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Cavitation bubble pulsation and liquid jet loads are the main causes of hydraulic machinery
erosion. Methods to weaken the load influences have always been hot topics of related
research. In this work, a method of attaching a viscous layer to a rigid wall is investigated
in order to reduce cavitation pulsations and liquid jet loads, using both numerical
simulations and experiments. A multiphase flow model incorporating viscous effects has
been developed using the Eulerian finite element method (EFEM), and experimental
methods of a laser-induced bubble near the viscous layer attached on a rigid wall have
been carefully designed. The effects of the initial bubble–wall distance, the thickness of the
viscous layer, and the viscosity on bubble pulsation, migration and wall pressure load are
investigated. The results show that the bubble migration distance, the normalised thickness
of the oil layer and the wall load generally decrease with the initial bubble–wall distance
or the oil-layer parameters. Quantitative analysis reveals that when the initial bubble–wall
distance remains unchanged, there exists a demarcation line for the comparison of the
bubble period and the reference period (the bubble period without viscous layer under
the same initial bubble–wall distance), and a logarithmic relationship is observed that
δ ∝ log10 μ∗, where δ = h/Rmax is the thickness of the viscous layer h normalised by
the maximum bubble radius Rmax , μ∗ = μ/(Rmax

√
ρ Patm) is the dynamic viscosity μ

normalised by water density ρ and atmospheric pressure Patm . The results of this paper
can provide technical support for related studies of hydraulic cavitation erosion.
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1. Introduction
The issue of cavitation erosion is prevalent in the fields of shipbuilding and ocean
engineering, with the primary concern being the collapse and destruction of cavitation
bubbles adjacent to the wall surface (Klaseboer et al. 2005; Zhang et al. 2015; Liu et al.
2018a; Tian et al. 2020; Li et al. 2023; Zhang et al. 2024). The presence of a wall surface
disrupts the symmetrical boundary of a bubble and causes a jet to form towards the wall
during the collapse process (Plesset & Chapman 1971; Blake & Gibson 1987; Liu et al.
2021). The jet impacts the wall, resulting in high impulsive pressure. It then propagates
along the boundary to cause high wall shear stress (Zeng et al. 2018, 2022; Park et al.
2024). Additionally, during the pulsation process, the pulsating pressure emitted by the
bubble focuses on the wall to generate a high-pressure region (Lechner et al. 2017; Veysset
et al. 2018). The impact of the jet and the pressure focus are two primary causes of
cavitation erosion in propellers (Reuter, Deiter & Ohl 2022a). Regarding how to reduce
cavitation erosion, one method is to select new materials that are resistant to erosion and
compression (Cheng, Kwok & Man 2001; Kwok et al. 2016), and another method is to
adjust the flow field to weaken the jet of cavitation bubbles (Gonzalez-Avila et al. 2020;
Kadivar et al. 2021). A novel approach was discussed regarding whether the viscous layer
on the surface has the function of resisting cavitation erosion. That is, an oil layer is
attached to the wall surface to investigate the effect of the viscous layer on the bubble
dynamics and wall pressure load characteristics.

Cavitation bubbles interact with wall-attached viscous oil layers in two aspects: the
bubble–wall coupling and the bubble–immiscible-interface coupling system. Numerous
research findings have examined pulsating bubbles near the wall, with detailed analyses of
the mechanisms underlying bubble collapse jets and other related phenomena. Following
systematic experiments conducted by Philipp & Lauterborn (1998) on cavitation bubble-
induced pitting of metallic materials, the issue of near-wall cavitation damage has regained
attention from scholars. Dular et al. (2019) has emphasised the significant damage inflicted
on material surfaces by microjets and bubble annular collapses. More recently, Reuter et al.
(2022a) found, through high-speed imaging and shadowgraphy of the shock-wave fronts,
that the damage to the material surface caused by cavitation bubbles can be categorised
mainly into two forms: erosion damage resulting from self-focusing of non-axisymmetric
collapsing shock waves and extrusion damage caused by high-speed jets and annular
collapse of bubbles.

