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Abstract. Let A and B be regular semisimple commutative Banach algebras; that is
to say, regular Banach function algebras. A linear map T defined from A into B is said to
be separating or disjointness preserving if f.g =0 implies Tf. Tg=0, for all f,ge A. In
this paper we prove that if A satisfies Ditkin’s condition then a separating bijection is
automatically continuous and its inverse is separating. If also B satisfies Ditkin’s condition,
then it induces a homeomorphism between the structure spaces of A and B.

Finally, we show that linear isometries between regular uniform algebras are
separating. As corollaries, a classical theorem of Nagasawa ([19]) and the Banach-Stone
theorem (both for regular uniform algebras) are easily inferred.

1. Introduction. The basic problem in the theory of automatic continuity of linear
operators consists of giving algebraic conditions on two Banach algebras &/ and & which
ensure that every algebra homomorphism J: 4 — 9B is necessarily continuous. The most
important positive result in this context is due to B. E. Johnson ([15]). Every algebra
homomorphism of a Banach algebra onto a semisimple Banach algebra is continuous.

In this paper we shall study the automatic continuity of a special type of linear
mapping which extends the concept of algebra homomorphism: Let A and B be two
Banach algebras. Then a linear map 7 defined from A into B is said to be separating or
disjointness preserving (also called d-homomorphisms, Lamperti operators, ...) if f.g=0
implies Tf. Tg =0, for all f,g € A. Linear maps T:L,(u)— L,(x) with the property that
f-g=0 (u a.e.) implies Tf. Tg =0 (u a.e.) were already considered by Banach [7, p. 175].
In [18], J. Lamperti continued Banach’s research and later W. Arendt [5] called such
maps Lamperti operators. In the context of vector lattices, disjointness preserving
operators T:E— F (with E,F vector lattices) are defined to satisfy the implication
IfIAlgl =0 |Tf|A|Tg| =0 and have been widely studied: their multiplicative representa-
tion in, for example [1], their spectral properties in [6]; recently, Huijsmans-de Pagter [14]
and, independently, Koldunov [17] have shown that the inverse of a disjointness
preserving bijection is disjointness preserving under certain general conditions.

Disjointness preserving maps were also considered in [8] for spaces of real or
complex-valued continuous functions defined on a compact Hausdorff space with the
name of separating maps. The main goal in this context is to prove automatic continuity
results for separating maps between different kinds of function spaces of the following

type.
THEOREM. ([16] and [10].) A separating bijection T :C(X)— C(Y) with X,Y compact

(resp. T:Co(X)— Co(Y) with X,Y locally compact), is continuous and induces a
homeomorphism of Y onto X.
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TueoreM. ([11].) A separating bijection T:LY(G,)— L'(G,) (with G, and G, locally
compact Abelian groups) is continuous and induces a homeomorphism between their dual
groups.

Our main result here (§ 4) will show that a separating bijection T:A4 — B (where A
and B are regular semisimple commutative Banach algebras) is automatically continuous
whenever A satisfies Ditkin’s condition, its inverse is separating and induces a homeo-
morphism between their structure spaces if also B satisfies such condition. As a
consequence (see [13, § 39]), the results (op. cit.) in [16], [10] and [11] are extended to a
wider class of regular Banach function algebras that includes, for instance, Segal algebras
[21] or the Banach sequence algebras /P(N), p e (0, =), in [9]. It is, however, important to
remark that a separating map need not be continuous; indeed, K. Jarosz proved [16] that,
given two compact spaces X (infinite) and Y, there always exists a discontinuous
separating map defined from C(X) into C(Y); see also [8].

In § 5, we show, in the spirit of [12, Corollary 4.3] and [10, Theorem 4], that linear

isometries between regular uniform algebras are separating. As a corollary of this, we
easily derive a classical result of Nagasawa [19] and the Banach-Stone theorem for regular
uniform algebras.

The author is indebted to Professor Salvador Herndndez for helpful conversations
from which this work stems and to the referee for suggesting improvements in the
presentation.

