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1. Introduction. Given a probability measure space (Q, g, P) consider 
the following packing problem. What is the maximum number, b(K, A), of sets 
which may be chosen from g s o that each set has measure K and no two sets 
have intersection of measure larger than A < K? 

In this paper the packing problem is solved for any non-atomic probability 
measure space. Rather than obtaining the solution explicitly, however, it is 
convenient to solve the following minimal paving problem. In a non-atomic 
a-finite measure space (12, g, n) what is the measure, V(b, K, A), of the 
smallest set which is the union of exactly b subsets of measure K such that no 
subsets have intersection of measure larger than A? 

2. A lower bound for V(b, K, A). A subset @ of g is an admissible family 
if for all A, B £ ® 

MG4) = K, 
n(A r\B) < A. 

If {Ai, A2, . . . , Ab}, b > 1, is an admissible family let Br = {x\x belongs 
to exactly r sets}, r = 1, 2, . . . , b, and let ar = n(BT). Then the ar satisfy 
the following: 

(2.1) ar > 0, r = 1,2, . . . ,6, 

(2.2) E iat = bK, 

and 

(2.3) §G)°' + 0' = © A 

where af > 0 is a slack variable. 
A feasible intersection measure (FIM) is a set of b > 1 numbers satisfying 

(2.1), (2.2), and (2.3). If a FIM arises from an admissible family as above, it 
is said to be realized by that family. 

The minimal paving problem is to minimize the quantity 

(2.4) V^P((JA) =ttal 

in which the minimization is to be over the class of all admissible families of b 
sets. Instead of doing this directly, we first minimize the linear expression 

V = iat 

Received June 1, 1966. 

749 

https://doi.org/10.4153/CJM-1967-068-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-068-x


750 D. SANKOFF AND D. A. DAWSON 

over all feasible intersection measures and then show that the minimal FIM 
is realized by an admissible family. The minimization of F is a linear pro­
gramming problem whose solution is given by the following theorem. 

THEOREM 2.1. The FIM 

at = 0, i 9^ r — 1, r, 

(2.5) ar-i = b{K - A(b - l ) / ( r - 1)}, 

ar= {b(r - 2)/r}{A(b - l ) / ( r - 2) - K}, 
is minimal where 

(2.6a) r = [A(b - 1)/K] + 2 

if A(b — 1)/K is not an integer, and 

(2.6b) r = A (6 - 1)/K + 1 

if A(b — l)/K is an integer. 
The minimal value for V is 

(2.7) V = 26i£/r - Ab{b - l ) / r ( r - 1). 

Finally a' = 0. 

Proof. V is bounded below by zero. If we set ax = bK, at = 0 for z > 2, 

and ar = ( 9 J it is clear that equations (2.1) to (2.3) have a solution. Since 

there are two equations (2.2) and (2.3) relating the a / s there is a solution to 
the minimization problem for which b — 1 of the variables #i, a2, . . . , a6, a' 
are equal to zero (1, p. 222). 

According to (1, Theorem 9.1), to determine the minimal solution the 
equations (2.2), (2.3), and (2.4) must be put into canonical form. That is, 
one must eliminate ar from either (2.2) or (2.3) and ar_i from the other, 
adjusting the coefficients of ar_i and aT, respectively, to be one, and eliminate 
aT and ar_i from (2.4). 

In canonical form equations (2.2), (2.3), and (2.4) become 

-2a'/(r - 1) + ai + E *<{* - *(* - l ) / ( r - 1)} 

= b{K- A ( 6 - l ) / ( r - l ) } , 

2a'fr - ffll(r - 2) / r + £ {*'(*' - 1)A - *0 - 2)/r}a« 
1=2 

= {b(r-2)/r}{A(b-l)/(r-2)-K\, 
b 

a'(2/(r - 1) - 2/r) + ai(r - 2) /r + ] £ {(r - i)(r - % - l)/r(r - l)}af 

= F - 26i£/r + Ab(b - l ) / r ( r - 1). 
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Now for r > 2, 

2/(r - 1) - 2/r > 0 
and (r - 2)/r > 0, 

(r -i)(r - i - l)/r(r - 1) > 0, * = 1, 2, . . . , b. 

By the theorem quoted above, it follows that if 

(2.8) b{K- A(6 - l ) / ( r - 1)} > 0 

and 

(2.9) {i(r - 2)/r}{A(b - l ) / ( r - 2) - K} > 0, 

then a minimal solution is 

ar_x = b{K - A(6 - l ) / ( r - 1)}, 

ar = {6(r - 2)/r}{A(6 - l ) / ( r - 2) - * } , 

a< = 0, i ^ r - 1, r, 

a' = 0, 

and V = 26if/r - A6(6 - l)/r(r - 1). 

Conditions (2.8) and (2.9) may be rewritten as 

(r - 2)K/(b - 1) < A < (r - l)2S:/(& - 1). 

In other words 

r = [A(6 - l)/jRr] + 2 if A(6 — l)/2£ is not an integer, 
or 

r = A (6 - 1)/X + 1 if A(6 — 1)/X is an integer. 