For the bubble–immiscible-interface interaction, recently, numerous scholars have
delved into the dynamics of bubbles at the interface of two phases in a planar configuration.
Freund, Shukla & Evan (2009) simulated the behaviour of shock-wave-induced bubble jets
entering different viscosity media and provide theoretical predictions of the jet penetration
depth in viscous media. Liu et al. (2019) and Su et al. (2023) examined bubble oscillations
at interfaces of two fluids. Han et al. (2022) conducted experiments on bubble generation
near the water–oil interface induced by electric sparks, uncovering two mechanisms of
bubble-induced water–oil mixing: bubble transport via high-speed jets and jet breakup.
However, in these studies, the oil–water interfaces were free-floating. When the viscous
oil layer adheres to a rigid wall, the fluid dynamics becomes even more intricate.

The dynamics and jetting behavior of bubbles exhibit greater complexity when an
immiscible liquid-liquid interface exists between the bubble and the wall surface, thereby
substantially affecting the bubble’s interaction with the wall. Two recent noteworthy
studies involve the Ohl, Reese & Ohl (2024) investigation into laser cavitation bubbles
near a flat oil layer and the Ren et al. (2023) examination of hemispherical low-viscosity
oil droplets attached to a surface. While primarily categorising various forms of bubble
entrapment in oil, these studies did not delve into characteristics such as bubble jets,
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wall pressure load, shear stress, and the influence of viscous fluid on bubble migration
– factors crucial in cavitation erosion or bubble cleaning. Addressing these scientific gaps,
this paper conducts a numerical analysis of the changes in bubble migration, wall pressure
load and viscous fluid shear stress, across varying thicknesses and viscosities of viscous
oil layers adhering to the wall.

This study employs a well-established Eulerian finite element method(EFEM) to
develop a model for the interaction between bubbles and viscous oil layers attached to
a rigid wall. To further validate the numerical model, experiments are conducted on
a laser-induced cavitation bubble platform developed in-house (Li et al. 2024; Zhang
et al. 2025). In § 2, we provide a concise overview of the numerical and physical models
introduced in this paper, followed by a comparison between the numerical model and
experimental results. Section 3 entails a parametric investigation using the numerical
model, meticulously examining the variations in physical parameters such as migration and
wall pressure load and elucidating the underlying physical mechanisms. In § 4, qualitative
conclusions are drawn, along with the derivation of quantitative parameters pertaining to
the impact of the viscous oil layer on bubble dynamics.

2. Theoretical models and methodology

2.1. Experimental set-up and governing equations
As shown in figure 1(d), a dynamic system of oscillating bubbles near a rigid wall
with an attached viscous oil layer is established in an axisymmetric coordinate system.
A silicone oil with variable viscosity is used to act as the viscous oil layer. The origin of
the coordinate axes is located on the rigid wall, with the radial coordinate denoted as r
and the axial coordinate as z. At the initial moment, there is a viscous oil layer with a
thickness of h beneath the rigid wall, and the initial distance between the bubble and the
wall is denoted as d. The rigid wall adopts a no-slip boundary, while the surroundings
adopt a non-reflecting boundary condition. This paper simulates the interaction between
laser-induced cavitation bubbles and the wall with the viscous oil layer. Due to the small
size of the bubbles, the gravity on the bubble–wall–oil system is disregarded. Figure 1(a)
shows a schematic diagram of the laser-induced cavitation bubble platform. A pulsed laser
(Q-switched Nd:YAG, Nimma 900, pulse duration 8 ns, wavelength 532 nm) is utilised to
induced cavitation bubbles in a water medium, while a continuous LED lamp serves as
a back lighting source for the high-speed camera (Phantom V2012, 180 000 frames per
second). An array light source provides additional bottom illumination. A circular ring
fabricated from acrylic is affixed to the aluminium plate surface, and the interior of the
ring is filled with silicone oil of different viscosities. The thickness of the silicone-oil
layer was determined by the height of the acrylic rings. The entire device is submerged
in a 10 cm cubic glass vessel filled with deionised water at 23 ◦C. Cavitation bubbles are
generated in the water below the silicone-oil layer.

