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IN some parts of the Geometry of Numbers it is convenient to know that 
certain affine invariants associated with convex regions attain their upper and 
lower bounds. A classical example is the quotient of the critical determinant 
by the content (if the region is symmetrical) for which Minkowski determined 
the exact lower bound 2~n. The object of this paper is to prove that for con
tinuous functions of bounded regions the bounds are attained. The result is, 
of course, deduced from the selection theorem of Blaschke, and itself is a 
compactness theorem about the space of affine equivalence-classes. 

1. Introduction. We consider affine transformations a of Euclidean w-space 
(En) given by 

n 

(<rx)i = Ji = £ o-ijXj + ai0 (i = 1, . . . , n). 

With each <r is associated the matrix, or homogeneous affine transformation 
n 

Ji = £ <TijXj (i = 1, . . . , n). 
i=i 

This matrix will be denoted by /x(o-). The determinant of the matrix JU(O-) is 
called the determinant of o-, written det <r. The mappings c —» /x(o-) —> det a 
are homomorphic and |det <r\ represents the factor by which the transforma
tion alters content. 

The affine transformations for which det or ^ 0 form a group, which will be 
denoted by G. 

We define a convex body to be a bounded closed convex set with inner points 
in En . If o- G G, <TK is defined by the relation 

x Ç K <-> ax G aK. 

Let f(K) be a function defined on the space Ê of all convex bodies in En : f is 
called an affine invariant if f(K) = f(crK) for all o- Ç G, K G S. 

© can be regarded as a metric space, for if 8(K, K') is the greatest distance 
of a point of K from K', i.e., 

h{K,K') = sup ( inf \x - y\)9 
x€K y€K' 

then 
i,(K, Kf) = max (6(K, K'), Ô(K', K)) 

is a metric [1, p. 34]. 
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Define an affine class to be a set consisting of all convex bodies that can be 
derived from a fixed one by means of transformations of G. Let £* be the 
set of all affine classes. The topology of 6 induces a topology on (£*, if we 
define a set of classes to be open in 6* if and only if the union of these classes 
is open in (S. Our main result is 

THEOREM 1. (£* is a compact metric space. 

A weaker form of the result, often useful in applications, is 

COROLLARY. Iff(K) is an affine-invariant continuous real-valued function on 
Ë, then the upper and lower bounds of f are attained. 

2. Properties of G. A transformation a Ç G is said to be orthogonal if the 
matrix ju(o-) is an orthogonal matrix and if also the terms ô o all vanish. The 
orthogonal transformations form a group 0. 

Now it is well known that every non-singular matrix can be expressed as 
the product of a positive definite symmetric matrix and an orthogonal one; 
but then the symmetric matrix can, by the usual reduction of quadratic forms, 
be written UDU~l, where U is orthogonal and D is a diagonal matrix. It 
follows that every matrix can be written in the form 

UiDU*, 
where the U are both orthogonal matrices and D is a diagonal one. 

Applying the homomorphism a —» M GO* we find that, if a 6 G then a can be 
put in the form 
(1) a — aida»;» 

where ai, a 2 € 0 and 8 is such that n(ô) is a diagonal matrix, i.e., 

*v = 0 (j * 0, i). 

With each element a of G associate the point of £n(*+i) whose coordinates 
are the n(n + 1) numbers 

(Tij (i = 1, . . . , n; j = 0, . . . , n). 

The elements of G are thus in one-one correspondence with the complement of 
the variety det a = 0 in En^n+1). The topology so induced characterizes G 
as a topological group, for the maps G X G—>G and G-+G given by the oper
ations of multiplication and taking inverses are continuous. 

We shall use the absolute value symbol |o-| to denote the Euclidean distance 
from the origin of the point of £w^w+1) corresponding to a. Then |<r| is un
altered by left or right multiplication by an element of 0. 

