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Abstract. This is the second part of our study on the dimension theory of C1 iterated
function systems (IFSs) and repellers on R

d . In the first part [D.-J. Feng and K. Simon.
Dimension estimates for C1 iterated function systems and repellers. Part I. Preprint, 2020,
arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of
every C1 IFS on R

d is bounded above by its singularity dimension, and the upper packing
dimension of every ergodic invariant measure associated with this IFS is bounded above by
its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC)
for parameterized families of C1 IFSs, and show that if the GTC is satisfied, then the
dimensions of the IFS attractor and of the ergodic invariant measures are given by these
upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify
the GTC for some parameterized families of C1 IFSs on R

d .

Key words: iterated function systems, Hausdorff and box-counting dimensions, singular-
ity dimension, Lyapunov dimension, transversality condition
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1. Introduction
The present paper is a continuation of our work in [24] for studying the dimension theory
of C1 iterated function systems (IFSs) and repellers.

One of the fundamental problems in fractal geometry and dynamical systems is to
compute various fractal dimensions of attractors of IFSs and associated invariant measures.
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The corresponding problem has been well understood when the underlying IFSs consist of
similitudes or conformal maps satisfying certain separation conditions (see e.g. [7, 25, 26,
30, 39, 41, 44]). The problem becomes substantially more difficult when the underlying
IFSs are non-conformal. In the last three decades, much significant progress has been
achieved for affine IFSs, see e.g. [2, 5, 11, 13, 19, 23, 27, 32, 34, 37], the references in
the survey papers [10, 17] and an upcoming book [3].

In contrast to the extensive studies on affine IFSs, there have been relatively few
results on those IFSs which are neither conformal nor affine. In 1994, Falconer [15]
introduced a quantity (known as the singularity dimension) in terms of sub-additive
topological pressure, and showed that it is an upper bound for the upper box-counting
dimension of repellers of C2 expanding maps satisfying a ‘bunching’ condition. Later,
in 1997, Zhang [50] proved that this upper bound holds for the Hausdorff dimension of
repellers of arbitrary C1 expanding maps. We remark that the results of Falconer and
Zhang extend directly to the IFS setting. Recently, Cao, Pesin and Zhao [9] also gave an
upper bound for the upper box-counting dimension of repellers of C1+α expanding maps
satisfying a certain dominated splitting property. However that upper bound depends on the
splitting involved and is usually strictly larger than the singularity dimension. In [24], the
authors proved that the singularity dimension is an upper bound of the upper box-counting
dimension of the attractor of every C1 IFS or the repeller of every C1 expanding map,
which improved the aforementioned results in [9, 15, 50]. The authors also established
a measure analogue of this result, that is, the upper packing dimension of every ergodic
invariant measure associated with a C1 IFS or repeller is bounded above by its Lyapunov
dimension, which improved an earlier result of Jordan and Pollicott [31] for the upper
Hausdorff dimension of measures. The reader is referred to §2.2 for the definitions of
singularity dimension and Lyapunov dimension.

In [29], Hu computed the box-counting dimension of repellers of C2 maps on R
2 which

have an invariant strong unstable foliation along which they expand more strongly than
in the complementary directions. Very recently, Falconer, Fraser and Lee [18] computed
the Lq -spectra of Bernoulli measures associated with a class of planar IFSs consisting of
C1+α maps for which the Jacobian is a lower triangular matrix subject to a domination
condition and satisfying the rectangular open set condition. As a corollary, they obtained
a formula for the box-counting dimension of the attractors of such planar IFSs. In another
recent paper [33], Jurga and Lee proved that, under slightly stronger assumptions, these
Bernoulli measures (and more generally, quasiBernoulli measures) on the attractors are
exact dimensional with dimension given by a Ledrappier–Young-type formula. In earlier
related works, Bedford and Urbański [6] calculated the box-counting and Hausdorff
dimensions of the attractors of a very special class of planar nonlinear triangular C1+α
IFSs (of which the attractors are curves), Manning and Simon [36] and Bárány [1] studied
the sub-additive pressure associated with nonlinearC1+α IFSs whose maps have triangular
Jacobians.

In this paper, we introduce a generalized transversality condition (GTC) for parameter-
ized families of C1 IFSs on R

d , and show that if the GTC is satisfied, then for almost every
(a.e.) (in an appropriate sense) parameter, the Hausdorff and box-counting dimensions
of the IFS attractor are indeed given by the singularity dimension, and the dimension of
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ergodic invariant measures on the attractor is given by its Lyapunov dimension. Moreover,
we will verify the GTC for several classes of translational families of C1 IFSs.

Before formulating our results precisely, we first recall some basic notation and
definitions. By aC1 IFS on a compact setZ ⊂ R

d , we mean a finite collection F = {fi}�i=1
of self-maps on Z, such that there exists an open set U ⊃ Z so that each fi extends to a
C1-diffeomorphism fi : U → fi(U) ⊂ U with

ρi := sup
x∈U

‖Dxfi‖ < 1,

where Dxf stands for the differential of f at x and ‖ · ‖ is the standard matrix norm (that
is, ‖A‖ is the largest singular value of A).

Let K be the attractor of the IFS F , that is, K is the unique non-empty compact subset
of Z such that

K =
�⋃
i=1

fi(K) (1.1)

(cf. [30]).
Let (�, σ) be the one-sided full shift over the alphabet {1, . . . , �}. Let � : � → K

denote the corresponding coding map associated with the IFS F , that is,

�(i) = lim
n→∞ fi1 ◦ · · · ◦ fin(0), i = (in)

∞
n=1. (1.2)

It is well known that � is continuous and surjective [30]. For a σ -invariant Borel
probability measure μ on �, let �∗μ denote the push-forward of μ by �, that is,
�∗μ(E) = μ(�−1(E)) for each Borel subset E of Rd .

For a Borel probability measure ξ on R
d , we call

dξ (x) = lim inf
r→0

log ξ(B(x, r))
log r

and dξ (x) = lim sup
r→0

log ξ(B(x, r))
log r

the lower and upper local dimensions of ξ at x, where B(x, r) stands for the closed ball
centered at x of radius r. Moreover, we call

dimHξ = ess inf
x∈spt(ξ)

dξ (x) and dimP ξ = ess sup
x∈spt(ξ)

dξ (x)

the lower Hausdorff dimension and upper packing dimension of ξ , respectively. If
dimHξ = dimP ξ , we say that ξ is exact dimensional and write dim ξ or dimH ξ for this
common value.

To introduce the notion of GTC, let � ≥ 2 and let F t = {f t1 , . . . , f t� }, t ∈ 	, be a
parameterized family of C1 IFSs defined on a common compact subset Z of Rd , where
(	, ρ) is a separable metric space, such that the following two conditions hold.
(C1) The maps f ti have a common Lipschitz constant θ ∈ (0, 1), that is,

|f ti (x)− f ti (y)| ≤ θ |x − y| (1.3)

for all 1 ≤ i ≤ �, t ∈ 	 and x, y ∈ Z.
(C2) The mapping t �→ f ti (x) is continuous over 	 for every given x ∈ Z and

1 ≤ i ≤ �.
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For each t ∈ 	, let Kt denote the attractor of F t , and let �t : � → R
d denote the

coding map associated with the IFS F t . Due to the conditions (C1) and (C2), the mapping
(t , i) �→ �t(i) is continuous over the product space 	×�.

For t ∈ 	, r > 0 and i ∈ �∗ :=⋃∞
n=0{1, . . . , �}n, set

Zti (r) = inf
x∈� min

{
rk

φk(D�txf
t
i )

: k = 0, 1, . . . , d
}

, (1.4)

where f ti := f ti1
◦ · · · ◦ f tin for i = i1 . . . in, f tε denotes the identity map on R

d and φs(·)
stands for the singular value function (see (2.5) for the definition).

Definition 1.1. Let η be a locally finite Borel measure on 	. We say that the family F t ,
t ∈ 	, satisfies a GTC with respect to η if there exist δ0 > 0 and a function ψ : (0, δ0) →
[0, ∞) with limδ→0 ψ(δ) = 0 such that the following statement holds: for every t0 ∈ 	
and every 0 < δ < δ0, there exists a constant C = C(t0, δ) > 0 such that for all distinct
i, j ∈ � and r > 0,

η{t ∈ B(t0, δ) : |�t(i)−�t(j)| < r} ≤ Ce|i∧j|ψ(δ)Zt0i∧ j(r), (1.5)

where B(t0, δ) denotes the closed ball in 	 of radius δ centered at t, i ∧ j denotes the
common initial segment of i and j, and |i ∧ j| is the length of the word i ∧ j.

The introduction of the GTC is inspired by the work of Jordan, Pollicott and Simon
[32], who defined the self-affine transversality condition for certain translational families
of affine IFSs. The new feature here is that the upper bound term on the right-hand side of
(1.5) depends upon t0, δ and |i ∧ j|, while in the setting of [32], the corresponding upper
bound term is independent of these parameters and is determined by the linear parts of one
pre-given affine IFS.

For t ∈ 	 and a σ -invariant measure μ on �, we write

d(t) := dimS(F t ), dμ(t) := dimL,F t μ (1.6)

for the singularity dimension of F t and the Lyapunov dimension of μ with respect to
F t , respectively; see Definitions 2.3–2.4. For E ⊂ R

d , let dimH E denote the Hausdorff
dimension of E, and let dimBE, dimBE denote the upper and lower box-counting
dimensions of E, respectively (cf. [16]). When dimBE = dimBE, the common value is
said to be the box-counting dimension of E and is denoted by dimB E.

The first result of the present paper is the following.

THEOREM 1.2. Let F t = {f t1 , . . . , f t� }, t ∈ 	, be a parameterized family of C1 IFSs
defined on a common compact subset Z of Rd , such that the conditions (C1)–(C2) hold.
Let η be a locally finite Borel measure on 	. Assume that (F t )t∈	 satisfies the GTC with
respect to η. Then the following properties hold.
(i) Let μ be a σ -invariant ergodic measure on �. For η-a.e. t ∈ 	, �t∗μ is exact

dimensional and

dimH �
t∗μ = min{d , dμ(t)}.
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Moreover, �t∗μ � Ld for η-a.e. t ∈ {t ′ ∈ 	 : dμ(t ′) > d}, where Ld denotes the
Lebesgue measure on R

d .
(ii) For η-a.e. t ∈ 	,

dimH K
t = dimB K

t = min{d , d(t)}.
Moreover, Ld(Kt ) > 0 for η-a.e. t ∈ {t ′ ∈ 	 : d(t ′) > d}.

The above theorem is a nonlinear analogue of the results of Jordan, Pollicott and Simon
[32, Theorems 4.2 and 4.3] for affine IFSs. We emphasize that in the nonlinear case,
the singularity and Lyapunov dimensions depend on the parameter t, while in the affine
case, the corresponding quantities are constant. This is a key difference between the affine
case and the nonlinear case. We remark that Theorem 1.2 also extends and generalizes the
corresponding results of Simon, Solomyak and Urbański ([45, Theorem 3.1], [46, Theorem
2.3]) for C1+α conformal IFSs on R.

Now a natural question arises of how to verify the GTC for a parameterized family of
C1 IFSs. In what follows, we investigate this question for certain translational families of
C1 IFSs.

