association analysis at about
50 Mbp is —0-39 (+0-08) mm and the estimated
(absolute) effect ranges from 0-01 (£+0-27) to 0-71
(£0-38) mm for the linkage analysis. However, chro-
mosome 6 shows a strong linkage signal from 80 Mbp
onwards and 21 SNP significant from both the linkage
and association analysis over a wide region. It is not
clear which or if all these SNPs are associated with the
linkage peak. The linkage analysis suggests possibly
three QTLs, while the SNP also significant in the as-
sociation analysis suggests maybe four or more QTLs.
Also contradictory are the several significant SNPs at
about 40 Mbp, which do not have any corresponding
linkage signal. It is difficult to ascertain using the two
approaches in this form, which analysis is more re-
liable, which effects are due to experimental noise,
how many QTLs exist and what is the best estimate of
the position of each QTL.

(ii1) Linkage analysis — impact of the random
effects model

The mean maximum likelihood estimate for 0Ze snp
from all positions was 0-013, and thus the average
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Fig. 2. Comparison of test statistics for chromosomes 3
(a) and 6 (b) using the linkage (grey) and association
(black) analyses. Markers significant in both analyses are
highlighted in red (P <0-01).

proportion of phenotypic variance explained by the
paternally inherited allele was 0-0037 (i.e. O%e.snp/
O%hen =0-013/3-15). Although the likelihood failed to
converge at 5407 (11-1% of all) positions; a sub-
sequent restricted (positive definite) maximum likeli-
hood analysis at these positions showed an almost
zero variance attributed to O%esnp. This method
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Fig. 3. Effect of fitting SNP alleles as fixed (y-axis) or
random (x-axis) using linkage (@) or association (b)
analysis. Allele effects using linkage are estimated for every
sire at all positions (@) or across all animals at all positions
using association (b). Each point represents a single
estimate of an allele effect.

overestimates the average proportion of phenotypic
variance explained by markers because the sum for all
markers is much greater than the genetic variance of
the trait (i.e. the expected genetic variance is ap-
proximately 0-3 Oppen but 0:0037 Oppen/SNP 48 640
SNP>>0-3 0%pen). The overestimation occurs be-
cause of the strong LD between makers in the linkage
analysis.

Comparison of the fixed and random effects models
for SNP alleles from the linkage analysis (i.e. models
(2) and (3)) shows broad agreement for most sires at
most positions (Fig. 3 a). The regression indicates that
the random effects analysis explains 91 % of the vari-
ation in the fixed effect analysis but that the fixed
effect model is estimating the size of the allele effect to
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be about ten times greater than the random effect
model. Adjacent allele effects for a sire are correlated
in Fig. 3 a (i.e. adjacent SNP positions have correlated
effects and form lines in the plot) and this correlation
between positions is maintained by the random
model. Notably there are several SNP positions with
large effects estimated by the fixed model (> +2 mm)
for which the random model estimates an effect
near zero. This severe regression by the random ef-
fects model suggests that there was little support for
the large effect estimated by the fixed model. These
positions are probably regions where poor tracking of
the paternal allele occurred, and consequently, there
were few progeny who were recorded to inherit each
of the sire’s alleles.

(iv) Association study — impact of the random
effects model

The regression of the association allele effects from
the fixed and random models (i.e. (4) and (5)) show
that the fixed model estimates the effect of alleles al-
most 100 times larger than the random model
(Fig. 3b). Similar to the linkage analysis, many SNP
alleles estimated with large effects (> £+ 1 mm) from
the fixed model were regressed to almost zero using
the simultaneous method (Fig. 3 b). This occurs be-
cause of unreliable estimates of effects from the fixed
effect model. For example, of the 23 markers with
large effects (> + 1 mm) from fixed effect model and
very small effects (<0-001 mm) in the random model,
20 (87%) were not significant (P>0-05). The re-
maining three markers may represent spurious results
from the standard GWAS, presumably caused by LD
with other SNP.

The regression of the fixed effect solutions on the
random effects solutions also explains a lower amount
of variation compared with the linkage analysis
(i.e. R*=091 vs. R®=0-58, Fig. 3). The differences
between the models and the lower proportion of
variance explained by the random effect model is
partially due to overestimation of the effects when
they are fitted one at a time as fixed effects and par-
tially because the BayesA analysis may spread the
effect of each QTL over several adjacent SNP. For
example, Fig. 4 compares the fixed and BayesA
analysis over a 20 Mbp region on chromosome 6
where there appears to be a strong QTL signal at
around 42 Mbp. The random effects analysis maps
this effect in a location slightly further along the
chromosome (41-5 Mbp) compared with the fixed ef-
fect analysis (40-8 Mbp), but it also shows the spread
of QTL effects for SNP in modest LD (2> 0-5) with
this SNP in the region. Further, from the random ef-
fects model, it is clearer that there are possibility of
three QTLs at 30-7, 450 and 50-6 Mbp for markers
which are not in strong LD with the SNP at
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between these marked SNPs and the surrounding markers.

41-5 Mbp. A further SNP at 42-1 Mbp may be asso-
ciated with the same QTL tracked by the SNP at
41-5 Mbp or this association could indicate a fourth
additional QTL.