A closed set 2] C G is compact if 

(i) inf |det a\ > 0, 
a €2 

(ii) sup \a\ < oo , 
«r € 2 

for then the corresponding set in En^nJtl) is bounded and closed. 
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LEMMA 1. If K is a fixed convex body, the mapping of G into (5 given by 

is continuous. 

Proof. Let R > 1 be an upper bound for the distance of points of TK from 
the origin, where T is fixed. Then, if x 6 TK and e denotes the identity 
element of G, 

\(ax)i — xi\ = |((<r — e)x)i\ ^ \<i — e\R(n + 1). 
Hence 

rjiarK, TK) ^ R\<r - e\n(n + 1) -> 0 

as a —> e. This proves the lemma. 
In the following two lemmas S denotes the solid unit sphere with its centre 

at the origin, and the A are positive constants. 

LEMMA 2. The set £ of <r Ç G satisfying the conditions 

S D crS; det a ^ A 
is compact. 

Proof. It follows from Lemma 1 that the set of a satisfying the first of 
these two conditions is closed. Since the set det a ^ A is obviously closed, 
E is closed. Now the first of our compactness conditions is satisfied by hypo
thesis, so it is enough to show that X corresponds to a bounded set in En<-n+1K 

By (1) we can write a = aiôa2- Then, since aS = S for all a £ 0, 

S — a^S Z) ai_1cr»S = bS. 

Apply this to the points (0, . . . , 0) and (n~\ . . . , ri~%). We find 

E «io2 ̂  i, £ (n-hu + ôioy ^ i. 

From the triangle inequality, £ôz*2 ^ 4n. Hence |ô|2 ̂  1 + 4w; so, since 
transformations of 0 do not alter lengths in En{nJrl), \a\2 ^ 1 + 4w. This 
proves the lemma. 

LEMMA 3. Let K, K' be two convex bodies. Then the set £ i of <r£G satis
fying the conditions 

crK'D K, d e t c r ^ A2 

is compact. 

Proof. From Lemma 1, £ i 1 S closed. We shall show also that it is a sub
set of a compact set. 

Since K has inner points K ~D nS for some Ti£G. Further Kf is bounded, 
so K! C T2S. Hence the conditions defining £ i imply 

(TT2S D TiS, d e t a ^ A 2 

or 
(2) 5 D T2~1<T-1TIS, det a ^ A 2 ; 
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i.e., S i is contained in the set £ 2 defined by the conditions (2). Apply to 
this set the homeomorphism <r —» T2~V~1TI. It follows from Lemma 2 that £ 2 
is compact. Hence £ 1 , being a closed subset of it, is also compact. 

3. The invariant p. The proof of Theorem 1 depends on the introduction 
of a function p, defined as follows. Let K, K' be two convex bodies in En. 

p(K,K') = inf Y^j {<T € G> ffRI D K]> 

where V denotes the content of the body. 
By definition of p there is a sequence {<ri} of elements of G such that <nKfZ)Kt 

V(<TiK') 
V(K) ~-*p(K>Kf>)- S i n c e v(*iK') = \det <n\V(K'), detcn tends to a limit 

and so is bounded. Hence, by the compactness proved in Lemma 3, there is 
a subsequence such that lim <nv = r Ç G ; so by Lemma 1, 

V(TK') 
TK' D K, P{K,K') = - ^ . 

Thus p(K,K'), which by definition is not less than unity, is equal to unity only 
if K, Kf belong to the same affine class. 

Since afiine transformations preserve ratios of content, 

(3) p{K, K') = P{cK, TK') ( « r . T e O , 

so p is really a function on (£* X S*. Next 

(4) p(KltKt) ^ P(KUK2) p(K,,Kt). 

V(<rK2) V(TK3) 

For let P(KUK2) = - ~ ~ ; p(K2,K3) 

Then P(KI,K3) ^ 
V{arKz) V{TKZ) V(<7K2) 

V(K!) V(Kt) V(K{} • 

LEMMA 4. The function p(K,K') is continuous. 