2. Preliminaries. Let A be a commutative Banach algebra which may or may not
have an identity element. Let X denote the set of all complex-valued multiplicative linear
functionals on A. We can identify X with a subset of the unit sphere of the conjugate
space A' of A. Endowed with the Gelfand ropology, that is, the weak-star topology that it
inherits from A’, X is said to be the structure space or the maximal ideal space of A. If A
has a unit, then its structure space is a compact Hausdorff space. Otherwise, it is a locally
compact Hausdorff space.

The Gelfand transform of f € A is the complex-valued function f on X defined by
f(x)=x(f). The Gelfand transform is a homomorphism of A onto a point-separating
subalgebra A of Cy(X) (the Banach algebra of all complex-valued continuous functions
on X which are zero at infinity provided with the supremum norm | -|..). In addition,
i f ll« = |l fll4 for every f € A, which yields the continuity of the Gelfand transform.

It is said that A is semisimple if the set N {ker(x):x € X} is {0}. In this case, the
Gelfand transform is injective. If A is a semisimple commutative Banach algebra, then
(A, |l. |4) and the Banach function algebra (A, ||.|l,) are indistinguishable as Banach
algebras. Indeed, the class of semisimple commutative Banach algebras coincides with the
class of Banach function algebras.

Let us now consider the hull-kernel topology on X. In general, this topology differs
from the Gelfand topology. They coincide if the hull-kernel topology is Hausdorff, which
occurs if and only if for every closed subset E of X and every x e X \E, there is f e A
such that f(x)#0, while f vanishes on E. If a Banach algebra A has one of these
equivalent properties, then A is said to be regular.

Associated with a_separating map T:A— B, we can define a linear mappmg
T:4— B as T(F):=T(f), for every f e A. If A and B are semisimple, then it is easy
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to check that T is a separating map if and only if T is separating. In like manner, T is
injective (resp. onto) if and only if T is injective (resp. onto).

N (resp. R, C) will stand for the set of all natural numbers (resp. real, complex
numbers). If X is locally compact, then X* will denote its Alexandroff compactification;
that is, X* = X U {x}, « being an ideal point with a neighbourhood consisting of all sets
in X* whose complement is compact in X. If f e C(X) (the linear space of all
complex-valued continuous functions on X), the cozero of f is the set coz(f):=
{x € X:f(x)#0} and supp(f) will denote the support of f; i.e., the closure of coz(f).
When U is any subset of X, we shall denote by int(U) the interior of U and by cl(U) the
closure of U in X. f,; stands for the restriction of f to U, for any f e C(X).

Finally, if y € Y, let T"y*: A — C be defined as T'y'(f) = T(f)(y), for all f € A.

3. Previous results. In the sequel we shall use the following two results concerning
regular commutative Banach algebras (see e.g.; [13], § 39]).

ProrosiTION 1. Let o be a regular commutative Banach algebra. Let E be a compact
subset of its structure space and disjoint from a closed subset F. Then there is f € o such
thatf =1on Eand f =0on F.

ProrosiTiON 2. If o is a regular commutative Banach algebra with identity and {U}}}-,
is an open cover of its structure space, then there are f; € o such that the support of f; is

LU
contained in U;, and j;l fi=L

DEefFINITION 1. Let A and B be semisimple commutative Banach algebras, X and Y
their respective structure spaces and T:A— B a separating map. An open subset V of X*
is sai}i to be a vanishing set for T'y', y e Y, if for all f e A such that coz(f)c V, then
T'y'(f)=0.

Y, will stand for the elements y e Y such that there exists f, € A with T(fy)( y) #0.

Fix y € Y,. Then we define the set

supp T'y" := X*\UJ{V < X*:V is a vanishing set for T'y'}.

Lemma 1. With the same notation as in Definition 1, let y € Y. Then the set supp T'y'
contains, at most, one element. If, in addition, A is regular, then supp T'y' is a singleton.

Proof. Let us suppose that there exist two distinct elements x, and x, in supp T"y".
Let U and V be two disjoint open neighbourhoods of x; and x,, respectively. Then there
exist f, g € A such that

TH).T@) () =0

with coz(f) < U and coz(g) = V, which contradicts the separating property of .

Let us now assume that A is regular. It is well known that we can embed A as an
ideal in a regular commutative Banach algebra A, with identity. Furthermore, X is a
locally compact subspace of the (compact) structure space X, of A;. Indeed, X, = X*.