Rewriting (2.7), 

V = 2bK/{[A(b - 1)/K] + 2} 

- Ab(b - 1)/{[A(6 - 1)K] + 2}{[A(6 - 1)/X] + 1} 
in case (2.6a), or 

V = bK2/{A(b - 1) + K] = bK/r 

in case (2.6b). It should also be noted that in case (2.6b), ar_i is equal to zero. 

3. Realization of the lower bound by an admissible family. In this 
section an admissible family in a non-atomic cr-finite measure space is con­
structed whose FIM agrees with that obtained in Theorem 2.1. This will 
prove that V(b, K, A) is given by (2.7). 

In case (2.6b) we wish to find b sets {Ai, A2, . . . , Ab} such that n(At) = K, 
i — 1, 2, . . . , b, p(Ai r\ Aj) = A, i ^ J, and such that every point in 

\JAt 
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belongs to exactly r of the sets. Take any ( 1 disjoint sets of measure V 
say 

{*<:*•= 1,2, . . . , (*)} 
and set up a one-to-one correspondence between these sets and the set of 
6-tuples consisting of r ones and b — r zeros. Let At be the union of all the 
sets B j whose corresponding 6-tuple contains a one in the ith position. Then 
since V = bK/r, 

and since A = (r — \)K/(b — 1), 

This admissible family is called a (b, V, r, K, A)*-configuration since it arises 
from the (b, v, r, k, X)-configuration where 

(b, v, r, k, A)-configurations are known as balanced incomplete block designs 
in statistics and are studied by Ryser in (3). 

In case (2.6a) we proceed as follows. Given 

6 = A (6 - 1)/K + 2 -r, 0 < 6 < 1, 
set 

V' = aT, K' = KB, A' = K6(r - l)/(b - 1), 
and 

V" = dr-u K" = K{\ - 6), A" = K(l - 0)(r - 2)/(b - 1). 

Then since A' {b — 1)/Kr and A" (b — 1)/K" are both integers, namely r — 1 
and r — 2 respectively, we can construct a (b, V, r, K', A/)*-configuration 
{A/: i = 1, 2, . . . , 6} and a (b, V"', r - 1, X", A")*-conf]guration 

{ 4 / ' : i = 1,2, . . . ,&}, 

as above. Then it is easy to verify that the family of sets {At: i — 1,2, . . . , & } , 
where .4* = -4 / + . 4 / ' , i = 1, 2, . . . , & , is an admissible family whose FIM 
is given by equations (2.5). 

PROPOSITION 3.1. (i) V(b, k, A) is non-decreasing in b. 
(ii) l i m ^ V(b, K, A) = X2/A. 

Proof. The proof of (i) is immediate, since if we discard a set from an admis­
sibly family of b sets, the remaining sets form an admissible family of b — 1 
sets. 
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The second result can be verified by rewriting (2.7) as 

bK'd . bK\l - 0) 
( 3 J ) V^K> A) =

 W^W+ÏK^IK
 + A(b-1)+K-8K 

where 6 = A(6 - 1)/K - [A(6 - l ) / i? ] , 0 < 0 < 1, and then taking the 
limit as b goes to infinity. 

PROPOSITION 3.2. & C T a« admissible family {At: i = 1, 2, . . . , 6} as a&0z/£, 
let U(by K, A) be the measure of 

b 

nAt. 
i=i 

If the measure space is a non-atomic probability measure space, then 
U(b, K,A)<1- V(b, 1-K,1-2K + A). 

Proof. This follows from 

b / b \c 

r\At= ( \JA\) 
i=i \ i=i / 

and 
n(At

c) = 1 - K, viASniAf) < 1 - 2K + A, i ^ j . 

4. The packing problem. The packing problem involves calculating 
b(K, A) = maxjô : V(b, K, A) < 1}. Since V(b, K, A) is monotone non-
decreasing in b, b{K, A), when finite, can be found by computing V(b, K, A) 
from Equation (3.1) for a finite number of values of b. Because of the rather 
complicated behaviour of quadratic expressions involving the function [ • ] it 
does not seem possible to obtain a simple expression for b(K, A). In the 
following proposition, however, some bounds are given for b(K, A). 

PROPOSITION 4.1. If A < K2, V(b, K, A) and b(K, A) satisfy the following 
inequalities: 

(4.1) T T r - ^ T T T - F < V(b,K, A) < bK* 

(4.2) 

A(b-1)+K^ v ' ' ' " A(6 - 1) + X / 4 ' 

'K- A' WeJ.]<b(KtA)< Kz .K2 - A. 

Proof. If the expression on the right-hand side of (3.1) is considered as a 
function of 0, it may be verified that the minimum occurs for 6 = 0 or 1 and 
the maximum occurs for 

a K + a- a \/T::rK%2 

where a = A(b — 1) + K. But then 

K + a-a(l-K2/2a2) 
0 < 2K < 3 / 4 ' 
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and hence, from the expression (3.1), it is easy to verify that (4.1) is satisfied. 
The inequalities in (4.2) then follow from the inequalities in (4.1). 