Proof. We prove first that, for each fixed K, p(K,L) —» 1 as L —* K. 

Since K has inner points it contains a sphere, say centre 0 and radius r. 
Then if r)(K,L) < \r, L contains a sphere centre 0, radius \r. Let (1 + t)L 
be the body obtained by expanding L homothetically about 0 in the ratio 
(1 + t):l. Then (1 + t)L is an affine image of L and contains all the points 
at distance \tr or less from L ; so, if e < 1, 

r,(K,L) <%er^(l+e)LDK 

V(L) 
p(K,L) $ V((l + e)L):V(K) = (1 + «)• 

V(K) 
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and the result follows from continuity of the content [2, p. 61, 62; 1, p. 38]. 
A similar argument shows that p(L,K) —> 1 as L —> K. 

Now from (4) we have the relations 

p(K\, K'2) $ p(K'l9 Kx) P{KU K2) P(K21 K't) 

p(Klf K2) $ p(Ku K\) p(K'u K'2) p(K'2, K2). 

On letting K\ -> Ku K'2 -> K2l we find that lim p(K'i, K'2) = p(Ku K2) and 
continuity is established. 

LEMMA 5. There is an absolute constant c(n)y depending only on the dimen
sion of the space, such that 

p(K,K') $ c{n) 

for every two bodies K>K'. 

Proof. Consider a simplex S of maximum content contained in K. Sup
pose its vertices are Ao, . . . , An and its faces ao, • . . , an. Let b0, . . . , bn be 
the hyperplanes through A^,..,An respectively parallel to the opposite 
faces. These are hyperplanes of support of K> for if, say, bo were not, 
there would be points of K further from the hyperplane #o than A^. 
If A' were such a point, then A', A\, . . . , An would form a simplex of larger 
content, contradicting the original choice of S. Hence K is contained in the 
simplex 2 defined by the hyperplanes &0, . . • , bn. Now V(Y.)'V(S) = nn. 
Since all simplexes belong to the same affine class, we have 

(5) p(S,K) p(K,S) $ n\ 

(6) p(K,S) ^ nn and p(S,K') ^ nn; 

thus, from (4), 

(7) P(K,K') $ n>\ 

It is now easy to prove the compactness part of Theorem 1. It follows 
from (6) that if 5 is a fixed simplex of unit content there is, for each K, a <rK 
contained in S such that V(crK) ^ n~n. Then let 53 be the set of all closed 
convex subsets of S which have content not less than n~n. 93 is compact, by 
Blaschke's theorem [1, p. 34; 2, p. 62-8] and by continuity of the content. 
Consider now the mapping of 93 into 6* where each body is mapped on the 
class of which it is a member. This map is continuous and the image is the 
whole of S*; so, since 93 is compact, its image (S* is compact.1 

iThe condition V(K) ^ n n is necessary only because we restrict ourselves to convex sets 
with inner points. This is the only interesting case, for if an affine invariant is continuous for 
all closed convex sets it is a constant. Thus if / is such a function and i" denotes a closed 
interval, / can be derived from K by a singular affine map, and is the limit of a sequence of 
sets which are derived from K by non-singular affine maps. Hence f(K) = / ( / ) and / is a 
constant. 
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From (4) it follows that the function 

A(K,K') = logp(K,K') + log p(K',K) 

satisfies the triangle inequality, so it characterizes the affine classes as a 
metric space (£**. Let <p be the mapping of 6* onto (£** which maps each 
class, considered as a member of 6* into the same class, considered as a mem
ber of (£**. Then, since A is a continuous function on (£*, the set of K such 
that 

A(K',K) < e (K' fixed) 

is open in S*. Since every open set in Ê** is a union of such sets, and so open 
in ©*, <p is a continuous map. Now Ê* is a compact space and E** is metric, 
so ip is topological; i.e. A gives a metrization for the space Ë*. This completes 
the proof of Theorem 1. 