This study tackles a typical multiphase flow problem, hence, we utilise the volume of
fluid (VOF) (Hirt & Nichols 1981) method to manage the multiphase interface. In previous
literature, viscous effects were frequently disregarded in bubble dynamics. However, this
paper predominantly examines the impact of viscosity in the oil layer on bubble dynamics,
thus the fluid viscosity cannot be ignored. The fluid flow adheres to the following
equations:

∂F
∂t

+ ∇ · (Fu) = S, (2.1)
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Figure 1. (a) Schematic diagram of the experimental configuration, (b) bottom view, (c) side view,
(d) numerical model illustration of the bubble–wall–viscous-oil-layer coupling. Where Rbubble is the bubble
radius at any moment.

where F denotes the conserved vector, S stands for the source vector, and u represents the
velocity of the fluid material. Regarding multiphase flow problems, the following vectors
are presented:

F =
⎡
⎢⎣

αk
αkρk
ρ̄u

αkρkek

⎤
⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎢⎣

αk
K

Kk
∇ · u

0
∇ · (−p I + τ ) + ∇ ·ψ

−αk p
K

Kk
∇ · u + τ : ∇u +ψ : ∇u

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.2)

The four components of F, respectively, represent the volume fraction, mass,
momentum and internal energy, where subscript k denotes the fluid types. This paper
considers three types of fluids: water, silicone oil and air. Here, α denotes the volume
fraction, defined as the ratio of fluid volume to mesh volume, and in an arbitrary mesh
there are

∑
αk = 1; ρ, t and p represent density, time and pressure, respectively, and

ρ̄ represents the average density of the fluid in the mesh, which is weighted by the
density of all fluids, ρ̄ = ∑

αkρk . Here, K = ρc2 is the fluid bulk modulus, where c is
the sound speed, and the weight bulk modulus can be expressed as K̄ = (∑

αk/Kk
)−1.

The velocity vector is denoted by u = (ur , uz). The fluid viscosity is included in the shear
stress τ = μ[∇u + ∇uT − (2/3)(∇ · u)I], where μ is the dynamic viscosity and I is the
normalised tensor. In the conservation of momentum equation ψ denotes the stress tensor
due to surface tension. According to previous literature (Brackbill, Kothe & Zemach 1992;
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Fluids ρ(kg m−3) ζ B(MPa) μ(mPa s)

Gas 1.29 1.4 0 0.018
Water 998 7.15 330.9 1.0
Silicone oil 963 6.4 143 Variable

Table 1. Properties of materials in numerical models.

Perigaud & Saurel 2005), the tensor can be represented asψ = σ(|m|I − ((m ⊗ m)/|m|)),
with the volume fraction gradient m = ∇α and the surface tension coefficient σ . The
specific internal energy e is employed to represent the internal energy per unit mass of
the fluid. In the axisymmetric coordinate system,⎧⎪⎪⎨

⎪⎪⎩
∇ · u = ∂ur

∂r
+ ∂uz

∂z
+ ur

r
,

∇ p =
(

∂p

∂r
,
∂p

∂z

)
.

(2.3)

In this paper, the fluid inside a cavitation bubble is considered a non-condensable gas, and
water and silicone oil are treated using the equation of state. Here, we employ the stiffened
equation of state (Ivings, Causon & Toro (1998)) to handle gases and liquids:

p + ζB = ρe(ζ − 1), (2.4)

where ζ represents the specific heat ratio of the fluid, B is a pressure constant related
to the compressibility of the fluid, and e represents the specific internal energy. For non-
condensable gas, B = 0 indicates that the equation transforms into an ideal gas equation
of state. According to Tammann’s equation, the fluid sound speed can be obtained as:

c2 = dp

dρ
= ζ(B + p)

ρ
. (2.5)

In this paper, the values of the parameters for the three fluids are taken as shown in table 1.