First we introduce some definitions.

Definition 1.3. Let F = {fi}�i=1 be a C1 IFS on a compact set Z ⊂ R
d such that fi(Z) ⊂

int(Z) for each i. Set

f t
i := fi + ti , i = 1, . . . , �, (1.7)

where t = (t1, . . . , t�) ∈ R
�d with ti ∈ R

d . By continuity, there is a small r0 > 0 such that
f t
i (Z) ⊂ int(Z) for every t with |t| < r0 and every i, where | · | is the Euclidean norm. Set

Ft = {f t
i }�i=1 for each t with |t| < r0. We call (Ft)t∈�, where � := {s ∈ R

�d : |s| <
r0}, a translational family of IFSs generated by F .

Definition 1.4. Let F = {fi}�i=1 be a C1 IFS on a compact set Z ⊂ R
d . We say that F is

dominated lower triangular, if for each z ∈ Z and i ∈ {1, . . . , �}, the Jacobian Dzfi of fi
at z is a lower triangular matrix such that

|(Dzfi)11| ≥ |(Dzfi)22| ≥ · · · ≥ |(Dzfi)dd |.
We remark that in the above definition, the condition for an IFS to be dominated lower

triangular is slightly weaker than that required in [18, 33].

Definition 1.5. Let � ∈ N with � ≥ 2. Assume for j = 1, . . . , n, Fj = {fi,j }�i=1 is an IFS
on Zj ⊂ R

qj . Let F = {fi}�i=1 be an IFS on Z1 × · · · × Zn ⊂ R
q1 × · · · × R

qn given by

fi(x1, . . . , xn) = (fi,1(x1), . . . , fi,n(xn)), i = 1, . . . , �, xk ∈ Zk for 1 ≤ k ≤ n.

We say that F is the direct product of F1, . . . , Fn, and write F = F1 × · · · × Fn.

Now we are ready to state the second main result of the paper.

THEOREM 1.6. Let F = {fi}�i=1 be a C1 IFS on a compact set Z ⊂ R
d such that fi(Z) ⊂

int(Z) for each i. Suppose either one of the following three conditions holds.
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(i) F is dominated lower triangular on Z satisfying

max
i �=j

(
sup
y,z∈Z

‖Dyfi‖ + ‖Dzfj‖
)
< 1, (1.8)

and Z is convex.
(ii) F is a C1 conformal IFS on Z satisfying (1.8), and Z is connected.

(iii) F = F1 × · · · × Fn, where for each k ∈ {1, . . . , n}, Fk is a C1 IFS on a compact
Zk ⊂ R

dk satisfying either (i) or (ii), in which F and Z are replaced by Fk and Zk ,
respectively.

Then there is a small r0 > 0 such that the translational family

Ft = {fi + ti}�i=1, t = (t1, . . . , t�) ∈ � := {s ∈ R
�d : |s| < r0},

satisfies the GTC with respect to the Lebesgue measure L�d on �. As a consequence, the
conclusions of Theorem 1.2 hold for the family (Ft)t∈�.

The above theorem is a (partial) nonlinear extension of the corresponding results in
[13, 32, 47] for affine IFSs. Recall that in the case when F = {fi(x) = Aix + ai}�i=1 is an
affine IFS on R

d , under the assumption that

max
1≤i≤�

‖Ai‖ < 1/3, (1.9)

Falconer [13] proved that the dimension of the attractor of Ft = {fi + ti}�i=1 is equal to its
affinity dimension for L�d -a.e. t = (t1, . . . , t�) ∈ R

�d . Later, Solomyak [47] pointed out
that the bound 1/3 in (1.9) can be replaced by 1/2. By an observation of Edgar [12], 1/2
is optimal. Under the same assumption that

max
1≤i≤�

‖Ai‖ < 1/2, (1.10)

Jordan, Pollicott and Simon [32] showed that the translational family (Ft)t∈R�d satisfies
the self-affine transversality condition. It was pointed out in [3, Theorem 9.1.2] that
the assumption (1.10) can by further replaced by a slightly more general condition
maxi �=j (‖Ai‖ + ‖Aj‖) < 1.

We remark that Theorem 1.6 also extends the results of Simon, Solomyak and Urbański
([45, Proposition 7.1], [46, Corollary 7.3]) for translational families of C1+α conformal
IFSs on R. It is worth pointing out that for every C1 conformal IFS satisfying the open
set condition (or C1 conformal expanding map), the dimension of its attractor (or repeller)
satisfies the Bowen–Ruelle formula, and is equal to the singularity dimension; meanwhile,
the dimension of ergodic invariant measures on the attractor (repeller) is given by the
Lyapunov dimension (see [7, 25, 39, 44]).

The paper is organized as follows. In §2, we give some preliminaries, including
the variational principle for sub-additive topological pressure, and the definitions and
properties of singularity dimension and Lyapunov dimension. In §3, we prove Theorem
1.2. The proof of Theorem 1.6 is rather long and will be given in §§4–7, where we divide
the whole proof into three different parts, by considering the conditions (i)–(iii) in Theorem
1.6 separately.
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2. Preliminaries
2.1. Variational principle for sub-additive pressure. In order to define the singularity
and Lyapunov dimensions, we require some elements from the sub-additive thermody-
namic formalism.

Let (�, σ) be the one-sided full shift over the alphabet {1, . . . , �}. That is, � =
{1, . . . , �}N, which is endowed with the product topology, and σ : � → � is the left shift
defined by (xi)∞i=1 �→ (xi+1)

∞
i=1. Write �n = {1, . . . , �}n for n ≥ 0, with the convention

�0 = {ε}, where ε stands for the empty word. Set �∗ =⋃∞
n=0 �n. For x = (xi)

∞
i=1 ∈ �

and n ∈ N, write x|n = x1 . . . xn.
Let C(�) denote the set of real-valued continuous functions on �. Let G = {gn}∞n=1 be

a sub-additive potential on �, that is, gn ∈ C(�) for all n ≥ 1 such that

gm+n(x) ≤ gn(x)+ gm(σ
nx) for all x ∈ � and n, m ∈ N. (2.1)

The topological pressure of G is defined by

P(�, σ , G) = lim
n→∞

1
n

log
( ∑
I∈ �n

sup
x∈[I ]

exp(gn(x))
)

, (2.2)

where [I ] := {x ∈ � : x|n = I } for I ∈ �n. The limit can be seen to exist by using a
standard sub-additivity argument.

If the potential G is additive, that is, gn =∑n−1
k=0 g ◦ σk for some g ∈ C(�), then

P(�, σ , G) recovers the classical topological pressure P(�, σ , g) of g (see e.g. [49]).
Let M(�, σ) denote the set of σ -invariant Borel probability measures on �. For μ ∈

M(�, σ), let hμ(σ) denote the measure-theoretic entropy of μ (cf. [49]). Moreover, for
μ ∈ M(�, σ), by sub-additivity,

G∗(μ) := lim
n→∞

1
n

∫
gn dμ = inf

n

1
n

∫
gn dμ ∈ [−∞, ∞). (2.3)

See e.g. [49, Theorem 10.1]. We call G∗(μ) the Lyapunov exponent of G with respect to μ.
The following variational principle for the topological pressure of sub-additive poten-

tials generalizes the classical variational principle for additive potentials [43, 48].

THEOREM 2.1. [8] Let G = {gn}∞n=1 be a sub-additive potential on (�, σ). Then

P(�, σ , G) = sup{hμ(σ)+ G∗(μ) : μ ∈ M(�, σ)}. (2.4)

Although in [8] this is proved for sub-additive potentials on an arbitrary continuous
dynamical system on a compact space, we state it only for shift spaces. Particular cases of
the above result, under stronger assumptions on the potentials, were previously obtained
by many authors, see for example [4, 14, 20, 22, 34, 38] and references therein.

Measures that achieve the supremum in (2.4) are called equilibrium measures for the
potential G. There exists at least one ergodic equilibrium measure; see e.g. [21, Proposition
3.5] and the remark there.

2.2. Singularity dimension and Lyapunov dimension with respect to C1 IFSs. In this
subsection, we define the singularity and Lyapunov dimensions with respect to C1 IFSs.
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Let F = {fi}�i=1 be a C1 IFS on a compact set Z ⊂ R
d and let K denote the attractor

of F (cf. §1). Let (�, σ) be the one-sided full shift over the alphabet {1, . . . , �} and let
� : � → K be the coding map defined as in (1.2).

Let Rd×d denote the collection of d × d real matrices. For T ∈ R
d×d , let

α1(T ) ≥ · · · ≥ αd(T )

denote the singular values of T. Following [13], for s ≥ 0, we define the singular value
function φs : R

d×d → [0, ∞) as

φs(T ) =
{
α1(T ) · · · αk(T )αs−kk+1(T ) if 0 ≤ s < d,
det(T )s/d if s ≥ d ,

(2.5)

where k = [s] is the integral part of s. Here we make the convention that 00 = 1. The
following result on φs is well known; see e.g. [13].

LEMMA 2.2.
(i) φs(ST ) ≤ φs(S)φs(T ) for all S, T ∈ R

d×d and s ≥ 0.
(ii) φs+t (T ) ≤ φs(T )‖T ‖t for all T ∈ R

d×d , s, t ≥ 0.

For a differentiable mapping f : U ⊂ R
d → R

d , let Dzf denote the differential of f
at z ∈ U . Sometimes we also write f ′(z) for Dzf , and also call Dzf the Jacobian matrix
of f at z. Below we introduce the concepts of singularity and Lyapunov dimensions.

Definition 2.3. The singularity dimension of F = {fi}�i=1, written as dimS F , is the
unique non-negative value s for which

P(�, σ , Gs) = 0,

where Gs = {gsn}∞n=1 is the sub-additive potential on � defined by

gsn(x) = log φs(D�σnxfx|n), x ∈ �, (2.6)

with fx|n := fx1 ◦ · · · ◦ fxn for x = (xn)
∞
n=1.

Definition 2.4. Let μ be a σ -invariant Borel probability measure on �. The Lya-
punov dimension of μ with respect to F = {fi}�i=1, written as dimL,F μ, is the unique
non-negative value s for which

hμ(σ)+ Gs∗(μ) = 0,

where Gs = {gsn}∞n=1 is defined as in (2.6) and Gs∗(μ) := limn→∞(1/n)
∫
gsn dμ.

Remark 2.5.
(i) It is not hard to show that there exist a < b < 0 such that

nsa ≤ gsn(x) ≤ nsb, gs+tn (x) ≤ gsn(x)+ ntb

for all x ∈ �, n ∈ N and s, t ≥ 0, where gsn(x) is defined as in (2.6). The existence
and uniqueness of s in Definitions 2.3–2.4 just follow from this fact.
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(ii) The concept of singularity dimension was first introduced by Falconer [13, 15]; see
also [35]. It is also called affinity dimension in the case when the IFS {fi}�i=1 is
affine, that is, each map fi is affine.

(iii) The definition of Lyapunov dimension of invariant measures with respect to an IFS
presented above was adopted from [31]. It is a generalization of that given in [32]
for affine IFSs.

The following result describes the relation between the singularity dimension and the
Lyapunov dimension.

