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SUMMARY

We investigated the relationship between environmental temperature and reported Salmonella

infections in 10 European populations. Poisson regression adapted for time-series data was

used to estimate the percentage change in the number of cases associated with a 1 xC increase

in average temperature above an identified threshold value. We found, on average, a linear

association between temperature and the number of reported cases of salmonellosis above a

threshold of 6 xC. The relationships were very similar in The Netherlands, England and Wales,

Switzerland, Spain and the Czech Republic. The greatest effect was apparent for temperature

1 week before the onset of illness. The strongest associations were observed in adults in the

15–64 years age group and infection with Salmonella Enteritidis (a serotype of Salmonella). Our

findings indicate that higher temperatures around the time of consumption are important and

reinforce the need for further education on food-handling behaviour.

INTRODUCTION

Salmonella is one of the most important foodborne

pathogens affecting European populations. For ex-

ample, Salmonella infection causes more deaths an-

nually than any other foodborne pathogen in England

andWales [1].Within Europe, Salmonella sp. accounts

for 71% of all laboratory-confirmed outbreaks of

foodborne disease [2]. Outbreak investigations indi-

cate that ‘temperature misuse’ was a contributory

factor in 32%, and of these, inappropriate storage

and preparation too far in advance were responsible

for 25% [2]. Although the effect of temperature on

the growth of salmonellas in food is well understood

[3, 4], the links between ambient air temperature and

the transmission of sporadic salmonellosis are yet to

be fully elucidated.

There are over 2500 different serotypes of Salmon-

ella, but the two most commonly reported, S. Typhi-

murium and S. Enteritidis, together account for at

least 70% of reported human infections in Europe

[2, 5]. S. Enteritidis is found almost exclusively in

poultry and eggs. There are statutory or voluntary

surveillance systems for salmonellosis in all European

countries [2]. The worldwide reported incidence of

salmonellas in humans increased steadily during the

1980s and early 1990s due to the emergence and rapid

spread of S. Enteritidis which overtook S. Typhi-

murium as the dominant Salmonella serotype in

many industrialized countries [6]. However, recently

many countries (including the countries in this study)

have observed marked declines in the reporting of

salmonellosis coincident with falls in S. Enteritidis
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infection, following the introduction of various in-

terventions to control the carriage of S. Enteritidis in

poultry flocks.

In the laboratory, the rate of multiplication of

Salmonella sp. is directly related to temperature

within the range 7.5–37 xC [7]. Thus, in the absence

of other controls, ambient (outdoor) temperature

might be expected to influence the reproduction of

salmonellas at various points along the food chain

from farm to fork [8]. Cooking destroys salmonellas.

Inadequate storage and the spread from contami-

nated to non-contaminated food are risk factors

for transmission in sporadic cases [9–11]. Outdoor

temperatures might also affect the exposure of in-

dividuals to salmonellas through seasonal changes

in eating patterns (e.g. consumption of foods from

buffets, barbecued foods, and salads, etc.) and

behaviour (e.g. outdoor recreational activities such

as swimming or hiking that increase contact with

sources of Salmonella in the environment).

Few studies have looked at environmental tem-

perature and Salmonella or foodborne infections

generally [12, 13]. Year to year variability in summer

temperatures might explain some of the variability

in annual incidence of Salmonella infection in the

UnitedKingdom (1962–1989) [14].Monthly variation

in food-poisoning notifications in England and

Wales (clinical diagnoses that include a range of in-

fectious and non-infectious diseases) was found to be

positively related to outdoor temperatures in the pre-

vious month, but only at temperatures above 7.5 xC

[12, 15]. Further, these relationships were used to

estimate future additional cases of food poisoning in

a warmer England due to global climate change [16].

We aim to determine how much of the variation

in weekly Salmonella cases is explained by environ-

mental temperatures using laboratory-confirmed

cases of salmonellosis from passive surveillance in

10 European populations.

METHODS

Surveillance data

Data on laboratory-confirmed cases of Salmonella

infection were obtained from national surveillance

centres in the Czech Republic, Denmark, England

and Wales, Estonia, The Netherlands, Scotland,

Slovak Republic, Poland, Switzerland, and Spain

(Table 1) [2]. We analysed weekly counts, except

where these were not available for PolandT
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(bi-weekly) and for Estonia and the Slovak Republic

(monthly). Travel-associated cases were excluded

where possible (5/10 countries), as infection acquired

abroad is not likely to be associated with local

temperatures. Cases linked to outbreaks were also

excluded where possible (2/10 countries), as the re-

lationship with temperature may be different for

sporadic cases and for those linked to outbreaks. The

ascertainment of travel- and outbreak-associated

cases is likely to be incomplete even in those countries

that identify such cases.