Among the inequalities (5), (6), (7), only (5) is best possible. Equality 
holds in (5) if K is a sphere, but equality never holds in (6), since, from (5) 

p(S,K) = nn -> P(K,S) = 1 -> K = 0-5 -> p(S,X) = 1, 

a contradiction. Since Ë* is compact, the upper bound is attained and so 
must be less than nn. 

4. A better bound for p. The above simple proof that p that is bounded was 
suggested to the author in a conversation with Dr. Mahler. This section 
gives the author's original proof, which implies a better bound for p. The 
proofs of the first two lemmas were suggested by a referee, and are shorter 
than the author's original proofs. 

LEMMA 6. Let P , Q be two points of a convex body K in E n , where the distance 
\PQ\ = I. Let Kr be the orthogonal projection of K on 7r, a hyperplane perpen
dicular to PQ. Let V be the (n — I)-dimensional content of K'. Then 

V(K) Ï IV/n. 

Proof. Symmetrize with respect to the hyperplane w [2, p. 44; 1, p. 69 sqq.] 
Let Ki be the body obtained in this way. K\ is convex and V(Ki) = V(K). 
The intersection of K\ and ir is the projection K'. To the points P , Q corres
pond two points Pi , Qi of K\ and PiQi = /. 

By convexity, K contains the two cones with common base Kf and vertices 
P , Q, whose total content is 

Win. 
LEMMA 7. There is a parallelotope II containing K such that2 

V(U) ^ n\V(K). 

Proof by induction on n. Let P , Q be two points of K with maximum dis-
2A similar result for symmetrical convex bodies is proved in [3, p. 97-8]. 
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tance = /. The two normal hyperplanes to the line PQ at P,Q are hyperplanes 
of support of K. Let Kf be the projection of K on one of these hyperplanes. 
By the induction assumption there is an (n — 1)-dimensional parallelotope 
II' containing K' for which 

F ' (n ' ) ^ (n - 1)IV'(K'), 

where Vf denotes (n — 1)-dimensional content. Now K is contained in the 
parallelotope II with base K' and altitude L Hence 

V(U) = IV(11') < (» - 1)\IV'(K'), 

so by Lemma 6, V{U) ^ n\V(K). 

LEMMA 8. There is a parallelotope II contained in K, such that 

F(n) ^ n-nV(K). 

Proof by induction on n. Assume, without loss of generality, that, among 
the hyperplanes x\ = const., x\ — 0 is the one or one of those whose section 
with K has maximum (n — 1)-dimensional content. If -4(a) is the (n — 1)-
dimensional content of the section x\ = a, then 

(8) V(K) = A{u) du^ (p + q)A(0), 

where p, — q are the max and min of Xi-coordinates of points of K. 
Let R be the intersection of K with the hyperplane xi — 0. By convexity, 

K contains the cones obtained by joining R to the two points P , Q that have 
max and min xi-coordinate respectively. The hyperplanes x\ = p/n, — q/n 
intersect these cones in two congruent and similarly placed (n — 1)-dimensional 
convex sets, each homothetic to R and each of (n — 1)-content 

A(0) (1 - l/n)n~\ 

By the induction assumption, we can inscribe in these regions two congruent 
and similarly placed (n — l)-parallelotopes, each of content at least -4(0)/nn~ l; 
and these, being distant (p + q)/n apart, span an w-parallelotope of content at 
least 

A(0)(p + q)/nn Ï n~nV{K) 

by 8. This proves Lemma 8. 
Lemmas 7, 8 combined with (4) give the sharper inequality 

(9) c(n) ^ n\ nn. 

However, it is easy to convince oneself that neither Lemma 7 nor Lemma 8 is 
best possible, except Lemma 7 for n = 2. (Then equality holds if K is a 
triangle.) The problem of finding the exact value of c(n) (which must be 
attained, by compactness, for some K, K') is left open. It seems natural to 
conjecture that c(n) is attained when K is a simplex and K' is an ellipsoid. 
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