LEMMA 2.6. Let F = {fi}�i=1 be a C1 IFS on a compact subset Z of Rd . Suppose θ ∈
(0, 1) is a common Lipschitz constant for f1, . . . , f�. That is,

|fi(x)− fi(y)| ≤ θ |x − y| for all 1 ≤ i ≤ �, x, y ∈ Z.

Then the following properties hold.
(i) dimS F = sup{dimL,F μ : μ ∈ M(�, σ)}. The supremum is attained by at least

one ergodic measure.
(ii) dimS F ≤ (log �/log(1/θ)).

Proof. Since θ is a common Lipschitz constant for f1, . . . , f�, ‖Dzfi‖ ≤ θ for each 1 ≤
i ≤ � and z ∈ Z. It follows from Lemma 2.2(ii) that for s2 > s1 ≥ 0,

φs2(D�σnxfx|n) ≤ φs1(D�σnxfx|n)θn(s2−s1) for all x ∈ �, n ∈ N,

from which we see that

P(�, σ , Gs2) ≤ P(�, σ , Gs1)− (s2 − s1) log(1/θ).

Hence P(�, σ , Gs) is strictly decreasing in s.
Now let μ ∈ M(�, σ). Write s = dimL,F μ. Then hμ(σ)+ Gs∗(μ) = 0. Applying

Theorem 2.1 to the sub-additive potential Gs yields that P(�, σ , Gs) ≥ 0. Hence
dimS F ≥ s = dimL,F μ. It follows that

dimS F ≥ sup{dimL,F μ : μ ∈ M(�, σ)}.
To show that equality holds, write s′ = dimS F . Let ν be an ergodic equilibrium measure
for the potential Gs′ . Then

0 = P(�, σ , Gs′) = hν(σ )+ Gs′∗ (ν),

which implies that dimL,F ν = s′. That is, dimL,F ν = dimS F . This completes the proof
of (i).

To see (ii), notice that φs
′
(D�σnxfx|n) ≤ θns

′
for all x ∈ � and n ∈ N. It follows from

the definition of P(�, σ , Gs′) that

0 = P(�, σ , Gs′) ≤ lim
n→∞

1
n

log(�nθns
′
) = log �+ s′ log θ ,

from which we obtain s′ ≤ (log �/log(1/θ)). This completes the proof of (ii).
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For a σ -invariant ergodic measure μ on �, let �∗μ denote the push-forward of μ by
�. In the following, we present the main result obtained in the first part [24] of our study
on the dimension of C1 IFSs: the upper box-counting dimension of the attractor of F is
bounded above by the singularity dimension of F , whilst the upper packing dimension of
�∗μ is bounded above by the Lyapunov dimension of μ.

THEOREM 2.7. [24] Let F = {fi}�i=1 be a C1 IFS with attractor K, and let μ be a
σ -invariant ergodic measure on �. Then the following properties hold.
(i) dimBK ≤ dimS F .

(ii) dimP�∗μ ≤ dimL,F (μ).

3. The proof of Theorem 1.2
In this section, we prove Theorem 1.2. A key part of the proof is the following proposition.

PROPOSITION 3.1. Assume that F t , t ∈ 	, satisfies the GTC with respect to a locally
finite Borel measure η on	. Let μ be a σ -invariant ergodic measure on�. Let t0 ∈ 	 and
0 < δ < δ0, where δ0 is given as in Definition 1.1, Then the following properties hold.
(i) For η-a.e. t ∈ B(t0, δ),

dimH�
t∗μ ≥ min{d , dμ(t0)} − ψ(δ)

log(1/θ)
, (3.1)

where ψ(·) is given as in Definition 1.1, and θ is given as in (1.3).
(ii) If dμ(t0) > d + (ψ(δ)/log(1/θ)), then �t∗μ � Ld for η-a.e. t ∈ B(t0, δ).

The proof of the above proposition is adapted from an argument used in [32, Proposi-
tions 4.3 and 4.4]. For the reader’s convenience, we include a full proof. We begin with the
following.

LEMMA 3.2. Assume that (F t )t∈	 satisfies the GTC with respect to a locally finite Borel
measure η on 	. Let s be non-integral with 0 < s < d. Let t0 ∈ 	 and 0 < δ < δ0, where
δ0 is given as in Definition 1.1. Then there exists a number c > 0, dependent on s and δ,
such that for all distinct i, j ∈ �,∫

B(t0,δ)
|�t(i)−�t(j)|−s dη(t) ≤ ce|i∧j|ψ(δ)( max

x∈� φ
s(D�t0xf

t0
i∧j)
)−1

, (3.2)

where ψ(·) is given as in Definition 1.1.

Proof. Take y ∈ � so that φs(D�t0yf
t0
i∧j) = maxx∈� φs(D�t0xf ti∧j). Let k be the unique

integer such that s ∈ (k, k + 1). Clearly k ∈ {0, 1, . . . , d − 1}. For convenience, write

a := φk(D�t0yf
t0
i∧j), b := φk+1(D�t0yf

t0
i∧j),

where φs(·) stands for the singular value function (see (2.5) for the definition). A direct
check shows that

φs(D�t0yf
t
i∧j) = ak+1−sbs−k . (3.3)
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Observe that∫
B(t0,δ)

|�t(i)−�t(j)|−s dη(t)

= s

∫ ∞

0
r−s−1η{t ∈ B(t0, δ) : |�t( i)−�t(j)| < r} dr

≤ sCe|i∧j|ψ(δ)
∫ ∞

0
r−s−1Z

t0
i∧j(r) dr (by (1.5))

≤ sCe|i∧j|ψ(δ)
∫ ∞

0
r−s−1 min

{
rk

a
,
rk+1

b

}
dr (by (1.4))

≤ sCe|i∧j|ψ(δ)
∫ b/a

0

rk−s

b
dr +

∫ ∞

b/a

rk−s−1

a
dr

= sCe|i∧j|ψ(δ)
(

1
k + 1 − s

+ 1
s − k

)
as−k−1bk−s

= sC

(
1

k + 1 − s
+ 1
s − k

)
e|i∧j|ψ(δ)(φs(D�t0yf

t0
i∧j))

−1 (by (3.3)).

This proves (3.2) by setting c = sC((1/(k + 1 − s))+ (1/(s − k))).

Proof of Proposition 3.1. Fix t0 ∈ 	 and δ ∈ (0, δ0). We first prove part (i). Let ε > 0 and
let s be non-integral so that

0 < s < min{d , dμ(t)} − ψ(δ)

log(1/θ)
− 2ε. (3.4)

To show that (3.1) holds for η-a.e. t ∈ B(t0, δ), it suffices to show that

dimH�
t∗μ ≥ s for η-a.e. t ∈ B(t0, δ). (3.5)

For this purpose, we write

ϕs(I ) = max
x∈� φ

s(D
�
t0
x
f
t0
I ), I ∈ �∗. (3.6)

We first prove that

lim
n→∞

μ([i|n])
ϕs(i|n) exp(−nψ(δ))θnε = 0 for μ-a.e. i ∈ �. (3.7)

To see this, according to the definition of dμ(t0) (cf. (1.6) and Definition 2.4),

hμ(σ)+ lim
n→∞

1
n

∫
log φdμ(t0)(D�t0σnif

t0
i|n) dμ(i) = 0. (3.8)

It follows from (3.8), the Shannon–McMillan–Breiman theorem and Kingman’s
sub-additive ergodic theorem (see [49, pp. 93 and 231]) that

lim
n→∞

1
n

log
μ([i|n])

φdμ(t0)(D�t0σnif
t0
i|n)

= 0 for μ-a.e. i ∈ �. (3.9)
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Observe that for each i ∈ � and n ∈ N,

φdμ(t0)(D�t0σnif
t0
i|n) ≤ φs(D�t0σnif

t0
i|n)‖D�t0σnif

t0
i|n‖dμ(t0)−s (by Lemma 2.2(ii))

≤ ϕs(i|n)θn(dμ(t0)−s) (by (3.6) and (1.3))

≤ ϕs(i|n) exp(−nψ(δ))θ2nε (by (3.4)).

Combining the above inequality with (3.9) yields (3.7).
By (3.7), we may find a countable disjoint collection of Borel subsets Ej of � with

μ(�\⋃∞
j=1 Ej) = 0 and numbers cj > 0 such that

μj ([i|n]) ≤ cjϕ
s(i|n) exp(−nψ(δ))θnε for all i ∈ �, n ∈ N, (3.10)

where μj stands for the restriction of μ to Ej defined by μj (A) = μ(Ej ∩ A). Clearly,

μ =
∞∑
j=1

μj . (3.11)

Hence, to prove (3.5), it suffices to show that for each j,

dimH�
t∗μj ≥ s for η-a.e. t ∈ B(t0, δ). (3.12)

By the potential theoretic characterization of the Hausdorff dimension (see e.g. [16,
Theorem 4.13]), it is enough to show that for each j and η-a.e. t ∈ B(t0, δ), �t∗μj has
finite s-energy:

Is(�
t∗μj ) :=

∫ ∫
d�t∗μj (x)d�t∗μj (y)

|x − y|s < ∞.

Integrating over B(t0, δ) with respect to η and using Fubini’s theorem,∫
B(t0,δ)

Is(�
t∗μj ) dη(t) =

∫
B(t0,δ)

∫ ∫
d�t∗μj (x)d�t∗μj (y)

|x − y|s dη(t)

=
∫
B(t0,δ)

∫ ∫
dμj (i) dμj (j)

|�t(i)−�t(j)|s dη(t)

=
∫ ∫ ∫

B(t0,δ)

dη(t)

|�t(i)−�t(j)|s dμj (i) dμj (j)

≤
∫ ∫

ce|i∧j|ψ(δ)(ϕs(i ∧ j))−1dμj (i) dμj (j) (by (3.2), (3.6))

≤ c

∫ ∞∑
n=0

enψ(δ)(ϕs(j|n))−1μj ([j|n])dμj (j)

≤ ccj

∫ ∞∑
n=0

θnεdμj (j) (by (3.10))

< ∞.

It follows that Is(�t∗μj ) < ∞ for η-a.e. t ∈ B(t0, δ). This completes the proof of part (i).
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Next we prove part (ii). Take a small ε > 0 so that

dμ(t0) > d + ψ(δ)

log(1/θ)
+ 2ε. (3.13)

Then for every i ∈ � and n ∈ N,

φdμ(t0)(D�t0σnif
t0
i|n) ≤ φd(D�t0σnif

t0
i|n)‖D�t0σnif

t0
i|n‖dμ(t0)−d (by Lemma 2.2(ii))

≤ ϕd(i|n)θn(dμ(t0)−d) (by (3.6) and (1.3))

≤ ϕd(i|n) exp(−nψ(δ))θ2nε (by (3.13)).

Combining the above inequality with (3.9) yields that

lim
n→∞

μ([i|n])
ϕd(i|n) exp(−nψ(δ))θnε = 0 for μ-a.e. i ∈ �.