Changes in infection control measures in the UK

poultry industry caused a significant decline in the

number of reported cases in Scotland and England &

Wales after 1997. For this reason, the period after

January 1998 was dropped in these series. Our col-

laborators reported no significant changes in disease

epidemiology or control during the data period with

the exception of The Netherlands where control

measures were put in place during 1997 and 1999

(W. van Pelt, personal communication). Abrupt

changes in disease, however, were not apparent in the

data and therefore the whole time-period was used.

No countries reported significant changes in reporting

practice.

The following age groups were also modelled where

data were available: young children (0–5 years),

children (6–14 years) ; adults (15–64 years) ; and the

elderly (65+ years). For comparability, age-group

series were analysed using the same thresholds as

identified for the all-ages series for that country.

The serotypes of Salmonella sp. were also modelled

separately for Denmark, The Netherlands, England

and Wales, and Scotland, as they were identifiable in

the data-sets and had sufficient numbers. Threshold

values for the different serotypes were estimated.

Ideally, time-series analysis would use dates of the

onset of illness but this information is not routinely

available in surveillance. The onset of an illness

in sporadic cases is self-reported. Information was

obtained from questionnaires completed by all data

providers regarding the definition of date and esti-

mated delay between illness onset and the date re-

corded in the data-sets (Table 2). The relationship

between date of onset of illness (‘onset date’) and date

specimen arrives at the laboratory (‘specimen date’)

was also investigated using data from England and

Wales, where both dates were recorded in a subset

of records (11.96%). In these data, we found a mean

delay between onset date and specimen date of 5.53

days (95% CI 5.45–5.61) for Salmonella sp. (all types)

with over 78% of the specimen dates within 7 days

of the onset date. We concluded that reporting date

was a reasonable indicator of onset date, with an

approximate 1-week delay. For other populations the

average delay was estimated by our collaborators

(Table 2).

Meteorological data

All countries in this study, with the exception of

Spain, have a relatively homogenous climate and

a single national temperature series was assumed to

represent temporal variability for all the population.

Table 2. Estimated average time difference between illness onset and date

provided with surveillance data (estimated by data providers)

Country Date supplied in data-set

Estimated average

delay in reporting
system from illness
to reported date

Poland* Date specimen enters system after typing 3 days

Scotland Date specimen enters system after typing 16 days
Denmark ‘date specimen arrives in laboratory’ 8 days
England & Wales ‘date specimen arrives in laboratory’ 5 days

Estonia# Date sample entered recording system 5 days
The Netherlands Laboratory test confirmed 12–16 days
Czech Republic Date of onset of illness 0

Switzerland Date sample entered recording system 10 days
Slovak Republic# Date of onset of illness 0
Spain Laboratory test confirmed 30 days

* Data supplied at the bi-weekly level.
# Data supplied at the monthly level.
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For England and Wales, the Central England Tem-

perature (CET) series was used which is a weighted

mean temperature indicator for central England

[17]. For other countries, national series were con-

structed using daily temperature data from 3–4

weather climate stations obtained from the German

meteorological office archive (DeustcherWetterdienst)

(Table 1). The new national series were validated

against an independent national (monthly) data

series [18].

Statistical methods

The analytical approach used Poisson regression

models adapted for time-series data, originally devel-

oped for air-pollution studies [19]. These techniques

allow us to assess any short-term effects of tempera-

ture on disease. Inter-annual variation was controlled

for in all regression models by adding indicator vari-

ables for each year of the series. Fourier terms (up

to the sixth harmonic) were added to each model to

control for annually repeated patterns other than

those related to temperature.

Indicator variables were used to control for the

effect of public holidays (typically rates were low

during holidays, and high following them). Previous

analyses at the regional level in England (results not

shown) indicated that relative humidity and other

meteorological variables had no effect on Salmonella

cases, so these were not included in the model.