In the case 0 = 0, the lower bound in (4.1) is attained. If in addition 
(K — A)/(K2 — A) is an integer, then V(b,K, A) = 1 and the packing 
completely covers 12. 

Example. For the case K 

V(b, K, A) 

Moreover b(K, A) = [ l / (« 
integer less than x. 

PROPOSITION 4.2. b(K, A) is finite if and only if A < K2. 

Proof. This follows immediately from Proposition 3.1. 

Let g (a), 0 < a < 1, be the class of sets in g whose measure is a. %(a) is 
said to be e-approximated by a subfamily @ if for every A G S( a ) there is a 
set B G © such that n(A A B) < e. The following is a direct consequence of 
Proposition 4.2. 

COROLLARY. 5(°0 is e~approximated by a finite subfamily if and only if 
e > 2(a - a2). 

PROPOSITION 4.3. If K2 = A and n(Q) = 1, then there exists a countable 
admissible family which covers 12. 

Proof. A sequence of sets is constructed inductively as follows. A± is any set 
of measure K and A 2 any set of measure K such that ix{A\ C\ A2) = A. For 
any n, let îln designate the set of atoms in the Boolean algebra generated by 
{A 1, A2, . . . , An). Given 2lw we obtain %n+\ by subdividing each atom B in %\n 

into two sets whose measures are K^{B) and (1 — K)n(B) respectively. 
Then let 

(4.3) An+1 = \J{Bt: Bt G §Ui, p(Bt) = K»(C), Bt C C, C G %,}. 

It is clear that ii(An+i) = K. Furthermore if 

a» = A U A A , 

an+i = aTO + K(l — aw) and therefore lirm,^ an = 1. 
To show that 

(4.4) n(AnnAn) = A = X2 

for m > w we proceed by induction. If m = n + 1, (4.4) follows from (4.3). 
If (4.4) is true for m, then 

n(An C\ An+1) = K(^(An r\ Am)) + K(ji(An - An)) 

= K* + K(K - K2) = K2. 

= a/2, A = a/4:, 1 < a < 2, 

)ab/(b + 1), b even, 
\a(b+ l ) / (6 + 2), 6 odd. 

l)]e where [x]e designates the greatest even 
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Hence the induction argument is complete. 

Note that if A = K2 and the probability measure space is non-separable 
there may actually be uncountably many sets of measure K whose pairwise 
intersections have measure A. 

5. Connections with probability theory. Given a non-atomic probability 
measure space, a collection of sets {̂ 4*} is said to be pairwise a-dependent if 

n(Ai\Aj) = an(Ai), j 9±i,a> 1, 

pairwise a-antidependent if 

»(At\Aj) = an(At), j 9* i,a < 1, 

and pairwise independent if 

viAilAj) = n(At), j 5*i. 

Then Proposition 4.2 can be rephrased as follows. 

PROPOSITION 5.1. Every collection of pairwise a-antidependent events of 
probability K > 0 is finite. There exist infinite classes of pairwise a-dependent 
or pairwise independent events of probability K > 0. 

Proposition 3.1 (ii) is closely related to the strong form of the Borel-Cantelli 
lemma (4, p. 317) which states that if 

CO 

£ P{En) = oo 

and if for some a > 1 

P{Enr\Em) <aP(En).P(Em), 
then 

P\ H U Ek) > l/a. 
\n—l Jc=n / 

In fact if P(Ak) = K, k = 1, 2, 3, . . . , P(Ak Pi Am) < aK\ k ^ w, a > 1, 
then Proposition 3.1 implies that 

PyUA.J >K2/A= l/a 

for any n. Furthermore the construction given in Proposition 4.3 shows that 
this inequality cannot be replaced by a strict inequality. More general results 
of this nature will appear elsewhere. 

The results of this paper also have an application to the statistical theory 
of hypothesis testing. Consider a finite collection of statistical tests 
T\, T2, . . . , Tn whose critical regions are of probability K and such that the 
probability that any two of the tests will simultaneously reject the null hypo­
thesis is A. Then Theorem 2.1 and Proposition 3.2 may be used to obtain a 
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lower bound for the probability that at least one test will reject the null 
hypothesis and an upper bound for the probability that every test will reject 
the null hypothesis. In other words, we obtain bounds for the significance 
levels of the new tests Tx A T2 A . . . A Tn and Tx V T2 V . . . V Tn. 

Finally we consider another application to approximation theory. Recall 
that if 3 is the class of sets in §• of P-measure zero, then the space 2ft = g / 3 
may be endowed with a metric p. The metric is defined by 

pdA.l [A2]) = P ( i i A A 2 ) 

where [Ai] denotes the equivalence class of Au i = 1, 2. Given any subset 
r C $ft, the e-capacity of I\ Ce(T), is defined to be the logarithm of the 
maximum number of points contained in T with the distance between each 
pair of points at least e; refer to G. G. Lorentz (2). If TK is the subset of 2ft 
consisting of points corresponding to sets of P-measure K, then 

C£(IV) =logb(K,(2K- €) /2) . 

The Proposition 4.1 immediately yields bounds for the e-capacity of the 
non-compact set TK. 
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