2.2. Eulerian finite element method
The EFEM has found extensive applications in various domains, including underwater
explosions (Xu et al. 2023; He et al. 2024; Qin et al. 2024), multiphase interfaces (Liu
et al. 2019; Feng et al. 2023; Su et al. 2023; Tang et al. 2023) bubble dynamics and
fluid-structure interactions (Liu et al. 2023, 2024). The EFEM previously employed by
our team was applied mostly in the domain of underwater explosions, disregarding the
effects of fluid viscosity and surface tension. In this paper, we have taken viscosity and
surface tension into consideration and established a dynamic model of the interaction
between bubbles and a rigid wall-attached viscous oil layer. The EFEM employs operator
splitting to solve the governing equations in two stages, known as the Lagrangian phase
and Eulerian phase. Hence, the equation is decomposed as follows:

∂ F
∂t

+ F∇ · u = S (2.6)

and
∂F
∂t

+ u · ∇F = 0. (2.7)
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Figure 2. Schematic diagram of the calculation process of the EFEM. The light blue in the grid represents the
fluid material, and the numbers represent the volume fraction.

The first stage is the Lagrangian phase, within which the source terms are incorporated
and (2.6) without convective terms is solved. Thus, no data exchange takes place between
adjacent meshes in this step. The meshes are bound to the fluid material and follow the
deformation of the fluid, and this stage can be solved by adopting the finite element
method. Next, in the second stage, we solve (2.7), considering the information exchange
between adjacent meshes, namely transport, which is called the Eulerian phase. A more
figurative description is that the fluid material remains stationary, the meshes return to their
initial positions, and the physical quantities within the latest meshes are updated through
adjacent meshes. Detailed descriptions of this process can be found in earlier work (Tian
et al. 2018). The complete schematic diagram of EFEM is presented in figure 2.

2.2.1. Lagrangian phase
At this stage, the convective terms are eliminated from the governing equation (2.1) and
the fluid adheres to the Lagrangian perspective. Meanwhile, we couple the fluid material
and the mesh, concentrating merely on the variations of the fluid system within each mesh.
Here, taking the momentum equation as an example, when integrated within the mesh, the
following form can be obtained:∫

Ω

ρ̄
du
dt

ϕdV =
∫

Ω

(∇ · (−p I + τ ) + ∇ ·ψ)ϕdV, (2.8)

where ϕ is the weight function obtained from the mesh shape, and ρ̄ = ∑
αρ is the mixed

density. Herein, let us denote S pvs = −p I + τ +ψ to represent the pressure, viscosity and
surface tension terms in the momentum equation. Through partial integration and Gauss
transformation, (2.8) can be represented as follows:∫

Ω

ρ̄ϕdV
du
dt

+
∫

Ω

ϕ
dρ̄

dt
dV u =

∫
Ω

ϕS pvs · ndΓ −
∫

Ω

S pvs∇ϕdV, (2.9)

where Γ is the boundary of the computational domain Ω , n is the normalised outer normal
vector of the boundary. Since the mass of the fluid within the mesh remains invariant, the
value of the second term on the right side of (2.9) is zero. Based on the above equations,
the node acceleration du/dt at the current time can be computed according to the laws of
motion, and then the node velocities and displacements can be derived explicitly. Here, the
time increment also needs to satisfy the Courant–Friedrichs–Lewy (CFL) condition:

�t = λ
(

�l

c + |u|
)min

, (2.10)
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while �l represents the minimum side length of the mesh, while λ denotes the Courant
number, set to λ= 0.2 in our numerical model to ensure calculation stability. Similarly,
the energy equations can be computed during the Lagrangian phase.

2.2.2. Eulerian phase
In the Eulerian phase, the mesh is redrawn based on the original shape and position. To
obtain variable values within the new mesh, data exchange between neighbouring meshes
is necessary. The Eulerian phase solves the governing equations containing the convective
terms, and for the volume fraction

∂αk

∂t
+ u · ∇αk = 0. (2.11)

Solving the equations in the Eulerian phase facilitates the transport of fluid material
between adjacent meshes. Pure phase elements utilise a monotone upwind scheme for
conservation laws (MUSCL) (Benson 1992) for transport, whereas mixed elements are
modelled using a quadratic polynomial of volume fraction:

α(r, z) = ξ · X, (2.12)

where ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6], X = [r2, z2, r z, r, z, 1]T. Utilising the least-squares
technique based on the values of surrounding neighbouring meshes, coefficients ξ can be
derived, thereby obtaining the boundary values of the meshes necessary for calculating
the transport volume. Furthermore, a half-index shift (HIS) algorithm (Benson 2008)
is introduced for momentum handling. Upon completion of the Eulerian phase, all
variables within the meshes undergo updating, allowing the calculation to proceed into
the subsequent time step.