(v) Predicting the linkage results from the
association study

Despite the correction for bias in the linkage and as-
sociation analyses the magnitude of the association

https://doi.org/10.1017/5S0016672312000365 Published online by Cambridge University Press

effects are still in the order of 100 times smaller than
those estimated from the linkage analysis (Fig. 3). A
prediction of the linkage results from the association
analysis needs to account for the stronger LD between
adjacent positions in the linkage analysis. Using the
linkage results from random model (i.e. (3)), the pre-
diction was the contrast between sire chromosomes
for the sum of the association effects accounting for
recombination (i.e. models (5) and (6)). For individual
sires, the expectation of the linkage effects shows
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Fig. 5. The size of marker effects (mm) across the genome for a single sire (*W4°) when alleles are fitted as random using
linkage (grey) or predicted using the sum of association effects accounting for recombination (black).

good agreement with the linkage results (Fig. 5,
Supplementary Fig. S2, available at http://journals.
cambridge.org/grh). To compare the effects across all
sires and at all positions we plotted the estimate from
the linkage analysis against that predicted from the
association study (Fig. 6 @). The regression is almost
one (slope: 0-9754+1-2 x 1073, intercept: 3-7x 103+
6-9 x 10%) and accounts for about half of the vari-
ation in the linkage results (R*=0-523). Considering
the sampling errors in both estimates, this suggests
that the association analysis is capturing the majority
of within-family information. There were no data
points which showed a notable deviation from the
regression slope (Supplementary Fig. S3).

(vi) Predicting the linkage results with
independent data

There was a high correlation between the SNP effects
estimated with all animals and those estimated ex-
cluding progeny from each sire using the random ef-
fects model (average R*=0-91, range: 0-85-0-93).
However, these analyses predicted the linkage effects
for the excluded sire very inaccurately (Fig. 65,
R*=0-002). This contrasts sharply to results when
the sire to be predicted is included in the analysis
(Fig. 6 @). Thus, the sire whose linkage analysis is to
be predicted must be included in the association
analysis to achieve good agreement between the two
approaches. Predictive ability with independent data
is slightly improved when predicting between sires
differences (R?=0-04, Part C of the supplementary
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material, available at http://journals.cambridge.org/
grh).

4. Discussion

This study suggests two reasons why there is often
little agreement between linkage analysis and GWAS
on the same complex trait. First, when the effects are
estimated as fixed effects in statistical models, the
most significant effects are often grossly over-
estimated. This is evident in our study for both the
linkage and association analysis. Overestimation of
fixed effects has been highlighted previously by several
authors (e.g. Beavis, 1998) and contributes to the of-
ten smaller than expected or perhaps non-significant
results for loci when replication is attempted.
Naturally, this problem also occurs if one attempts to
verify the results of a linkage analysis with a GWAS
or vice versa. Our GWAS predicted the linkage re-
sults, provided both are estimated as random effects,
SNPs are fitted simultaneously in the GWAS, and
GWAS effects on a chromosome are combined to
account for LD in the linkage analysis. The regression
of the observed linkage effect on the effect predicted
from the GWAS is close to 1-0 indicating an ap-
proximate agreement in size. The proportion of the
variance in the linkage results explained by our pre-
diction is high (R?=0-52) considering that both sets of
effects are estimated with error.

Second, this study shows that multiple linked QTLs
can be the underlying cause of significant linkage
results. In contrast to the simulation studies with
multiple QTLs tracked by microsatellite markers
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Fig. 6. Marker effects (mm) estimated from linkage when alleles are fitted as random (y-axis) or predicted from the sum of
the association effects accounting for recombination (x-axis). The association analysis either includes all sires (a) or
excludes the sire to be predicted (b).
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(e.g. Haley & Knott, 1992), our results in real data
suggest that likelihood peaks can be caused by the
sum of many QTLs along a chromosome. We do not
suggest that all linkage peaks are detecting multiple
small QTLs because some studies have been success-
ful in identifying important loci (e.g. Gusella et al.,
1983; Tsui et al., 1985; Charlier et al., 1995;
Coppieters et al., 1998). However, successful linkage
studies involve polymorphisms of large effect and
these loci probably overwhelm any interference in the
signal caused by multiple linked loci. The effect of the
linked loci could be to increase or decrease the ap-
parent effect size of the major loci, depending on the
phase of the interacting loci. Here, we demonstrate
with real data that the additive effect of multiple loci
in strong LD can cause apparent linkage signals. This
conclusion is consistent with simulation and theor-
etical studies (e.g. Dekkers & Dentine, 1991 ; Visscher
& Haley, 1996) and is also supported by mice studies
when single QTL fractionate into multiple smaller loci
with fine mapping (Flint ez al., 2005).