Let us suppose that supp 7'y is empty. In this case, we have that

X*=J{V c X*:V is a vanishing set for T'y’}.
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Since X* is a compact set, there exist finitely many vanishing sets U,, U,,..., U, of
T'y' such that X*=U,U...U U, By Proposition 2, there are f; € A, such that the

support of f, is contained in U;, and X ﬁ= 1. Hence, since A is an ideal in A;, we have
L j=l P

that f’= 2 fi.f, for all f e A. Furthermore, since coz(f;.f) < U;, we deduce from the
j=1

definition of a vanishing set that T(f.f’,)(y) =0,forj=1,...,n Thus T (f)(y) =0, for all
f € A, which contradicts the fact that y € Y.

Remark 1. (1) A simple example shows that, without the assumption of regularity,
supp T’y may be empty. Let A(D) be the disc algebra, @ ={y e C:|y|<1}. It is well
known that A(@) is a non-regular Banach function algebra on 9. Let us define T(f) =f,
for all f € A(9D). If we fix any y € int(2), then it is clear that the only possibility would be
supp T'y' =y, but, by the analytic identity theorem, we can find an open neighbourhood
V of y such that coz(f)N(2\V)#, for all f € A(D). This and the paragraph above
show that supp Ty’ = for all y e int(D).

(2) It is straightforward to check that suppT'y'={x e X*:for any X*-
neighbourhood U of x, there exists f e A such that Tf(y) # 0 and coz(f) = U N X}.

DEeFiNtTION 2. Let A and B be regular semisimple commutative Banach algebras, X
and Y their respective structure spaces and T:A — B a separating map. The above lemma
lets us define a mapping h:Yy— X* with h(y):=supp TY',y € ¥,. We call h the support
map of T.

ProrosiTion 3. With the same notation as in Definition 2, let U be an open subset of
X* and suppose that f € A. Then the following statements hold.

(1) The support map h of T is continuous.
(2) .fIUnXE 0 implies that Tflh_l(u) = 0_

(3) h(coz(TT)) = cly.(coz(F)).
(4) If T is injective, then h(Y,) is a dense subset of X*.

Proof. 1t can be found basically in [1, Proposition 3.1].( See also [8] or [16].) O

Derinmion 3. ([13,39.23]) A commutative Banach algebra o is said to satisfy
Ditkin’s condition if, for every f € & and x € X such that f (x) = 0, there exists a sequence
{fi}c o and open neighbourhoods V, of x such that f,, =0, for all neN, and
lim || £., = fl4=0.

" Furthermore, if & does not have a unit, then, for every f e &, there must exist a
sequence {f,} = & such that {f,} = Cpo(X) (the subspace of Cy(X) consisting of functions
with compact support) and lim || f.f, — fll« =0.

n

ProrosiTiON 4. Let A and B be regular semisimple commutative Banach algebras, X
and Y their respective structure spaces and T :A — B a separating map. Let y € Y,

(1) If A satisfies Ditkin’s conditon and T'y":(A, ||. | 4)— C is a continuous map, then
h(y)e X.
() If T'y":(A, |. |l.)= C is a continuous map, then h(y) € X.
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Proof. (1) Let us suppose that h(y) ¢ X; that is, h(y)=. Let f e A. Since A
satisfies Ditkin’s condition, there is a sequence {f,}=A such that {f,} = Co(X) and

lim || f.f, — f |l = 0, which implies that {f.f,} converges to f in (4, |. ||4)-

Furthermore, (f,,.f) =0 on (X*\cl(coz(£,)))NX and yeh '(X*\cl(coz( f',,))),
since h(y) = » and f, € Coo(X), for every n € N. Consequently, from Proposition 3, we
have that T(f,.f)(y) =0, for every n € N.

As T'y':(A, ||. }a)— C is a continuous mapping, the sequence {7"y*( 7.. 7)) converges
to T'(f). Consequently, since Ty’ (f.-£)=0, for all n € N, we infer that T'y'(f) =0.

Summing up, T'y'(f) =0, for every f € A, which contradicts the fact that y e Y. (See
Definition 1.)