2.2.3. Boundary conditions
In the EFEM model, the pressure boundary conditions are implemented through the
first integration at the right side of (2.9). The upper boundary of the calculation
domain is a rigid wall, and the no-slip boundary (u = 0) is applied. In order to
minimise the impact of boundaries on bubble pulsation, a non-reflecting boundary was
employed. The implementation of non-reflecting boundary conditions is achieved by
introducing a transient dynamic pressure pd at the computational domain boundaries.
This dynamic pressure is incorporated into the total pressure p via superposition. When
the computational domain is sufficiently large, the boundary lies in the far field region of
bubble dynamics, and the transient dynamic pressure pd fulfils the linear acoustic pressure
assumption. Consequently, the transient dynamic pressure pd satisfies the second-order
early-time approximation (ETA2) equation (Felippa 1980; Liu et al. 2018b). The equation
takes the following form:

pd + ηc
∫

pddt = ρcu ·ω, (2.13)

where η is the wavefront surface curvature and ω is the pressure wave propagation
direction. Additionally, the viscous effect within the boundary is accounted for in the
viscous normal stress τ i i in (2.9).

2.3. Dimensionless parameters
In order to streamline the investigation of bubble dynamics, a dimensionless variable
system was employed. Three physical quantities, namely the average maximum radius
of bubbles Rmax , the density of water ρw = 998 kg m−3 and atmospheric pressure
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0.205 0.617 1.028 1.493

1.748 1.954 2.057 2.108

(a) (b) (c) (d )

(e) ( f ) (g) (h)

1 mm

Figure 3. Comparison between EFEM bubble dynamics model and experimental results (1000cSt silicone oil)
at t∗ = 0.205, 0.617, 1.028, 1.493, 1.748, 1.954, 2.057, 2.108, δ = 0.463, γ = 0.981. The upper boundary of
the window is a rigid wall with a layer of silicone oil attached below. The images represent the experiments,
and the red contours indicate the numerical results.

Patm = 101 325 Pa, were chosen as the basic parameters. Correspondingly, velocity, time
and acceleration are symbolised by

√
Patm/ρw, Rmax

√
ρw/Patm and Patm/(Rmaxρw),

respectively. The viscosity of the silicone oil is denoted as μ∗ = μ/(Rmax
√

ρw Patm). The
bubble–wall distance and initial oil-layer thickness are denoted by dimensionless distances
γ = d/Rmax , δ = h/Rmax , respectively. In this paper, except for the model validation
section, all variables are dimensionless. A superscript symbol ‘∗’ is also used to represent
dimensionless variables.

2.4. Validation and mesh independence test
To validate the numerical model, laser-induced cavitation bubble experiments were
conducted. The laser induced cavitation bubbles in the water medium, and high-speed
cameras captured the evolution of bubbles and oil layers at a speed of 180 000 frames
per second. A 0.5 mm thick acrylic ring filled with silicone oil of 1000cSt viscosity was
employed as the viscous layer. The laser-induced cavitation bubble formed in proximity
to the oil layer, exhibiting a maximum bubble radius of Rmax = 1.08 mm and an initial
distance of 1.06 mm (that is, γ = 0.981) from the rigid wall. The thickness of the viscous
silicone-oil layer is h = 0.5 mm (that is, δ = 0.463). The numerical model features a
calculation domain size of 12 mm × 8 mm. Non-reflecting boundaries were implemented
on the lateral sides. The initial bubble radius was defined as R0 = 0.1Rmax , with the
surrounding fluid pressure set at atmospheric pressure, while the initial bubble pressure
was adjusted to match the experimental conditions, ultimately determining a pressure of
P0 = 57 MPa. Figure 3 demonstrates the contrast between the numerical model and the
experimental data at the same dimensionless time, with the red contours representing the
interface of the numerical bubble.