Hence, there exist finite positive measures νj and numbers aj (j ≥ 1) such that μ =∑∞
j=1 νj and

νj ([i|n]) ≤ ajϕ
d(i|n) exp(−nψ(δ))θnε for all i ∈ �, n ∈ N. (3.14)

Since μ =∑∞
j=1 νj , to show that�t∗μ � Ld for η-a.e. t ∈ B(t0, δ), it suffices to show

that for each j,

�t∗νj � Ld for η-a.e. t ∈ B(t0, δ). (3.15)

To this end, fix j. We will follow a standard approach (introduced by Peres and Solomyak
in [40]). In particular, it suffices to show that

I :=
∫
B(t0,δ)

∫
lim inf
r→0

�t∗νj (BRd (x, r))
rd

d�t∗νj (x) dη(t) < ∞,

where BRd (x, r) stands for the closed ball in R
d centered at x of radius r. Observe that by

(1.4) and (3.6),

Zt0ω (r) ≤ inf
x∈�

rd

φd(D�t0xf
t
ω)

= rd

ϕd(ω)
for ω ∈ �∗, r > 0. (3.16)

Applying Fatou’s Lemma and Fubini’s Theorem,

I ≤ lim inf
r→0

1
rd

∫
B(t0,δ)

∫
�t∗νj (BRd (x, r)) d�t∗νj (x) dη(t)

= lim inf
r→0

1
rd

∫
B(t0,δ)

∫ ∫
1{(x,y): |x−y|≤r} d�t∗νj (x) d�t∗νj (y) dη(t)

= lim inf
r→0

1
rd

∫
B(t0,δ)

∫ ∫
1{(i,j): |�t (i)−�t (j)|≤r} dνj (i) dνj (j) dη(t)

= lim inf
r→0

1
rd

∫ ∫ ∫
1{t∈B(t0,δ): |�t(i)−�t (j)|≤r} dη(t) dνj (i) dνj (j)

= lim inf
r→0

1
rd

∫ ∫
η{t ∈ B(t0, δ) : |�t(i)−�t(j)| ≤ r} dνj (i) dνj (j).

https://doi.org/10.1017/etds.2021.92 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.92


3370 D.-J. Feng and K. Simon

By (1.5) and (3.16), we obtain that

I ≤ lim inf
r→0

1
rd

∫ ∫
Ce|i∧j|ψ(δ)Zt0i∧j(r) dνj (i) dνj (j)

≤
∫ ∫

Ce|i∧j|ψ(δ)

ϕd(i ∧ j)
dνj (i) dνj (j)

≤
∫ ∞∑

n=0

Cenψ(δ)

ϕd(j|n) νj ([j|n]) dνj (j)

≤ ajC

∫ ∞∑
n=0

θnε dνj (j) (by (3.14))

< ∞,

which completes the proof of part (ii).

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2(i). Let μ be a σ -invariant ergodic measure on �. We first show
that for η-a.e. t ∈ 	, �t∗μ is exact dimensional with dimension equal to min{d , dμ(t)}.
Recall that dimP�

t∗μ ≤ min{d , dμ(t)} for each t ∈ 	 (see Theorem 2.7(ii)). Hence, it
is sufficient to show that for η-a.e. t ∈ 	, dimH�

t∗μ ≥ min{d , dμ(t)}. Suppose on the
contrary that this is false. Then there exist k ∈ N and A ⊂ 	 with η(A) > 0 such that

dimH�
t∗μ < min{d , dμ(t)} − 2

k
for all t ∈ A. (3.17)

Take a number δ ∈ (0, δ0) small enough such that

ψ(δ)

log(1/θ)
<

1
k

. (3.18)

Since 	 is a separable metric space, it has a countable dense subset

Y = {yn : n ∈ N}.
Notice that by (1.3) and Lemma 2.6,

0 ≤ dμ(t) ≤ d(t) ≤ log �
log(1/θ)

for each t ∈ 	.

Due to this fact, for each n ∈ N, we may pick y∗
n ∈ B(yn, δ/2) so that

dμ(y
∗
n) ≥ sup

t∈B(yn,δ/2)
dμ(t)− 1

k
. (3.19)

Let Y ∗ = {y∗
n : n ∈ N}. Clearly, Y ∗ is countable. We claim that

sup
y∗∈B(t ,δ)∩Y ∗

dμ(y
∗) ≥ dμ(t)− 1

k
for all t ∈ 	. (3.20)
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To see this, let t ∈ 	. Since Y is dense in 	, there exists an integer m such that ρ(ym, t) ≤
δ/2. Then

y∗
m ∈ B(ym, δ/2) ⊂ B(t , δ). (3.21)

Meanwhile, by (3.19),

dμ(y
∗
m) ≥ sup

t ′∈B(ym,δ/2)
dμ(t

′)− 1
k

≥ dμ(t)− 1
k

,

where in the last inequality, we use the fact that t ∈ B(ym, δ/2) (since ρ(ym, t) ≤ δ/2).
This proves (3.20), since y∗

m ∈ B(t , δ) ∩ Y ∗ by (3.21).
Set for n ∈ N,

	n = {t ∈ B(y∗
n , δ) : dμ(y∗

n) ≥ dμ(t)− 1/k}. (3.22)

By (3.20), 	 =⋃∞
n=1 	n. Define

En = {t ∈ B(y∗
n , δ) : dimH�

t∗μ < min{d , dμ(y∗
n)} − 1/k}, n ∈ N.

By (3.17), we see that A ∩	n ⊂ En for each n ∈ N. However, by Proposition 3.1(i) and
(3.18), for each n ∈ N and η-a.e. t ∈ B(y∗

n , δ),

dimH�
t∗μ ≥ min{d , dμ(y∗

n)} − ψ(δ)

log(1/θ)
> min{d , dμ(y∗

n)} − 1
k

.

It follows that η(En) = 0 for each n ∈ N. Hence

η(A) = η

(
A ∩

( ∞⋃
n=1

	n

))
≤

∞∑
n=1

η(A ∩	n) ≤
∞∑
n=1

η(En) = 0,

leading to a contradiction. This proves the statement that for η-a.e. t ∈ 	, �t∗μ is exact
dimensional with dimension min{d , dμ(t)}.

Next we prove that �t∗μ � Ld for η-a.e. t ∈ {t ′ ∈ 	 : dμ(t ′) > d}. Again we use a
contradiction. Suppose on the contrary that this result is false. Then there exist k ∈ N and
A′ ⊂ 	 with η(A′) > 0 such that

dμ(t) > d + 2
k

and �t∗μ �� Ld for all t ∈ A′. (3.23)

Set

Fn = {t ∈ B(y∗
n , δ) : �t∗μ �� Ld}, n ∈ N.

Clearly, A′ ∩	n ⊂ Fn for each n ∈ N. Since 	 =⋃∞
n=1 	n and η(A′) > 0, there exists

m ∈ N so that η(A′ ∩	m) > 0. Hence A′ ∩	m �= ∅. Pick t ∈ A′ ∩	m. By (3.22), (3.23)
and (3.18),

dμ(y
∗
m) ≥ dμ(t)− 1

k
> d + 1

k
> d + ψ(δ)

log(1/θ)
.

Hence η(Fm) = 0 by Proposition 3.1(ii). Since A′ ∩	m ⊂ Fm, it follows that η(A′ ∩
	m) = 0, leading to a contradiction.
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Proof of Theorem 1.2(ii). By Lemma 2.6, for each t ∈ 	, we can find a σ -invariant ergodic
measure μt on � such that

d(t) = dμt (t).

Moreover, 0 ≤ d(t) ≤ (log �/ log(1/θ)).
Next we prove that dimH K

t = dimB K
t = min{d , d(t)} for η-a.e. t ∈ 	. By Theorem

2.7, dimBK
t ≤ min{d , d(t)} for every t ∈ 	. Hence it is sufficient to show that

dimH K
t ≥ min{d , d(t)} for η-a.e. t ∈ 	.

Suppose on the contrary that this statement is false. Then there exist k ∈ N and H ⊂ 	

with η(H) > 0 such that

dimH K
t < min{d , d(t)} − 2/k for all t ∈ H . (3.24)

Take a number δ ∈ (0, δ0) such that (3.18) holds. Since d(t) is uniformly bounded from
above, similar to the construction of Y ∗ in the proof of part (i), we can construct a countable
dense subset Y ′ = {y′

n}∞n=1 of 	 such that

sup
y′∈B(t ,δ)∩Y ′

d(y′) ≥ d(t)− 1
k

for all t ∈ 	. (3.25)

Write

	′
n = {t ∈ B(y′

n, δ) : d(y′
n) ≥ d(t)− 1/k} for n ∈ N. (3.26)

By (3.25), 	 =⋃∞
n=1 	

′
n. Notice that for each n ∈ N,

	′
n ∩H ⊂ {t ∈ B(y′

n, δ) : dimH K
t < min{d , d(y′

n)} − 1/k}
⊂ {t ∈ B(y′

n, δ) : dimH�
t∗(μy′

n
) < min{d , dμy′n (y

′
n)} − 1/k}

⊂
{
t ∈ B(y′

n, δ) : dimH�
t∗(μy′

n
) < min{d , dμy′n (y

′
n)} − ψ(δ)

log(1/θ)

}
,

where we have used the facts that dimH K
t ≥ dimH�

t∗(μy′
n
) and d(y′

n) = dμy′n
(y′
n) in the

second inclusion, and (3.18) in the last inclusion. Hence η(	′
n ∩H) = 0 for each n by

applying Proposition 3.1(i). It follows that η(H) ≤∑∞
n=1 η(	

′
n ∩H) = 0, leading to a

contradiction. This completes the proof of the statement that dimH K
t = min{d , d(t)} for

η-a.e. t ∈ 	.
Finally, we prove that Ld(Kt ) > 0 for η-a.e. t ∈ {t ′ ∈ 	 : d(t ′) > d}. Suppose on the

contrary that this result is false. Then there exist k ∈ N and H ′ ⊂ 	 with η(H ′) > 0 such
that

d(t) > d + 2
k

and Ld(Kt ) = 0 for all t ∈ H ′. (3.27)

Set

F ′
n = {t ∈ B(y′

n, δ) : Ld(Kt ) = 0}, n ∈ N.

Clearly, H ′ ∩	′
n ⊂ F ′

n for each n ∈ N. Since 	 =⋃∞
n=1 	

′
n and η(H ′) > 0, there exists

m ∈ N so that η(H ′ ∩	′
m) > 0. Hence H ′ ∩	′

m �= ∅. Taking t ∈ H ′ ∩	′
m and applying
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(3.26), (3.27) and (3.18) gives

dμy′m
(y′
m) = d(y′

m) ≥ d(t)− 1
k
> d + 1

k
> d + ψ(δ)

log(1/θ)
.

Now by Proposition 3.1(ii), �t∗(μy′
m
) � Ld for η-a.e. t ∈ B(y′

m, δ). This implies that
η(F ′

m) = 0. Since H ′ ∩	′
m ⊂ F ′

m, it follows that η(H ′ ∩	′
m) = 0, leading to a contra-

diction.

4. Translational family of IFSs generated by a dominated lower triangular C1 IFS
In this section, we show that under mild assumptions, a translational family of C1 IFSs,
generated by a dominated lower triangular C1 IFS, satisfies the GTC. To begin with, let S
be a compact subset of Rd with non-empty interior.

Definition 4.1. Let � ∈ N with � ≥ 2. We say that F = {fi}�i=1 is a dominated lower
triangular C1 IFS on S if the following conditions hold.