We modelled the effect of temperature on the

weekly count in two ways. First, to explore the shape

of the relationship, we fitted and graphed a natural

cubic spline of weekly temperature with 1 D.F. for

every 5 xC of the temperature range. Secondly, in

order to quantify the relationship, we fitted a ‘hockey-

stick’ model under which it was assumed that there

is no effect of temperature until a threshold value is

reached, after which the relationship was assumed to

be linear. The temperature threshold for each country

was estimated by maximum likelihood from among

thresholds across all integer values of the temperature

measure. Likelihood-profile confidence intervals were

calculated from these arrays of likelihood, scaled to

allow for overdispersion, if present. The best single

threshold common to countries was then also esti-

mated by maximum likelihood. In the final model for

most countries it was observed that the number of

disease cases in any given week was strongly corre-

lated to the levels of the preceding week. A first-order

autoregressive term was therefore included in models

to ensure statistical inference respected this feature

of our data [20].

Exploratory analyses indicated that the delay be-

tween high temperature and increased case counts,

where present, was not more than 9 weeks. Therefore,

the temperature measure used in our standard model

was an average value of lags 0–9 weeks ; this provides

the combined effect of temperature from the previous

2 months on disease. We also investigated the effect

of individual lags of weekly temperature entered sim-

ultaneously into the model.

The population attributable fraction (PAF) of cases

of salmonellosis due to temperatures above the

identified threshold was calculated for each country

[21]. All analyses were conducted in Stata 7.0 [22].

RESULTS

Figure 1 illustrates the seasonal patterns of infection

with salmonellosis. Most countries in our study show

a peak in the late summer months, after the peak in

temperatures. The Czech Republic, Poland and the

Slovak Republic also show an early summer peak in

infections.

Figure 2 describe the fitted relationship between

Salmonella cases (all types) and temperature (average

of 0–9 weeks preceding case) for each country. The

centre line is the estimated spline curve, and the upper

and lower lines represent the 95% upper and lower

confidence limits respectively. For most countries, the

relationship is approximately linear above a threshold

temperature, or simply linear. For the Slovak Repub-

lic and Denmark, however, there was no clear as-

sociation of case occurrence and temperature.

Estimated thresholds and the per cent increase in

cases for each xC above the threshold value are shown

in Table 3. Thresholds vary substantially between

countries, usually with wide confidence intervals. For

Denmark and the Slovak Republic there is no evi-

dence for a threshold. For other countries there was

evidence for a threshold, although for four countries

the confidence intervals indicated compatibility with

a linear as well as a threshold model. Slopes of above-

threshold relationships vary considerably, with some

imprecisely estimated. Further, these slopes are very

dependent on the threshold, and the consequent ad-

ditional uncertainty is not reflected in the confidence

interval. There is no relation between the observed

thresholds and the mean summer temperature of

each country.
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Because thresholds did not follow a clear pattern,

and to avoid complexities in comparing relation-

ships with both threshold and slope varying, we re-

estimated slopes with a common threshold of 6 xC for

all countries (as estimated by maximum likelihood)

(Table 3). At this threshold, England and Wales

has the steepest slope (12.5%), with several other

countries with similar estimates. For Denmark, the

Slovak Republic, and Estonia, the slope was not

statistically significantly greater than zero (P>0.05).

The slope for England and Wales using the whole

data series (1989–1999) was reduced to 12.0% (95%

CI 11.2–12.8). It was not possible to investigate effects

for the years after 1997 separately due to insufficient

data.

Figure 3 illustrates the per cent change in cases

associated with temperature measured on each sep-

arate week before the onset of illness, up to a lag

period of 9 weeks, in England and Wales (all lags

included in the model simultaneously). The greatest

effect of temperature is 1 week before the onset of

illness, with diminishing but positive effects up to 5

weeks. Data from other countries using estimated

date of onset show broadly similar patterns, but

positive effects persisted longer, possibly reflecting

imprecision in the estimated onset date.

Age-specific analyses were undertaken in England

andWales, Scotland, The Netherlands, Denmark, and

Switzerland, assuming the country-specific thresholds.

The adult age group (15–64 years) appears to be the

most sensitive to temperature effects on the inci-

dence of salmonellosis. The differences between the

age groups are not statistically significant (P>0.05),

except for England and Wales.