(2) Let us suppose that h(y) ¢ X; that is, h(y)=cc. Since A = Cy(X), we can
consider the following neighbourhood of h(y) for any f e A:

U,:={x e X:|f(x)|=1/n}.
Also let
K,:={x e X:|f(x)|=2/n},

for n e N. From the definition of Co(X), each K, is a compact subset of X.
By Proposition 1, there exists g, € A such that §,x, =1 and £,,,=0, for all n e N.

X " R A A 2
Hence, the sequence {g,. f} converges to f in (A, ||. ||l.) since (|f — (@,.f )||w<;, for all
neN.
Furthermore, from Proposition 3, we have that T(@,.f)Xy)=0, for all n e N, since
(8n-fw,nx=0 and y belongs to h~'(U,). The rest of the proof follows from the same
arguments as in (1) above. O

ReMARK 2. Let A and B be regular semisimple commutative Banach algebras, X and
Y their respective structure spaces and T:A— B a separating map. Let us define a
continuous map w:h~(X) € Yo— C as follows. Given y € h~'(X), let U be a relatively
compact open neighbourhood of h(y) and let e, ., be any function in A such that
éi.wy=1 on U. These functions are provided by Proposition 1. Let us now define

w(y):=T(€q.u)(y).

By Proposition 3, it is easy to check that the definition of w does not depend on the choice
of the function e, yy; i.e., if €,y =1 on U, then T(é(,1,)(y) = T(é(,.1))(y). On the other
hand, if V is another relatively compact neighbourhood of hA(y) and ey, is as above,
then T'(€(,.1)) = T(é(,.v)) on k(U N V), by Proposition 3.

Hence, the mapping w is well defined and, given that for all y € h~!(X) this mapping
is equal to T(é(y,u)) on h~'(U) (which is a neighbourhood of y), we infer that w is a
continuous mapping.

DerFNiTION 4. Let A and B be regular semisimple commutative Banach algebras, X
and Y their respective structure spaces and T:A — B a separating map. We denote by Y,
the subset of Y, consisting of all y such that T%y':(4, ||. |l.)— C is continuous and by Y,
the complement of Y, in Y.
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ProposSITION 5. With the same notation as in Definition 4, let y e h™'(X). The
following statements are equivalent.

(1) The map T'y*:(A, ||. |l)— C is continuous; i.e., y € Y.
@ T = w(y) Fh(»)), for every f < A.

Proof. (1)= (2). First we claim that if f(h(»))=0, f € A, then T(f)(y) =0. To this
end, and since f(h(y))=0 and f is continuous, there exist, for every n e N, open

. 1
neighbourhoods U, of h(y) such that sup{|f(x)|:x ecl(U,,)}<;. Let us.consider a

relatively compact open neighbourhood V, of h(y) such that ci(V,) = U,, for all n e N. By
Proposition 1, we can choose g, € A such that gnlavy =1 and £, =0 outside U,. Clearly
the sequence { f £} converges to the function 0 and f gn= f onV,, foralln eN. chce,
by Proposition 3, we have that T(f)(y) = T(f.£.)(») and consequently, since T'y' is a
continuous mapping, T(f)(y) =0.

On the other hand, let us suppose that f(h(y)) 0. Define the function g:=
= hG))). ew.v) (ep.v) being as in the above remark). Since T is linear and
g(h(y)) =0, we infer that T(f)(y) = w(y).f(h(y)), for all f € A.

(2)=>(1). Clear a

ProrosiTioN 6. With the same notation as in Definition 4, the following statements
hold.

(1) Y. is closed in h™'(X).

(2) h(Yy) is a subset of limit points of X*.

(3) If A satisfies Ditkin’s condition, then the set h(Y,) Nint(K) is finite, for every
compact subset K of X.

Proof. (1) 1t is apparent, by Proposition 4, that Y. < h~'(X). Let us consider a net
{ya.}in Y, that convergestoy e h~ l(X ). By Proposition 5, T(f)(y.) = w(ya) f (h(ya)) for
every a and every f € A. Since w ,f oh, and T(f) are continuous mappings, it is clear that
T(F)(y) = w(y).f(h(y)), for every f € A; that is, y € Y. by Proposition 5.