(i) fi(S) ⊂ int(S), i = 1, . . . , �.
(ii) There exists a bounded open connected set U ⊃ S such that each fi extends to a

contracting C1 diffeomorphism fi : U → fi(U) with fi(U) ⊂ U .
(iii) For each z ∈ S and i ∈ {1, . . . , �}, the Jacobian matrix Dzfi of fi at z is a lower

triangular matrix such that

|(Dzfi)jj| ≤ |(Dzfi)kk| for all 1 ≤ k ≤ j ≤ d .

In the remaining part of this section, we fix a dominated lower triangular C1 IFS F =
{fi}�i=1 on S.

By continuity, there exists a small r0 > 0 such that the following holds. Setting

f t
i := fi + ti

for 1 ≤ i ≤ � and t = (t1, . . . , t�) ∈ R
�d with |t| < r0, we have f t

i (S) ⊂ int(S) for
each i.

Write � := {t ∈ R
�d : |t| < r0} and set

Ft = {f t
i }�i=1, t ∈ �.

We call Ft, t ∈ �, a translational family of IFSs generated by F . For i = i1 . . . in ∈ �n,
we write f t

i = f t
i1

◦ · · · ◦ f t
in

.
For a C1 map g : S → R

d and z1, . . . , zd ∈ S, we write

D∗
z1,...,zd g =

⎡
⎢⎣

∇T g1(z1)
...

∇T gd(zd)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣
∂g1

∂x1
(z1) · · · ∂g1

∂xd
(z1)

...
. . .

...
∂gd

∂x1
(zd) · · · ∂gd

∂xd
(zd)

⎤
⎥⎥⎥⎥⎦ , (4.1)

where gi is the ith component of the map g, i = 1, . . . , d . Clearly,

(D∗
z1,...,zd g)ij = (Dzi g)ij for all 1 ≤ i, j ≤ d . (4.2)

The main result in this section is the following.
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THEOREM 4.2. Let Ft, t ∈ �, be a translational family of IFSs generated by a dominated
lower triangular C1 IFS F defined on a compact convex subset S of R

d . Suppose in
addition that

ρ := max
1≤i,j≤�: i �=j

(
sup
y∈S

‖Dyfi‖ + sup
z∈S

‖Dzfj‖
)
< 1. (4.3)

Then Ft, t ∈ �, satisfies the GTC with respect to �d-dimensional Lebesgue measure L�d
restricted to �.

The proof of the above theorem is based on the following.

PROPOSITION 4.3. Let Ft, t ∈ �, be a translational family of IFSs generated by a
dominated lower triangular C1 IFS F on a compact subset S of Rd . Then there exists
a function h : (0, r0) → (0, ∞) with limδ→0 h(δ) = 0 such that for each δ ∈ (0, r0), there
is C(δ) ≥ 1 so that

‖Dyf s
ω · (D∗

z1,...,zd f
t
ω)

−1‖ ≤ C(δ)enh(δ) (4.4)

for every n ∈ N, ω ∈ �n, y, z1, . . . , zd ∈ S and s, t ∈ � with |s − t| < δ.

In the next two subsections, we prove Proposition 4.3 and Theorem 4.2, respectively.

4.1. Proof of Proposition 4.3. We first prove several auxiliary lemmas.

LEMMA 4.4. Let c ≥ 1 and d ∈ N. Let A be a real d × d non-singular lower triangular
matrix such that

|Aij| ≤ c|Ajj| for all 1 ≤ i, j ≤ d . (4.5)

Then

|(A−1)ij| ≤ (c
√
d)d−1|(A−1)ii| for all 1 ≤ i, j ≤ d .

Proof. It is well known (see e.g. [28]) that A−1 = (1/det(A))adj(A), where adj(A) is the
adjugate matrix of A defined by

(adj(A))ij = (−1)i+j det(A(j , i)), 1 ≤ i, j ≤ d ,

where A(j , i) is the (d − 1)× (d − 1) matrix that results from A by removing the jth
row and ith column. By the Hadamard’s inequality (see e.g. [28, Corollary 7.8.2]),
|det(A(j , i))| is bounded above by the product of the Euclidean norms of the columns
of A(j , i). In particular, this implies that

|det(A(j , i))| ≤
∏

1≤k≤d: k �=i
|vk|,

where vk denotes the kth column vector of A. By (4.5),

|vk| =
√√√√ d∑

i=1

(Aik)2 ≤ c
√
d|Akk|,
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so |det(A(j , i))| ≤ (c
√
d)d−1 ∏

1≤k≤d: k �=i |Akk|. Hence for given 1 ≤ i, j ≤ d ,

|(A−1)ij|
|(A−1)ii| = |det(A(j , i)|

det(A) · |(A−1)ii| ≤ (c
√
d)d−1 ∏

1≤k≤d: k �=i |Akk|
det(A) · |(A−1)ii| = (c

√
d)d−1.

For c ≥ 1 and d ∈ N, let Tc(d) denote the collection of real d × d lower triangular
matrices A = (aij) satisfying the following two conditions:
(i) |a11| ≥ |a22| ≥ · · · ≥ |add | > 0;

(ii) |aij| ≤ c|ajj| for all 1 ≤ i, j ≤ d .
Then we have the following estimates.

LEMMA 4.5. Let n ∈ N and A1, . . . , An ∈ Tc(d). Then for 1 ≤ j ≤ i ≤ d ,

|(A1 · · · An)ij| ≤ (cn)i−j |(A1 · · · An)jj|. (4.6)

Proof. We prove by induction on n. Since A1 ∈ Tc(d), the inequality (4.6) holds when
n = 1. Now assume that (4.6) holds when n = k. Below we show that it also holds when
n = k + 1.

Given A1, . . . , Ak+1 ∈ Tc(d), we write A = A1 and B = A2 · · · Ak+1. Clearly B is
lower triangular. By the induction assumption, |Bij| ≤ (ck)i−j |Bjj| for each pair (i, j)with
1 ≤ j ≤ i ≤ d .

Now fix a pair (i, j) with 1 ≤ j ≤ i ≤ d . Observe that

(AB)ij

(AB)jj
=

i∑
p=j

Aip

Ajj
· Bpj

Bjj
= Aii

Ajj
· Bij

Bjj
+

i−1∑
p=j

Aip

Ajj
· Bpj

Bjj
. (4.7)

Applying the inequalities |Aii| ≤ |Ajj|, |Bij| ≤ (ck)i−j |Bjj|, |Aip| ≤ c|App| ≤ c|Ajj| and
|Bpj| ≤ (ck)p−j |Bjj| to (4.7) gives∣∣∣∣ (AB)ij(AB)jj

∣∣∣∣ ≤ (ck)i−j + c

i−1∑
p=j

(ck)p−j ≤ (c(k + 1))i−j .

Hence (4.6) holds for n = k + 1.

LEMMA 4.6. Let Ft = {f t
i }�i=1, t ∈ �, be a translational family of IFSs on a compact

subset S of Rd generated by a C1 IFS F = {fi}�i=1. Let θ ∈ (0, 1) be a common Lipschitz
constant of f1, . . . , f� on S. That is,

|fi(u)− fi(v)| ≤ θ |u− v| for all 1 ≤ i ≤ � and u, v ∈ S.

Then for s, t ∈ �, u, v ∈ S, n ∈ N and τ ∈ �n,

|f t
τ (u)− f s

τ (v)| ≤ |t − s|
1 − θ

+ θn
(

|u− v| − |t − s|
1 − θ

)
. (4.8)

In particular,

|f t
τ (u)− f s

τ (u)| ≤ |t − s|
1 − θ

and |f t
τ (u)− f t

τ (v)| ≤ θn|u− v|. (4.9)
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Proof. To verify (4.8), we let i ∈ {1, . . . , �}. Then

|f t
i (u)− f s

i (v)| ≤ |f t
i (u)− f s

i (u)| + |f s
i (u)− f s

i (v)|
= |ti − si | + |fi(u)− fi(v)|
≤ |t − s| + θ |u− v|.

Let ϕ : R → R be a contracting affine map defined by ϕ(x) = |t − s| + θx for given s

and t. Then for every 1 ≤ i ≤ �,

|f t
i (u)− f s

i (v)| ≤ ϕ(|u− v|). (4.10)

Now we can prove (4.8) by using the above inequality. Indeed, using (4.10) and the fact
that ϕ(·) is monotone increasing, we obtain that for 1 ≤ i, j ≤ �,

|f t
j (f

t
i (u))− f s

j (f
s
i (v))| ≤ ϕ(|f t

i (u)− f s
i (v)|) ≤ ϕ2(|u− v|).

Successive application of this implies that for every τ ∈ �n and u, v ∈ S,

|f t
τ (u)− f s

τ (v)| ≤ ϕn(|u− v|) = |t − s|
1 − θ

+ θn
(

|u− v| − |t − s|
1 − θ

)
.

This proves (4.8). The assertions in (4.9) then follow directly from (4.8).

Now we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. We divide the proof into five small steps.
Step 1. Write

Cn := sup
{∣∣∣∣ (Dyf t

ω)ii

(Dzf t
ω)ii

∣∣∣∣ : t ∈ �, y, z ∈ S, ω ∈ �n, 1 ≤ i ≤ d

}
. (4.11)

We claim that

lim
n→∞

1
n

log Cn = 0. (4.12)

To prove this claim, for each p ∈ {1, . . . , �} and i ∈ {1, . . . , d}, we define a function
ap,i : S → R by

ap,i (z) = log |(Dzfp)ii|.
Clearly, the functions ap,i are continuous on S. Since the matrix Dzfp is lower triangular
for each z ∈ S and 1 ≤ p ≤ �, it follows that for t ∈ �, y, z ∈ S, ω = ω1 · · · ωn ∈ �n and
1 ≤ i ≤ d ,

log |(Dzf t
ω)ii| =

n∑
k=1

aωk ,i (f
t
σkω

(z)) (4.13)

and

log
∣∣∣∣ (Dyf t

ω)ii

(Dzf t
ω)ii

∣∣∣∣ =
n∑
k=1

(
aωk ,i (f

t
σkω

(y))− aωk ,i (f
t
σkω

(z))

)
, (4.14)
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where σkω := ωk+1 · · · ωn for 1 ≤ k ≤ n− 1, σnω := ε (here ε stands for the empty
word) and f t

ε (y) := y. Define γ : (0, ∞) → (0, ∞) by

γ (u) = max
1≤p≤�, 1≤i≤d

sup{|ap,i (y)− ap,i (z)| : y, z ∈ S, |y − z| ≤ u}. (4.15)

Since S is compact and ap,i are continuous, it follows that limu→0 γ (u) = 0. To estimate
the term in the left-hand side of the equality (4.14), by Lemma 4.6 we obtain that

|f t
σkω

(y)− f t
σkω

(z)| ≤ θn−k|y − z| ≤ θn−kdiam(S),

where θ ∈ (0, 1) is a common Lipschitz constant of f1, . . . , f� on S. Hence by (4.14),

1
n

log
∣∣∣∣ (Dyf t

ω)ii

(Dzf t
ω)ii

∣∣∣∣ ≤ 1
n

n∑
k=1

γ (θn−kdiam(S)) → 0 as n → ∞.