Table 3. Thresholds and slopes estimated by country

Country

Temp.
range (xC)
(9-week

average)

Country-specific
threshold

(95% CI)* (xC)

% change per xC
above country
threshold

(95% CI)

% change per xC
above common
overall threshold

(6 xC) (95% CI)

Population
attributable
fraction (%)

(95% CI)#

Poland x1 to 18 6 ($–7) 8.7 (4.7–12.9) 8.7 (4.7–12.9) 33.8 (20.2–45.1)
Scotland 3 to 16 3 ($–12) 4.7 (2.1–7.3) 5.0 (2.2–7.9) 15.2 (7.06–22.58)

Denmark x3 to 18 15 ($–$) 1.1 (x2.7–5.0) 0.3 (x1.1–1.8) 1.3 ($–6.5)
England & Wales 3 to 18 5 (5–6) 12.4 (11.6–13.3) 12.5 (11.6–13.4) 41.3 (38.6–42.7)
Estonia x7 to 17 13 (3–14) 18.3 (3.6–35.1) 9.2 (x0.9–20.2) 27.4 ($–48.0)
The Netherlands x1 to 19 7 (7–8) 9.3 (8.5–10.1) 8.8 (8.0–9.5) 32.6 (30.3–34.8)

Czech Republic x7 to 20 x2 (x6 to x1) 9.5 (8.2–10.7) 9.2 (7.8–10.7) 29.1 (37.4–33.4)
Switzerland x1 to 21 3 ($–3) 8.8 (7.6–9.9) 9.1 (7.9–10.4) 35.5 (31.7–39.1)
Slovak Republic x4 to 20 6 ($–$) 2.5 (x2.6–7.8) 2.5 (x2.6–7.8) 11.5 ($–31.3)

Spain 6 to 25 6 ($–8) 4.9 (3.4–6.4) 4.9 (3.4–6.4) 35.1 (26.3–42.8)

* A blank lower or upper confidence limit (denoted by $) indicates that no limit was found within the range of the data,
which are thus compatible with a linear no-threshold relationship.
# A blank lower confidence limit (denoted by $) indicates that the relationship of Salmonella with disease was not significant

(P>0.05), so a zero population attributable fraction is compatible with the data.
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Fig. 3. The effect of temperature for each week lag between
onset of illness and temperature exposure (% change), for

temperatures above threshold (5 xC) in England and Wales.

Fig. 2. Temperature–salmonellosis relationships by country (full model adjusted for season, trend and holidays), with
temperature (xC) on the x-axis (0- to 9-week average), and salmonellosis cases on the y-axis as represented by percentage of
the average number of cases. The centre line is the estimate. Upper and lower lines are the 95% confidence intervals.
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In countries with the information to distinguish

Salmonella serotype, infection with S. Enteritidis

appears to be more sensitive to the effects of environ-

mental temperature than infection with S. Typhi-

murium (Fig. 4). In The Netherlands, the difference

was statistically significant [increase in cases per xC

increase in temperature: S. Enteritidis 12.6% (95%

CI 11.1–14.2) ; S. Typhimurium 6.1% (95% CI

5.0–7.2)]. If the same threshold is assumed within each

country, the estimates are largely unchanged. How-

ever, the difference in England and Wales becomes

statistically significant [increase in cases per xC in-

crease in temperature: S. Enteritidis 13.1% (95% CI

12.2–14.1) ; non-S. Enteritidis 10.6% (95% CI

9.4–11.8)].

DISCUSSION

This first international study of the association

between environmental temperature and cases of Sal-

monella sp. infection shows clear relationships in

many European countries. Details of relationships

(threshold and slope) differ between countries and

do not follow an obvious pattern, such as by latitude

or mean summer temperature. There is no indication

that a population’s food hygiene behaviour is adapted

to their climate in the sense that effects occur at

higher threshold temperatures in warmer climates. For

many countries, a threshold is not apparent and the

relationship is approximately linear over the whole

temperature range. Thresholds were not apparent

for the effect of temperature on salmonellosis in five

Australian cities, although similar slopes were esti-

mated (5–10% per xC increase in temperature) [13].