The influence of nearby linked loci cannot be ex-
cluded when using association rather than linkage
analysis. Even in a conventional GWAS analysis, fit-
ting one SNP at a time, SNP with significant effects
may be influenced by multiple nearby QTLs, some in
phase and some out of phase with the tested SNP.
However, LD in GWAS probably has less influence
than in linkage because LD usually extends for
shorter distances, i.e. <1 Mbp in Merino sheep
(Kemper et al., 2011). Hence, a large number of sig-
nificant SNPs most likely indicate a large number of
QTLs. This conclusion is made clearer by fitting all
SNPs simultaneously. Then SNPs that have no mar-
ginal effect after fitting all other SNPs, including
SNP in strong LD with the causal polymorphisms,
will show no association with the trait. Figure 4b shows
a typical result where there are several positions along
the chromosome associated with the trait of interest.

The high degree of agreement (R*=0-52, regression
coefficient ~ 1-0) between our observed and predicted
linkage results is surprising. This consistency suggests
that the association analysis is tracking the majority
of the linkage information and that imperfect LD
(between causal mutations and SNP) is not a strong
influence on the results from our association analysis.
This is because the linkage analysis has strong LD
within families and imperfect LD is not limiting as it
can be in GWAS. Incomplete LD between common
SNP and causative mutations has been hypothesized
to be responsible for ~50% of the genetic variation
in human populations which is not explained by
common SNP (Yang et al., 2010). Here, we suggest
that the importance of incomplete LD between
SNP and causative mutations is influenced strongly
by genetic diversity. Our observation is supported
by other studies with domestic species where
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common SNP capture a high proportion of the
genetic variance (e.g. Daetwyler, 2009; Boyko et al.,
2010; Haile-Mariam ef al., 2012). Thus, as the popu-
lation’s diversity, or effective population size (V.),
increases the ability of common SNP to capture
the genetic variance reduces. Incomplete LD may
occur when causative SNPs are at a lower frequency
than the genotyped SNPs (Yang et al., 2010), sug-
gesting an increased importance for these mutations
in, for example, human compared with livestock
populations.

Extensive QTL mapping experiments in many
species suggests that alleles with a large effect on
quantitative traits are uncommon (e.g. Darvasi &
Pisanté-Shalom, 2002). The results of the association
analysis reported here suggest many QTLs for our
trait but we found no evidence of large effect QTL in
our sires. For instance, if most important genes had a
variant with large effect, we might expect to see at
least one sire with a large estimated effect from the
linkage analysis and an inaccurate prediction of this
effect from the GWAS. However, we never observed
any allele from the linkage analysis which substan-
tially differed from the effect predicted from the as-
sociation analysis (Fig. 6). We sampled only 12 sires
but we analysed each sire at thousands of positions.
If most of the genetic variance was due to rare large
effect variants then we might expect to observe at least
one heterozygous sire in our dataset. The situation of
segregating alleles with large effect may occur but it
cannot be typical because we predicted our linkage
results from an association analysis with moderate
accuracy. Further, all of our estimated effects from the
association analysis were also very small (< 0-008 mm
or <0-008/3:15"2=0-004 s.D.).

Our results show that most of the linkage infor-
mation was captured in the prediction from the
GWAS results. However, the two approaches are
not independent because they use the same data and
we also show that when the sire to be predicted is
excluded from the association analysis we cannot
predict the linkage results. This discrepancy could be
explained by high sampling covariance between the
effects estimated for SNP in very strong LD with one
another. Thus, the combination of SNP alleles has
been observed in the data to be predicted accurately.
The between sire differences, which are the sum of
all SNP effects, were estimated more precisely using
independent data. Prediction of between sire differ-
ences is equivalent to genomic prediction which, given
larger datasets, can reach moderate accuracies in
sheep for this trait (Daetwyler et al., 2010). The de-
pendency between SNP when estimating effects of
individual markers is not surprising considering that
the magnitude of the largest effect was very small
(0-004 s.p.) and given the relatively small size of the
dataset.
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These results suggest that the best analysis is the
GWAS in which all SNPs are fitted simultaneously.
This method gave us consistent results between
linkage and association, and has greater power to
discriminate linked QTLs than either the linkage
analysis or the standard GWAS fitting one SNP at
a time. This is clearly demonstrated in Fig. 4, where
numerous GWAS results are consolidated into
possibly four QTL signals at 30-7, 41-5, 45-:0 and
50-6 Mbp. A potential drawback of this method is that
effects may be split between closely linked markers
(Xu, 2003a). In Fig. 4, this is potentially occurring for
several markers in high LD with the largest estimated
effect at 41-:5 Mbp. These high LD markers may
also be capturing multiple different mutations at
the locus. However, the effect of this disadvantage
should diminish as markers in higher LD with the
causal mutations for traits are included in the SNP
marker set.

In summary, this study aimed to reconcile some
of the differences between linkage and linkage-
disequilibrium mapping. We have demonstrated,
using real data, the correction for the biases in both
linkage and association mapping. We show that mul-
tiple linked QTLs can combine to be the primary cause
of significant linkage results. In our study, the associ-
ation analysis captured 52 % of the within-family in-
formation, which is high considering the sampling
error of effects from both analyses. The results support
the hypothesis that there are many loci of small effect
underlying complex traits. We suggest an improved
method for GWAS is to fit statistical models where all
SNPs are analysed simultaneously. This method pre-
vents spurious results caused by population structure
and accounts for LD surrounding the analysed SNP.
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