This proves (4.12).
Step 2. For s, t ∈ �, y ∈ S, n ∈ N, ω ∈ �n and 1 ≤ i ≤ d ,∣∣∣∣ (Dyf t

ω)ii

(Dyf s
ω )ii

∣∣∣∣ ≤ exp
(
nγ

( |t − s|
1 − θ

))
, (4.16)

where γ (·) is defined as in (4.15) and θ ∈ (0, 1) is a common Lipschitz constant for
f1, . . . , f� on S.

To prove (4.16), by (4.13) we see that

log
∣∣∣∣ (Dyf t

ω)ii

(Dyf s
ω )ii

∣∣∣∣ =
n∑
k=1

(aωk ,i (f
t
σkω

(y))− aωk ,i (f
s
σkω

(y))

≤ nγ

( |t − s|
1 − θ

)
,

where in the second inequality, we have used the fact that |f t
σkω

(y)− f s
σkω

(y)| ≤
(|t − s|)/(1 − θ) (which follows from (4.9)). This proves (4.16).

Step 3. Set

c = sup
{∣∣∣∣ (Dyfp)ij(Dyfp)jj

∣∣∣∣ : y ∈ S, 1 ≤ p ≤ �, 1 ≤ i, j ≤ d

}
. (4.17)

Then ∣∣∣∣ (Dyf s
ω )ij

(Dyf s
ω )jj

∣∣∣∣ ≤ (cn)d for all s ∈ �, y ∈ S, ω ∈ �n, 1 ≤ i, j ≤ d . (4.18)

To see this, we simply notice that Dyf s
ω =∏n

k=1 Df s
σkω

(y)fωk and apply Lemma 4.5.
Step 4. Let c and Cn be defined as in (4.17) and (4.11). Then for t ∈ �, y, z1, . . . , zd ∈

S, ω ∈ �n and 1 ≤ k, j ≤ d ,

|((D∗
z1,...,zd f

t
ω)

−1)kj | ≤ (cn)d(d−1)(
√
d)d−1(Cn)

d 1
|(Dyf t

ω)kk|
, (4.19)

where D∗
z1,...,zd g is defined as in (4.1).
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To prove (4.19), notice that for all 1 ≤ k, j ≤ d ,

|(D∗
z1,...,zd f

t
ω)kj | = |(Dzkf t

ω)kj | (by (4.2))

≤ (cn)d |(Dzkf t
ω)jj| (by (4.18))

≤ (cn)dCn|(Dzj f t
ω)jj| (by (4.11))

= (cn)dCn|(D∗
z1,...,zd f

t
ω)jj| (by (4.2)).

Applying Lemma 4.4 (in which we replace c by (cn)dCn and take A = D∗
z1,...,zd f

t
ω), we

obtain

|((D∗
z1,...,zd f

t
ω)

−1)kj | ≤ (cn)dCn
√
d)d−1|((D∗

z1,...,zd f
t
ω)

−1)kk|
= ((cn)dCn

√
d)d−1|((Dzkf t

ω)
−1)kk|

= ((cn)dCn
√
d)d−1 1

|(Dzkf t
ω)kk|

≤ ((cn)dCn
√
d)d−1Cn

1
|(Dyf t

ω)kk|
,

from which (4.19) follows.
Step 5. Now we are ready to prove (4.4). Let δ ∈ (0, r0). Write

un := (cn)d(d−1)(
√
d)d−1(Cn)

d , n ∈ N.

Then, for s, t ∈ � with |t − s| ≤ δ and 1 ≤ i, j ≤ d ,

|(Dyf s
ω · (D∗

z1,...,zd f
t
ω)

−1)ij| ≤
d∑
k=1

|(Dyf s
ω )ik| · |(D∗

z1,...,zd f
t
ω)

−1)kj |

≤ (cn)dun

d∑
k=1

∣∣∣∣ (Dyf s
ω )kk

(Dyf t
ω)kk

∣∣∣∣ (by (4.18), (4.19))

≤ d(cn)dun exp
(
nγ

( |t − s|
1 − θ

))
(by (4.16))

≤ d(cn)dun exp
(
nγ

(
δ

1 − θ

))
.

This implies that

‖Dyf s
ω · (D∗

z1,...,zd f
t
ω)

−1‖ ≤ d2(cn)dun exp
(
nγ

(
δ

1 − θ

))
, (4.20)

where we have used an easily checked fact that

‖A‖ ≤ d max
1≤i,j≤d

|Aij|

for A = (Aij) ∈ R
d×d .

Set h : (0, r0) → (0, ∞) by h(x) = x + γ (x/(1 − θ)). Since

lim
n→∞

1
n

log(d2(cn)dun) = 0,
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there existsC(δ) > 0 such that d2(cn)dune
−nδ ≤ C(δ) for all n ≥ 1. According to this fact

and (4.20), we obtain the desired inequality

‖Dyf s
ω · (D∗

z1,...,zd f
t
ω)

−1‖ ≤ C(δ) exp(nh(δ));

for later convenience, we may assume that C(δ) ≥ 1.

4.2. Proof of Theorem 4.2. The following result plays a key part in our proof.

LEMMA 4.7. Let {Ft}t∈� be a translational family of IFSs on a compact set S ⊂ R
d

generated by a C1 IFS F = {fi}�i=1. Suppose that (4.3) holds. Let δ > 0. Then there exists
C̃ > 0, which depends on F and δ such that the following holds. Let a = (an)

∞
n=1, b =

(bn)
∞
n=1 ∈ � with a1 �= b1, and let A be a real invertible d × d matrix. Then for s ∈ �

and r > 0,

L�d{t ∈ BR�d (s, δ) ∩� : �t(a)−�t(b) ∈ A−1BRd (0, r)}

≤ C̃ min
{

rk

φk(A)
: k = 0, 1, . . . , d

}
, (4.21)

where BR�d (·, ·) and BRd (·, ·) stand for closed balls in R
�d and R

d , respectively.

Since the proof of the above lemma is a little long, we will postpone it until we have
finished the proof of Theorem 4.2.

Proof of Theorem 4.2 by assuming Lemma 4.7. Fix s ∈ � and δ ∈ (0, r0). Let i, j ∈ �
with i �= j. Set

ω = i ∧ j and n = |ω|.
Write a = σni and b = σnj. Clearly a1 �= b1.

Fix y ∈ S. We claim that for r > 0,

{t ∈ BR�d (s, δ) ∩� : |�t(i)−�t(j)| < r}
⊂ {t ∈ BR�d (s, δ) ∩� : �t(a)−�t(b) ∈ (Dyf s

ω )
−1BRd (0, C(δ)enh(δ)r)}, (4.22)

where C(δ) and h(δ) are given as in Proposition 4.3.
To show (4.22), let t ∈ BR�d (s, δ) ∩� so that |�t(i)−�t(j)| < r . Notice that

�t(i)−�t(j) = f t
ω(�

t(a))− f t
ω(�

t(b)).

Since S is convex, by the mean value theorem, there exist z1, . . . , zd ∈ S such that

�t(i)−�t(j) = (D∗
z1,...,zd f

t
ω)(�

t(a)−�t(b)).

Hence

�t(a)−�t(b) = (D∗
z1,...,zd f

t
ω)

−1(�t(i)−�t(j))

∈ (D∗
z1,...,zd f

t
ω)

−1BRd (0, r)

= (Dyf
s
ω )

−1Dyf
s
ω (D

∗
z1,...,zd f

t
ω)

−1BRd (0, r)

⊂ (Dyf
s
ω )

−1BRd (0, C(δ)enh(δ)r) (by Proposition 4.3).
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This proves (4.22).
By (4.22) and Lemma 4.7, we see that

L�d{t ∈ BR�d (s, δ) ∩� : |�t(i)−�t(j)| < r}
≤ L�d{t ∈ BR�d (s, δ) ∩� : �t(a)−�t(b) ∈ (Dyf s

ω )
−1BRd (0, C(δ)enh(δ)r)}

≤ C̃ · min
{
C(δ)kenkh(δ)rk

φk(Dyf s
ω )

: k = 0, 1, . . . , d
}

≤ C̃C(δ)dendh(δ) min
{

rk

φk(Dyf s
ω )

: k = 0, 1, . . . , d
}

.

Since y ∈ S is arbitrary and �s(�) ⊂ S, recalling

Zs
ω(r) = inf

x∈� min
{

rk

φk(D�sxf s
ω )

: k = 0, 1, . . . , d
}

,

it follows that

L�d{t ∈ BR�d (s, δ) ∩� : |�t(i)−�t(j)| < r} ≤ C̃C(δ)dendh(δ)Zs
ω(r).

This completes the proof of the theorem by letting cδ = C̃C(δ)d and ψ(δ) = dh(δ).

In what follows we prove Lemma 4.7. To this end, we first prove an elementary
geometric lemma.

LEMMA 4.8. Let A be a real invertible d × d matrix. Then for r1, r2 > 0,

Ld((A−1BRd (0, r1)) ∩ BRd (0, r2)) ≤ 2d min
{
rk1 r

d−k
2

φk(A)
: k = 0, 1, . . . , d

}
,

where φs(·) is the singular value function defined as in (2.5).

Proof. Let α1 ≥ · · · ≥ αd be the singular values of A. Clearly the set

(A−1BRd (0, r1)) ∩ BRd (0, r2)

is contained in a rectangular parallelepiped with sides 2 min{r1/αi , r2}, i = 1, . . . , d . It
follows that

Ld((A−1BRd (0, r1)) ∩ BRd (0, r2)) ≤ 2d
d∏
i=1

min
{
r1

αi
, r2

}

= 2d min
{
rk1 r

d−k
2

α1 . . . αk
: k = 0, 1, . . . , d

}

= 2d min
{
rk1 r

d−k
2

φk(A)
: k = 0, 1, . . . , d

}
.

Proof of Lemma 4.7. Let a = (an)
∞
n=1, b = (bn)

∞
n=1 ∈ � with a1 �= b1. Without loss of

generality, we assume that

a1 = 1 and b1 = 2. (4.23)
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Define g : � → R
d by

g(t) = �t(a)−�t(b).

Recall that we have used the notation t = (t1, . . . , t�) ∈ � ⊂ R
�d with

tk = (tk,1, . . . , tk,d) ∈ R
d for all 1 ≤ k ≤ �.

For t = (t1, . . . , t�) ∈ � and k ∈ {1, . . . , �}, let (∂g/∂tk)(t) denote the Jacobian matrix
of the following map from R

d to R
d :

(tk,1, . . . , tk,d) �→ g(t1, . . . , tk−1, tk,1, . . . , tk,d , tk+1, . . . , t�).

Write I = Id := diag(1, . . . , 1︸ ︷︷ ︸
d

). First observe that for every n ∈ N and i = (ik)
∞
k=1 ∈ �,

�t(i) = ti1 + fi1(ti2 + fi2(ti3 + fi3(. . . fin−1(tin + fin(�
tσni) . . .)))). (4.24)

It follows that for k ∈ {1, . . . , �},
∂�t(a)
∂tk

= δk,a1 · I + (D�t(σa)f
t
a1
)× [I · δk,a2

+ (D�t(σ 2a)f
t
a2
)[I · δk,a3 + (D�t(σ 3a)f

t
a3
)[I · δk,a4 + · · · ]]]

= δk,a1 · I +
∑
n≥1

an+1=k

n∏
k=1

D�t(σ ka)fak , (4.25)

where δi,j = 1 if i = j and 0 otherwise.
By (4.25) and the assumption (4.23), we see that for k ∈ {1, . . . , �},

∂g

∂tk
(t)= ∂�

t(a)
∂tk

− ∂�t(b)
∂tk

= δk,1 · I − δk,2 · I + Ek(t), (4.26)

where

Ek(t) =
∑
n≥1

an+1=k

n∏
i=1

D�t(σ ia)fai −
∑
n≥1

bn+1=k

n∏
i=1

D�t(σ ib)fbi . (4.27)

Recall that ρ = maxi �=j (ρi + ρj ) < 1 with ρi := maxz∈S ‖Dzfi‖.