The absence of a relationship in Denmark is re-

markable. Although the seasonal pattern of cases is

similar to other countries, an effect of temperature

is not significant in the fully adjusted model. The

distribution of serotypes in Denmark is similar to

other countries. The main sources of salmonellosis

are estimated in Denmark every year but this infor-

mation is not available for most other countries.

We have no reason to believe that certain major

sources of infections are unique to Denmark. It has

been observed by the Danish diagnostic labora-

tories that the incidence of salmonellosis increases

during and after heat-waves (P. Gerner-Smit, personal

communication).
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Fig. 4. The effect of temperature by serotype (% change), for temperatures above threshold [values within square brackets]
for Salmonella in four populations. The proportion of each type in the total reported cases of salmonellosis in the data is
shown as a percentage.
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Delay between high temperatures and onset of dis-

ease (lag) could only be studied directly in England

and Wales, where we found it to peak at 1 week, but

persist up to 5 weeks. A previous study of food-

poisoning notification data in England and Wales

found a longer lag effect (2–5 weeks) between the

temperature exposure and the reported onset of dis-

ease [12]. However, the data-set used (GP notifi-

cations based on clinical diagnosis) would be expected

to have included a range of pathogens other than

Salmonella sp., most importantly campylobacter [23]

that has a less clear relationship with short-term

temperature variability.

There are limitations in the use of national passive

surveillance data. First, not all cases in the com-

munity are represented in national surveillance data

and the degree of under-reporting varies by country

[24, 25] and by pathogen. However, except where

changes to surveillance systems are described above,

there is no reason to believe that the degree of under-

reporting has varied over time. Secondly, cases re-

ported to national surveillance are not necessarily

representative of all cases [26]. However, our col-

laborators considered it unlikely that there were

important differences in reporting during the year

(e.g. cases of salmonellosis are not more likely to

be reported and detected in a laboratory during

hot weeks). Thus the undoubted, substantial under-

ascertainment in these surveillance series would not

have been expected to caused bias.

In half the countries it was not possible to exclude

cases where infection was acquired abroad, however,

these were, in general, expected to be only a small

proportion of all cases. The adjustment for season in

the model would remove the effect to the extent to

which foreign travel is a regular seasonal occurrence.

Further, analysis of temperature effects with and

without travel cases in those countries providing

these data did not substantially affect the results (not

shown). It is not possible to identify cases where in-

fection was associated with imported food, although

this is thought to be an increasing source of sal-

monellosis for many countries [4].

The differences between the age groups, although

statistically significant only for England and Wales,

are largely consistent across countries. It can be

assumed that adults prepare food for children (who

have the highest incidence of salmonellosis) and

possibly the elderly. We suggest that food hygiene

behaviour or food vehicles relevant to the effects of

temperature on disease may be different in adults

that live alone. Similarly, evidence for greater sensi-

tivity to temperature of infection with S. Enteriditis

compared to S. Typhimurium is clear in The Nether-

lands and suggested in England and Wales. Infection

with S. Typhimurium is more common in rural areas

and can be obtained through non-food contact (in

the environment). S. Enteritidis is more strictly re-

lated to transmission via food. This further supports

the hypothesis that temperature effects are more

strongly mediated through the activities related to

food preparation (and particularly egg-handling be-

haviour) rather than other non-food sources.

These results suggest that temperature influences

transmission of infection in about 35% of all cases of

salmonellosis in England and Wales, Poland, The

Netherlands, Czech Republic, Switzerland, and Spain

(Table 3), assuming that the relationships described

here with reported cases are applicable to all cases

in the community. This has implications for pro-

grammes and strategies to reduce foodborne disease.

The main mechanisms for this increased risk of Sal-

monella infections with higher outdoor temperature

cannot be estimated using these methods without

further information on cases from routine surveil-

lance. It may be a hitherto unidentified direct mech-

anism or it may be an indirect mechanism caused by

altered eating habits during hot weather, e.g. barbe-

cuing and eating more dishes containing raw or

insufficiently heat-treated food during the summer.

Average temperatures are increasing due to global

climate change, and more weeks with above-threshold

temperatures will occur. It is likely that tempera-

ture–salmonellosis relationships may change in the

future, particularly as the contribution of S. Enter-

itidis decreases due to active control measures.

Although the underlying trend in Salmonella infec-

tions is decreasing, due to active control measures,

strategies are needed to combat the proportion of

salmonellosis attributable to climate.
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