Figure 3(a–c) illustrates the process of bubble expansion, while panels (d–h) delineate
the process of bubble collapse. The upper portion of the bubble expands slowly as it is
hindered by the oil layer. During the collapse phase, it is pulled by the oil layer, leading
to a slow contraction. The asymmetrical expansion and collapse give rise to a bubble jet
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R∗
�l = 0.01Rmax
�l = 0.02Rmax
�l = 0.04Rmax
�l = 0.06Rmax
Experiment

�l = 0.01Rmax
�l = 0.02Rmax
�l = 0.04Rmax
�l = 0.06Rmax
Experiment

0 0.5 1.0 1.5 2.0

z∗

0.2
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0.6

0.8

1.0
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0
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0.4

t∗ t∗

(a) (b)

Figure 4. Evolution of (a) the bubble radius R and (b) the bubble mass centre at mesh sizes 0.01Rmax ,
0.02Rmax , 0.04Rmax , 0.06Rmax and experiments. The circular error bars illustrate the experimental results,
with an uncertainty of one pixel.

directed towards the silicone-oil layer. The EFEM model precisely calculates the contour
of the bubble and the form of the silicone-oil interface.

Moreover, the evolution of the bubble radius and the bubble mass centre was compared
between the experimental and numerical results, shown in figure 4. A mesh independence
test has also been carried out here, with numerical models using mesh sizes of 0.01Rmax ,
0.02Rmax , 0.04Rmax and 0.06Rmax , respectively. It can be observed from figure 4(a) that
the bubble radius in the expansion stage of the experiment is slightly larger than that
of the numerical results. This is mainly because the initial expansion of the nucleated
bubble is intense, and the radius increases rapidly. In contrast, the initial pressure in the
numerical model is lower, resulting in a relatively slow expansion. Nevertheless, both
the numerical and experimental results can reach the same maximum radius, and the
disparity between them lies within the measurement error range (one pixel length). With
the maximum bubble radius serving as the reference quantity, the relative errors of the
results from different meshes are 1.69 %, 0.58 % and 0.17 %, respectively. This implies that
as the mesh size decreases, the computational results of the numerical model converge.
The migration of the bubble mass centre in the numerical model also shows a good
agreement with the experimental results (figure 4b), which suffices to demonstrate the
accuracy of the numerical model. In the present investigation, the minimum mesh size is
set at �l = 0.01Rmax , which can capture flow details more accurately. Furthermore, it is
worth clarifying that, due to the constraints of the equipment, the shock wave at the wall
surface could not be measured. Hence, the bubble shock wave has not been verified in this
paper. The shock-wave load is associated with the initial parameters of the bubble, the
distance and the environment. Based on the initial conditions adopted in this paper,
the measurement of the wall shock wave is for regularity research rather than representing
the actual wall load value in practical scenarios.

3. Results and discussion
In this study, experimental results and numerical models are employed to analyse the
dimensionless bubble–wall distance (γ = 0.4−2.0). The thickness of the silicone-oil layer
is consistently maintained below the bubble–wall distance to ensure the formation of
bubbles in water. The viscosity μ∗ of the silicone oil ranges from 0.001 to 1.3. In the
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1.074 1.9521.758 2.051 2.638

1.076 2.0281.778 2.081 2.879

(b)

(c)

(d )

Figure 5. Evolution of bubbles and silicone-oil interface at (a) δ = 0.463, γ = 0.981, μ∗ = 0.089; (b) δ = 0.47,
γ = 1.374, μ∗ = 0.087; (c) δ = 0.356, γ = 0.986, μ∗ = 0.088; (d) δ = 0.454, γ = 0.981, μ∗ = 0.0089.

current numerical model, the computational domain size is 6Rmax × 8Rmax , the initial
bubble radius is set to R0 = 0.101Rmax , and the initial pressure is P0 = 55 MPa.

3.1. The dynamics of cavitation bubbles in the experiment
In this section, we experimentally investigate and compare the bubble pulsation and
oil-layer movement across three distinct scenarios. In the experiment, the viscosity
range of silicone oil was set between 100 and 1000 cSt . Consequently, under varying
conditions, differences in bubble size led to variations in the corresponding dimensionless
viscosity values. It is important to note that this study compares scenarios with
identical dimensionless parameters; therefore, bubble size does not significantly influence
the results. For each condition, images exhibiting similar phenomena or captured at
corresponding time points were extracted for comparative analysis. The maximum radius
of the bubbles observed in the experiment was approximately 1.08 mm. We analyse
the influence of silicone-oil-layer viscosity, silicone-oil-layer thickness, and bubble–wall
distance on the bubble–wall–oil-layer system.