LEMMA 4.9. There exists k∗ = k∗(a, b) ∈ {1, 2} such that ‖Ek∗(t)‖ < ρ for all t ∈ �.

Proof. Our argument is based on an idea of Boris Solomyak, which was used to prove a
corresponding statement for self-affine IFSs [3, Theorem 9.1.2].

By (4.27), for each k ∈ {1, 2} and t ∈ �,

‖Ek(t)‖ ≤
∑
n≥1

an+1=k

ρa1 · · · ρan +
∑
n≥1

bn+1=k

ρb1 · · · ρbn =: λk . (4.28)

Clearly, λk (k = 1, 2) only depend on a and b.
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Notice that
2∑
k=1

λk(1 − ρk) =
∞∑
n=1

ρa1 · · · ρan(1 − ρan+1)+
∞∑
n=1

ρb1 · · · ρbn(1 − ρbn+1)

= ρ1 + ρ2

≤ ρ. (4.29)

This implies that one of λ1, λ2 is smaller than ρ; otherwise, since ρ1 + ρ2 ≤ ρ < 1, it
follows that

2∑
k=1

λk(1 − ρk) ≥ ρ(1 − ρ1 + 1 − ρ2) > ρ,

which contradicts (4.29). Now set

k∗ =
{

1 if λ1 < ρ,
2 otherwise.

Then λk∗ < ρ. Since λ1, λ2 only depend on a and b, so does k∗. By (4.28),

‖Ek∗(t)‖ ≤ λk∗ < ρ

for all t ∈ �.

In what follows, we always let k∗ = k∗(a, b) ∈ {1, 2} be given as in Lemma 4.9.

LEMMA 4.10. For all t ∈ �, ∥∥∥∥
(
∂g

∂tk∗
(t)

)−1∥∥∥∥ < 1
1 − ρ

. (4.30)

Proof. Without loss of generality, we assume that k∗ = 1. The proof is similar in the case
when k∗ = 2.

Let t ∈ �. By Lemma 4.9, ‖E1(t)‖ < ρ < 1. Thanks to (4.26),

∂g

∂t1
(t) = I − (−E1(t)), (4.31)

where I = diag(1, . . . , 1︸ ︷︷ ︸
d

). Since ‖E1(t)‖ < ρ < 1, we see that ∂g/∂t1(t) is invertible

with (
∂g

∂t1
(t)

)−1

= I +
∞∑
n=1

(−E1(t))
n,

from which we obtain that∥∥∥∥
(
∂g

∂t1
(t)

)−1∥∥∥∥ ≤ 1 +
∞∑
n=1

‖E1(t)‖n ≤ 1 +
∞∑
n=1

ρn = 1
1 − ρ

. (4.32)
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Next we introduce two mappings T1, T2 : � → R
�d by

T1(t) = (g(t), t2, . . . , t�), T2(t) = (t1, g(t), t3, . . . , t�), (4.33)

where t = (t1, . . . , t�). Recall that g(t) = �t(a)−�t(b).

LEMMA 4.11. Let k∗ = k∗(a, b) ∈ {1, 2} be given as in Lemma 4.9. Then the following
properties hold.
(i) The mapping Tk∗ : � → R

�d is injective.
(ii) For each t ∈ �,

|det((DtTk∗)
−1)| <

(
1

1 − ρ

)d
. (4.34)

Proof. Without loss of generality, we may assume that k∗ = 1. Then by Lemma 4.9 and
(4.33),

‖E1(t)‖ < ρ, T1(t) = (g(t), t2, . . . , t�) (4.35)

for t = (t1, . . . , t�) ∈ �. Hence to prove (i), it suffices to show that for given t2, . . . , t� ∈
R
d with

∑�
i=2 |t2|2 < r2

0 , the mapping

t1 �→ g(t1, t2, . . . , t�)

is injective on�1 := {t1 ∈ R
d : |t1| <

√
r2

0 −∑�
i=2 |ti |2}. To this end, defineψ : �1 →

R
d by

ψ(t1) = g(t1, . . . , t�)− t1.

Then by (4.31) and (4.35),

‖Dt1ψ‖ =
∥∥∥∥ ∂g∂t1

(t1, . . . , t�)− I
∥∥∥∥ = ‖E1(t1, . . . , t�)‖ < ρ for each t1 ∈ �1.

Since �1 is a convex open subset of R
d , by [42, Theorem 9.19], the above inequality

implies that

|ψ(t1)− ψ(s1)| ≤ ρ|t1 − s1| < |t1 − s1|

for all distinct t1, s1 ∈ �1. It follows that for distinct t1, s1 ∈ �1,

|g(t1)− g(s1)| = |ψ(t1)+ t1 − ψ(s1)− s1|
≥ |t1 − s1| − |ψ(t1)− ψ(s1)|
> 0.

This proves (i).
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To prove (ii), notice that

DtT1 =

⎛
⎜⎜⎜⎜⎝

∂g

∂t1
(t)

∂g

∂t2
(t)

∂g

∂t3
(t) · · · ∂g

∂t�
(t)

0(�−1)d,d I(�−1)d

⎞
⎟⎟⎟⎟⎠ ,

where I(�−1)d := diag(1, . . . , 1︸ ︷︷ ︸
(�−1)d

) and 0(�−1)d,d is the ((�− 1)d)× d all-zero matrix. That

is,

DtT1 =
(

A(t) B(t)

0(�−1)d,d I(�−1)d

)
,

where A(t) and B(t) are given by

A(t) = ∂g

∂t1
(t), B(t) =

(
∂g

∂t2
(t), . . . ,

∂g

∂t�
(t)

)
.

Hence, by Lemma 4.10, A−1(t) exists and

(DtT1)
−1 =

(
A−1(t) −A−1(t) · B(t)

0(�−1)d,d) I(�−1)d

)
.

It follows that

det((DtT1)
−1) = det(A−1(t)) = det

((
∂g

∂t1
(t)

)−1)
.

By the Hadamard’s inequality (see e.g. [28, Corollary 7.8.2]),

|det((DtT1)
−1)| =

∣∣∣∣det
((

∂g

∂t1
(t)

)−1)∣∣∣∣ ≤
∥∥∥∥
(
∂g

∂t1
(t)

)−1∥∥∥∥d ≤
(

1
1 − ρ

)d
,

where the last inequality follows from Lemma 4.10. This completes the proof of (ii).
To shorten the notation, from now on we write

C∗ :=
(

1
1 − ρ

)d
. (4.36)

Let s = (s1, . . . , s�) ∈ � and δ, r > 0. Let A be a given real invertible d × d matrix.
Write

E : = {t ∈ BR�d (s, δ) ∩� : �t(a)−�t(b) ∈ A−1BRd (0, r)}
= {t ∈ BR�d (s, δ) ∩� : g(t) ∈ A−1BRd (0, r)}.

Below, we estimate L�d(E).
Notice that L�d(E) = L�d(T −1

k∗ (Tk∗(E))). Recall that by Lemma 4.11, the mapping
Tk∗ : � → R

�d is injective and det((DtTk∗)−1) ≤ C∗ for t ∈ �. So by the substitution
rule of multiple integration (see e.g. [42, Theorem 10.9]),

L�d(E) ≤ C∗L�d(Tk∗(E)). (4.37)
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Next we estimate L�d(Tk∗(E)). Without loss of generality, we may assume that k∗ = 1.
Notice that for each t ∈ E,

g(t) ∈ A−1BRd (0, r);

in the meantime, since �t(a), �t(b) ∈ S, it follows that

g(t) = �t(a)−�t(b) ∈ BRd (0, 2diam(S)).

Hence, for each t ∈ E,

g(t) ∈ (A−1BRd (0, r)) ∩ BRd (0, 2diam(S)).

Since T1(t) = (g(t), t2, . . . , t�), it follows that

T1(E) ⊂ F1 × F2,

where

F1 :=(A−1BRd (0, r)) ∩ BRd (0, 2diam(S)),

F2 :={(t2, . . . , t�) ∈ R
(�−1)d : |ti − si | < δ}.

Consequently,

L�d(T1(E)) ≤ Ld(F1) · L(�−1)d (F2)

≤ 2d min
{
rk(2diam(S))d−k

φk(A)
: k = 0, 1, . . . , d

}
· (2δ)(�−1)d

≤ u min
{

rk

φk(A)
: k = 0, 1, . . . , d

}

with u := 2�dδ(�−1)d max{1, 2ddiam(S)d}, where we have used Lemma 4.8 in the second
inequality. Combining this with (4.37) yields that

L�d(E) ≤ C∗L�d(T1(E)) ≤ uC∗ min
{

rk

φk(A)
: k = 0, 1, . . . , d

}
.

This completes the proof of Lemma 4.7.

5. Translational family of IFSs generated by a C1 conformal IFS
In this section, we prove the following result.

THEOREM 5.1. Let F = {fi : S → S}�i=1 be an IFS on a compact set S ⊂ R
d . Suppose

that the following properties hold.
(i) The set S is connected, S = int(S) and fi(S) ⊂ int(S) for all i.

(ii) There is a bounded connected open set U ⊃ S such that each fi extends to a C1

conformal diffeomorphism fi : U → fi(U) ⊂ U with

ρi := sup
x∈U

‖f ′
i (x)‖ < 1.

(iii) maxi �=j ρi + ρj < 1.
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Then there is a small r0 > 0 such that the translational family Ft = {f t
i = fi + ti}�i=1,

t = (t1, . . . , t�) ∈ � := {s ∈ R
�d : |s| < r0}, satisfies the GTC with respect to the

Lebesgue measure L�d on �.

Proof. By the assumptions (i) and (ii), we may pick two open connected sets V and W
(for instance, we may let V and W be the ε-neighborhood and 2ε-neighborhood of S,
respectively, for a sufficiently small ε > 0), such that

S ⊂ V ⊂ V ⊂ W ⊂ W ⊂ U , and

fi(V ) ⊂ V and fi(W) ⊂ W for all i.

Then by continuity, we can pick a small r0 such that for all t = (t1, . . . , t�) ∈ R
�d with

|t| < r0,

f t
i (V ) ⊂ V and f t

i (W) ⊂ W for all i,

where f t
i := fi + ti . Fix this r0 and set � = {s ∈ R

�d : |s| < r0}. In what follows, we
prove that the family Ft, t ∈ �, satisfies the GTC with respect to L�d on �.

For i = 1, . . . , �, define gi : W → R by

gi(z) = log ‖f ′
i (z)‖.

Then gi is continuous on W for each i. Define γ : (0, ∞) → (0, ∞) by

γ (u) = max
1≤i≤�

sup{|gi(x)− gi(y)| : x, y ∈ W , |x − y| ≤ u}.