(2) If h(y) = =, then h(y) is a limit point of X*. Let us now see that if h(y) e X is
isolated in X,y e Y then T'y": (4, |. |l<)— C is a continuous map; that is, y € ¥.. Given
feA, let us define the mapg:=f(h(y)).é,.v) for any relatively compact open
neighbourhood U of y, as in Remark 2. As fi(,) =&\, We have that T(F)y)=T
@)(y), by Proposition 3. Hence, Ty )= w(y). f (h(y)), for every f € A, which implies
that T*%*:(4, ||. |.)— C is continuous, by Proposition 5.

(3) Let us suppose, contrary to what we claim, that there exists a sequence {h(y,)} of
distinct elements of int(K) such that y, e Y,, for every n e N. As K is a normal space, we
can assume, by taking a subsequence if necessary, that {U,} is a sequence of pairwise
disjoint open subsets of K such that 4(y,) € U, = K, for every n € N. Let V, be a closed
neighbourhood of h(y,) with V, < U, for every n € N.

Fix m e N. By Proposition 5, since the map Ty}, (A |. l«)— C is discontinuous,
there exists a function f,, € A with T'(f)(ym) # o( y,,.) f,,,(h( ¥m))- Let us now define the
function

Em = = (P (ym)))- €y,
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where &, v, is as in Remark 2 and K V. Hence, T'(§,)(ym) #0 and £,.(h(yn)) =0.
Since T is a linear map, we shall assume without loss of generality that |T(£,,)(ym)| > m.
Since A satisfies Ditkin’s condition, there exists k,, € A such that E,,,|Vm=—- 0 and [[onlla<

1
'? , where ¢,,:=g,, — &n. k... Furthermore, as &,, =§,, on V,,, we have, by Proposition 3,

|7 (@m)(ym)] = T G )(ym) > m.

1
Let us now define ¢:= EN @, Since | @, ||A<’?, for all n e N, and A is a Banach

space, we infer that ¢ belongs to A. From the fact that the Gelfand transform is a linear
continuous mapping, we deduce that $ = 3 &,.

neN
On the other hand, since the family (U,),n is pairwise disjoint and coz($,) = U,, for
all n e N, the separating property of T yields T(&n)n-rw,y=0, for n#n’ (n,n’ e N).
Thus, |T(3,)(y.)| = |T(8)(y.)| > n, for every n e N, which is a contradiction since T(&) is
bounded. O

4. Main results.

THEOREM 1. Let A and B be regular semisimple commutative Banach algebras, X and
Y their respective structure spaces and T : A — B a separating bijection. Assume further that
A satisfies Ditkin’s condition.

(1) T is continuous.
(2) T is separating.
(3) If also B satisfies Ditkin’s condition, then X and Y are homeomorphic.

Proof. (1) Let us first note that Y=Y, since T is onto. Since YUY, =Y, then
h(Y)Uh(Y,)=h(Y). As T is injective, h(Y) is dense in X*, by Proposition 3. Hence,
given x e X and a compact neighbourhood U of x, we have, by Proposition 6,
h(Y)N U #@. That is, h(Y,) is dense in X'*.

Now, if y € Y,, then T(f)(y) = w(y).f(h(y)), for all f € A, which implies, since 7T is
onto and A separates the points of X, that w(y)#0. Hence, if T(f)y, =0, for some
f € A, then fm(y‘) =(. Furthermore, we know, by the above paragraph and Proposition 4,
that h(Y,) is dense in X. As a consequence, if T(f)m =0, then f =0.

Next, we claim both that Y, = h~'(X) and that Y, is dense in Y. To this end, suppose
that there exists y € h~'(X)\Y.. As Y, is, from Proposition 6, a closed subset of h~'(X),
there exists, by Proposition 1 and the surjectivity of T, a function g e A such that
T(£)y,=0 and T(¢)(y)=1. This contradicts the above paragraph. In like manner we
prove that Y, is dense in Y.