That is, γ is a common continuity modulus of g1, . . . , g�. Clearly limu→0 γ (u) = 0.
Notice that for t ∈ �, y ∈ W and ω ∈ �n,

log ‖(f t
ω)

′(y)‖ =
n∑
k=1

gωk (f
t
σkω

(y)).

Using similar arguments (with minor changes) as in Step 1 and Step 2 of the proof of
Proposition 4.3, we can show that the following two properties hold.
(a) Write for n ∈ N,

Cn := sup
{‖(f t

ω)
′(y)‖

‖(f t
ω)

′(z)‖ : t ∈ �, y, z ∈ W , ω ∈ �n
}

. (5.1)

Then limn→∞(1/n) log Cn = 0.
(b) For y ∈ W , s, t ∈ �, n ∈ N and ω ∈ �n,

‖(f t
ω)

′(y)‖
‖(f s

ω )
′(y)‖ ≤ exp

(
nγ

( |t − s|
1 − θ

))
, (5.2)

where θ := max1≤i≤� ρi < 1.
Let H denote the collection of C1 injective conformal mappings h : W → W such that

h(V ) ⊂ V . The following fact is known (for a proof, see e.g. part 3 of the proof of [39,
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Lemma 2.2]): there exists a constant D ∈ (0, 1) depending on V and W, such that

D ·
(

inf
z∈W ‖h′(z)‖

)
· |x − y| ≤ |h(x)− h(y)| for all h ∈ H, x, y ∈ V . (5.3)

Now fix s ∈ � and δ ∈ (0, r0). Let i, j ∈ � with i �= j. Set

ω = i ∧ j and n = |ω|.
Write a = σni and b = σnj. Clearly a1 �= b1. Fix y ∈ S. We claim that for r > 0,

{t ∈ BR�d (s, δ) ∩� :|�t(i)−�t(j)| < r}
⊂ {t ∈ BR�d (s, δ) ∩� :�t(a)−�t(b) ∈ (Dyf s

ω )
−1BRd (0, c(n, δ)r)}, (5.4)

where

c(n, δ) := D−1Cn exp
(
nγ

(
δ

1 − θ

))
> 1,

in which D is the constant from (5.3).
To show (5.4), let t ∈ BR�d (s, δ) ∩� so that |�t(i)−�t(j)| < r . Notice that

|�t(i)−�t(j)| = |f t
ω(�

t(a))− f t
ω(�

t(b))|
≥ D ·

(
inf
z∈W ‖(f t

ω)
′(z)‖

)
· |�t(a)−�t(b)| (by (5.3))

≥ D(Cn)
−1 exp

(
− nγ

(
δ

1 − θ

))
· ‖(f s

ω )
′(y)‖ · |�t(a)−�t(b)|,

where, in the last inequality, we have used (5.1) and (5.2). It follows that

|�t(a)−�t(b)| ≤ ‖(f s
ω )

′(y)‖−1 ·D−1Cn exp
(
nγ

(
δ

1 − θ

))
· r .

Since (f s
ω )

′(y) = Dyf
s
ω is a scalar multiple of an orthogonal matrix, the above inequality

implies that

�t(a)−�t(b) ∈ (Dyf s
ω )

−1BRd (0, c(n, δ)r).

from which (5.4) follows.
By (5.4) and Lemma 4.7 (which is also valid in this context),

L�d{t ∈ BR�d (s, δ) ∩� : |�t(i)−�t(j)| < r}
≤ L�d{t ∈ BR�d (s, δ) ∩� : �t(a)−�t(b) ∈ (Dyf s

ω )
−1BRd (0, c(n, δ)r)}

≤ C̃ · min
{
c(n, δ)krk

φk(Dyf s
ω )

: k = 0, 1 . . . , d
}

≤ C̃c(n, δ)d · min
{

rk

φk(Dyf s
ω )

: k = 0, 1 . . . , d
}

= C̃D−d(Cn)d exp
(
ndγ

(
δ

1 − θ

))
min

{
rk

φk(Dyf s
ω )

: k = 0, 1 . . . , d
}

.
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Since y ∈ S is arbitrary and �s(�) ⊂ S, recalling

Zs
ω(r) = inf

x∈� min
{

rk

φk(D�sxf s
ω )

: k = 0, 1, . . . , d
}

,

it follows that

L�d{t ∈ BR�d (s, δ) ∩� : |�t(i)−�t(j)| < r}
≤ C̃D−d(Cn)d exp

(
ndγ

(
δ

1 − θ

))
Zs

ω(r)

≤ cδe
nψ(δ)Zs

ω(r),

where

cδ := sup
n∈N

C̃D−d(Cn)de−nδ < ∞, ψ(δ) := δ + dγ

(
δ

1 − θ

)
.

Since limu→0 γ (u) = 0, we see that limδ→0 ψ(δ) = 0. Thus, (Ft)t∈� satisfies the
GTC.

6. Direct product of parameterized families of C1 IFSs
In this section, we study the direct product of parameterized families of C1 IFSs (cf.
Definition 1.5). The main result is the following, stating that the property of the GTC
is preserved under the direct product.

PROPOSITION 6.1. Let � ∈ N with � ≥ 2. Suppose that for k = 1, . . . , n, (F tk
k )tk∈	k is a

parameterized family of C1 IFSs on Zj ⊂ R
qk , satisfying the GTC with respect to a locally

finite Borel measure ηk on the metric space (	k , d	k ). Moreover, suppose all the individual
IFSs have � contractions. Set

F (t1,...,tn) = F t1
1 × · · · × F tn

n , (t1, . . . , tn) ∈ 	1 × · · · ×	n.

Endow 	 := 	1 × · · · ×	n with the product metric d	 as follows:

d	((t1, . . . , tn), (s1, . . . , sn)) =
( n∑
k=1

d	k (sk , tk)
2
)1/2

.

Then the family F (t1,...,tn), (t1, . . . , tn) ∈ 	1 × · · · ×	n, satisfies the GTC with respect to
η1 × · · · × ηn.

To prove the above proposition, we need the following.

LEMMA 6.2.
(i) Let A be a real non-singular d × d matrix with singular values α1 ≥ · · · ≥ αd . Then

for each r > 0,

min
{

rp

φp(A)
: p = 0, 1, . . . , d

}
=

d∏
i=1

min{αi , r}
αi

,

where φs(·) is the singular value function defined as in (2.5).
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(ii) For j = 1, . . . , n, let Aj be a real non-singular dj × dj matrix. Set

M = diag(A1, . . . , An) :=

⎡
⎢⎢⎢⎣
A1 0 · · · 0
0 A2 · · · 0
...

...
. . . 0

0 0 · · · An

⎤
⎥⎥⎥⎦ .

Then

min
{

rp

φp(M)
:p = 0, 1, . . . , d1 + · · · + dn

}

=
n∏
i=1

min
{

rp

φp(Ai)
:p = 0, 1, . . . , di

}
. (6.1)

Proof. The proof of (i) is direct and simple. We leave it to the reader as an exercise. Part
(ii) is just a consequence of (i), using the fact that the set of singular values (including the
multiplicity) of M are precisely the union of those of Ai , i = 1, . . . , n.

Now we are ready to prove Proposition 6.1.

Proof of Proposition 6.1. Write

F tk
k = {f tki,k}�i=1, tk ∈ 	k , k = 1, . . . , n.

For ω = ω1 . . . ωm ∈ �∗, write f tkω,k = f
tk
ω1,k ◦ · · · ◦ f tkωm,k . Let �tkk denote the coding

map associated with the IFS F tk
k , and �(t1,...,tn) the coding map associated with the IFS

F (t1,...,tn). According to the GTC assumption on the families (F tk
k )tk∈	k , k = 1, . . . , n,

there exist δ0 > 0 and a function ψ : (0, δ0) → [0, ∞) with limδ→0 ψ(δ) = 0 such that
for every δ ∈ (0, δ0) and (s1, . . . , sn)∈	1 × · · · ×	n, there is C=C(δ, s1, . . . , sn)>0
satisfying the following: for each k ∈ {1, . . . , n}, distinct i, j ∈ � and r > 0,

ηk{tk ∈ B	k(sk , δ) :|�tkk ( i)−�
tk
k (j)| < r}

≤ Ce|i∧j|ψ(δ) inf
x∈� min

{
rp

φp(D
�
tk
k x
f
tk
i∧j,k)

:p = 0, 1, . . . , qk

}
, (6.2)

where B	k(sk , δ) stands for the closed ball in 	k of radius δ centered at sk . Writing t =
(t1, . . . , tn), s = (s1, . . . , sn) and using (6.2),

η1 × · · · × ηn{t ∈ B	(s, δ) : |�t(i)−�t(j)| < r}

≤
n∏
k=1

ηk{tk ∈ B	k(sk , δ) : |�tkk ( i)−�
tk
k (j)| < r}

≤
n∏
k=1

(
Ce|i∧j|ψ(δ) inf

x∈� min
{

rp

φp(D
�
sk
k x
f
sk
i∧j,k)

: p = 0, 1, . . . , qk

})

≤ Cnen|i∧j|ψ(δ) inf
x∈�

n∏
k=1

min
{

rp

φp(D
�
sk
k x
f
sk
i∧j,k)

: p = 0, 1, . . . , qk

}
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= Cnen|i∧j|ψ(δ) inf
x∈� min

{
rp

φp(D�txf
s
i∧j)

: p = 0, 1, . . . , q1 + · · · + qn

}

= Cnen|i∧j|ψ(δ)Zs
i∧j(r),

where we have used (6.1) in the second last equality. Hence, the family F t, t ∈ 	, satisfies
the GTC with respect to the measure η1 × · · · × ηn, where the involved constant and the
function in the definition of the GTC are Cn and nψ(·), respectively.

7. The proof of Theorem 1.6 and final questions
Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. This follows directly by combining Theorems 4.2, 5.1 and
Proposition 6.1.

Below we list a few ‘folklore’ open questions on the dimension of the attractors of C1

IFSs. One may formulate the corresponding questions on the dimension of push-forwards
of ergodic invariant measures on the attractors.

Question 7.1. Is it true that for every C1 IFS F = {fi}�i=1 on R
d satisfying (1.8), there is

a neighborhood � of 0 in R
�d such that for L�d -a.e. t = (t1, . . . , t�) ∈ �,

dimH K
t = dimB K

t = min{dimS Ft, d},
where Kt is the attractor of the IFS Ft = {fi + ti}�i=1?

Question 7.2. Do we have

dimH K = dimB K = min{dimS F , d}
for the attractor K of a ‘generic’ C1 IFS F on R

d (in an appropriate sense)?
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[41] F. Przytycki and M. Urbański. Conformal Fractals: Ergodic Theory Methods (London Mathematical Society

Lecture Note Series, 371). Cambridge University Press, Cambridge, 2010.
[42] W. Rudin. Principles of Mathematical Analysis, 3rd edn. McGraw-Hill Book Co., New York, 1976.
[43] D. Ruelle. Statistical mechanics on a compact set with Zv action satisfying expansiveness and specification.

Trans. Amer. Math. Soc. 187 (1973), 237–251.
[44] D. Ruelle. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2(1) (1982), 99–107.
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