Finally, in order to prove the continuity of T, we shall prove that it has a closed
graph. Let us suppose that the sequences {f,} = A and {T'(f,)} converge to f e (4, |. [|.a)
and g e (B, ||. || 5), respectively. Then, given any y € Y, the sequence { GO converges
to £(y). On the other hand, given any x € X, the sequence {f,(x)}, converges to {f(x)}.
Consequently, for any yeVY, the sequence {T(f)(y)}, that is to say
{w(y)-(}n(h(y))}, converges to T(f)(y) = w(y).f(h(y)). Thus, T(f)=¢ on Y., which is
dense in Y. This implies that T'( 7) =g and, consequently, T(f) =g. Finally, since A and B
are Banach spaces, the Closed Graph Theorem yields the continuity of T.
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(2) Let us first prove that the inverse of T, T-':B— A, is also a separating
bijection. Let £, and £, be two elements of B such that g,.8,=0. Let fis fz e A such that
Tf, =g, and Tf,=§,. Since w is non- vanishing on Y, (see (1) above), we deduce that

1. /»=0 on h(Y,), which is dense in X. As a consequence, f, ./, =0 on the whole of X.
Hence both T-! and, consequently, 7~':B — A are separating maps.

(3) Since T is continuous, it is a routine matter to verify that the map
T'y':(A, |I.|4)— C is continuous, for every y € Y. Thus, by Proposition 4, we know that
h(y) € X, for every y e Y. Therefore, since h™'(X) =Y. (see (1) above), we infer that
Y=h"'(X) =Y, and, consequently, T'y' is a weighted composition map, for all y € Y.
(See Proposition 5.)

Next, by (2), we can consider the support map k:X — Y* of T~'. Of course, k is
continuous and its range is dense in Y*, by Proposition 3. Furthermore, by (1) and
Proposition 4, we know that (77')'x’ is a weighted composition map for all x € X and
k(X)cY.

Let us now fix y € Y. We claim that k(h(y)) = y. Assume, contrary to what we claim,
that k(k(y)) = y. Then there exist disjoint compact neighbourhoods U and V of k(h(y))
and y, respectively. By Remark 1(2), there exists a function g, € B such that coz(g,) = U
and T7'(Zo)(h(y))#0. This implies, by Proposition 3(3), that y ¢ cl(coz(g,)) and
k(h(y)) e cl(coz(g,)). Let g, € B (see Proposition 1) such that g,(y)#0 and gllm@so.
Consequently, we have that coz(g,) Ncoz(§,)=@ and, since 7' is separating,
coz(T71(8,)) Ncoz(T(8,)) = D. On the other hand, coz(T~'(g,)) is a neighbour-
hood of h(y), but if we take any f € A such that coz(f) coz(T '(80)), then coz(g;)N
coz( T(f)) = &, because T is separating. Consequently, T(f)(y)=0, since g,(y)#0.
This contradicts Remark 1(2). In like manner, we infer that h(k(x)) = x, for every x € X;
that is, & is a homeomorphism of Y onto X. O

As a straightforward application of our main results, we have the following result.
Let G, and G, be locally compact Abelian groups. Let G, (i =1,2) be the dual group of
G;. Let us recall that a Segal algebra S(G,) is a dense ideal in the group algebra L'(G))
with continuous imbedding, on which G; acts continuously by isometric translations. These
algebras were introduced in [20]. Some time later, it was proved in [21] that a Segal
algebra S(G;) is a regular semisimple commutative Banach algebra (with respect to a
certain norm), which satisfies Ditkin’s condition and whose structure space is G.

CorOLLARY 1. A separating bijection T:5(G,)— S(G,) is automatically continuous
and induces a homeomorphism of G, onto G,.

5. Isometries between regular uniform algebras. Let A and B be regular semisimple
commutative Banach algebras and X and Y their respective structure spaces. In this
section we shall assume, in addition, that [f?|.=|f|%, for every fe A (resp.
lg%lls = llgli3, for every g € B), which implies that the Gelfand transform is an isometry.
Consequently, A (resp. B) is a (uniformly) closed subalgebra of Co(X) (resp. Co(Y)). In
this case, A and B are said to be regular uniform algebras on X and Y respectively. If Z is
a compact subspace of C and we consider the algebra of functions on & uniformly
approximable by rational functions with poles off &, then we have an example of a
non-trivial regular uniform algebra.
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On the other hand, let us recall that x, € X is said to be a strong boundary point for
A if, for each open neighbourhood U of x,, there is f € A such that If (xo)l = llfc l==1 and
| (x) <1 for all x € X\U. The set of strong boundary points for A is dense in the Shilov
boundary for A, which here coincides with its structure space X since A is regular. (See

[41.)
LemMA 2. Let A be a regular uniform algebra on X. If x, € X is a strong boundary

point for A then, for each open neighbourhood U of x, and € >0, there is g € A such that
Exo)=18ll==1and |g(x)i<e, for all x e X\U.

Proof. Since X*\{U}is compact the function f, which is provided by the definition of
strong boundary Roint, attains a maximum value s <1 inside X*\{U}. Hence there exists
n e N such that |[(f)"(x)] <€, for all x € X\ U. Thus, g:=(f)" has the required properties.

a

In [10] and [12], the authors prove that linear isometries between Cp(X)-spaces and
spaces of vector-valued continuous functions, respectively, are separating. The following
result shows that the same is true in the context of regular uniform algebras.

THEOREM 2. Let A and B be regular uniform algebras. If T is a linear isometry of A
onto B, then T and T™' are separating.

Proof. 1t is obvious that T is a linear isometry of A onto B, since the Gelfand
transform is an isometry. Let us suppose that there exist f, § € A and y, € Y such that
f.8=0 with T(FH)(»). T@)(»)#0. Since the set of strong boundary points for B is
dense in Y, there exists a strong boundary point y, such that T(f)(y)=a#0 and
T(&)(yo)=b#0.

Multiplying by constants if necessary, we shall assume that a,b e R, |a| = b}, and

1F e = 1 Il = 1.

As a,b are reals, we know that |a| <max(ja + b}, |a — b}). Let us suppose that
la + b~ |a|

|@ +b|>|a|=|bl and let A e Rsuch that 0 <A< >

We define
V={yeY:AT(F)y)<lal + 2},
W={y e Y:ITE)y)I<Ibl + A}

and U=V N W. It s clear that U is an open neighbourhood of y, and, since y, is a strong
boundary point for B, Lemma 2 ensures that there exists # € B such that 0=|A|=1 with

+
Aty =22 and A(y\U)Y<a + b|. Then
|a + b|

+b
a+b+—"|=1+a+b|
la +b|

IT(F)(yo) + T(€)(yo) + A(y0)l =

Hence, |T(F)+T@)+hll.=1+a+b|

Since T is onto, there exists k € B such that T (k) = A. Hence, since T is an isometry,
we infer that |f +g +kfl.=1+la+b. As f.§=0, we have that max(||f + £,
Ig +kllx)=1+|a+b| Therefore, if we assume that ||f +K|.=1+|a+b|, then
IT(F) +Ale=1+]a+b|
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Given any element y of Y such that y e U, we have that |T(F)(y) +A(y) <
TN+ A <lal+A+1<1+la+b. On the other hand, if ye¢U, then
T(f)(y)+ﬁ(y)|< 1A O +1A() =1+|a+b|. Hence, for every y e ¥, we infer
that |T(F)(y) + h(y)|<1+a +b| which contradicts the above paragraph. This proves
that T and, by Theorem 1(2), T~' are separating. O

In [19], Nagasawa proved that two unital uniform algebras are isometric if and only if
they are (algebra) isomorphic. As a corollary of Theorem 2, we easily derive this classical
theorem of Nagasawa and the Banach-Stone theorem ([3]) in the setting of regular
uniform algebras.

CoOROLLARY 2. Let A and B be regular uniform algebras. Let us suppose that there
exists a linear isometry T of A onto B.

(1) (Banach-Stone) Their structure spaces are homeomorphic.
(2) ([19)) If A and B have units, they are (algebra) isomorphic.

Proof. (1) Combine Theorems 1(3) and 2. (Note that the hypothesis on Theorem
1(3) is redundant whenever T~ is continuous.)

(2) Assume now that 1, and 15 are the units of A and B respectively. Then one
easﬂy checks that the function w, which we have defined in Remark 2, turns out to be
T(l 4), which implies that w € B. By Proposition 5(2), we have that

w. T(f- §)= T(f) T(g),

for every f,geA. Hence, if we now choose keA such that T(k)=
1,, then . T(k?) =1,, which is to say that @' = T'(k?) belongs to B. Finally, it is clear
that w™'. T is the desired algebra isomorphism of A onto B. m]
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