In figure 5, four distinct experiments are presented. With figure 5(a) as the reference,
panels (b–d) represent different distance parameters, thicknesses of the viscous oil layer
and viscosities, respectively. First, the influence of the bubble–wall distance on the system
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was investigated. As illustrated in figures 5(a) and 5(b), the bubble collapsed near a
silicone-oil layer with a viscosity of 1000cSt (μ∗ = 0.089). The thicknesses of the oil
layers were δ = 0.463 and 0.47, corresponding to stand-off distances γ = 0.981 and 1.374,
respectively. During the initial collapse phase, bubbles at both distances did not penetrate
into the silicone oil. However, bubbles closer to the wall made contact with the oil layer
prior to collapse, leading to a pronounced ‘dragged’ effect from the oil layer on the upper
surface. This resulted in a high-curvature edge, causing the bubble to exhibit a flattened
top and rounded bottom shape. Conversely, the more distant bubble maintained highly
spherical form during collapse, similar to that observed near a pure solid wall. At the
moment when the water jet within the bubble was about to penetrate the opposite side
(t∗ = 2.09), approximately half the volume of the bubble at γ = 0.981 had entered the oil
layer, while the entire bubble at γ = 1.374 remained in water. Following the occurrence
of the jet, the bubble rapidly migrated towards the oil layer. In figure 5(a), the bubble
became completely immersed in the silicone oil and subsequently expanded again within
it. For the more distant bubble (γ = 1.374), only partial entry into the silicone oil was
observed. Although it was not feasible to measure the bubble volume after entering the
reservoir, based on the shorter bubble period (the time difference between the fifth and
fourth images equating to half a period), it can be inferred that the rebound volume of the
bubble in the oil is less than that in water, consistent with expectations due to the viscous
resistance. It can also be deduced that the viscous layer must impede subsequent bubble
collapse, thereby reducing the impact load of the cavitation bubble on the wall.

Subsequently, observe figure 5(c), in contrast to figure 5(a), where a thinner viscous oil
layer adheres to the wall surface. At the moment of maximum radius, the bubble shapes
in both cases exhibit a strong degree of similarity, as the bubbles are both retarded by the
viscous layer and the wall. On closer inspection, however, it can be discerned that the upper
part of the bubble in figure 5(c) is flatter. In addition to the fact that the bubble walls are
smaller in distance than in figure 5(a), the reduced buffering effect of the thinner viscous
oil layer at the bubble boundary is also a contributing factor. The distinction in the shape
of the bubble’s top is more pronounced in the image of the second column from the left in
figure 5, where the wall effect begins to become prominent. Before the jet penetrates, the
bubble in figure 5(c) has a broader lateral scale and concurrently induces a larger water
column (composed of water and vapour mixture) in the oil layer, which will exacerbate
the jet’s impact on the wall. The reason lies in the fact that a thinner viscous layer has
a weaker inhibitory effect on the lateral pulsation of the bubble compared with a thicker
viscous layer. Finally, the effect of viscosity is analysed and presented in figure 5(d). The
physical viscosity of the oil layer is 100cSt (μ∗ = 0.0089 ). At this low viscosity, the
influence of the oil layer on the coupled system is relatively weak and the sphericity of
the bubble increases. The modification of the bubble shape originates primarily from the
rigid wall. By comparing the last image in figures 5(a) and 5(d), the bulge at the oil–water
interface due to bubble pulsation within the oil layer is smaller when the viscosity of the
oil layer is lower. This is due to the lower viscous resistance to the lateral expansion of
the bubble. Besides expanding downward, the bubble can also more readily diffuse along
the wall. In the case of high viscosity (figure 5a), the bubble’s downward expansion is more
facile, as the mixture below is water–vapour–oil with lower viscosity, thereby causing a
larger interface bulge.

3.2. Bubble dynamics with different silicone-oil-layer thicknesses

3.2.1. Effect of viscous oil-layer thickness on bubbles at μ∗ = 0.0065
The simulation initially focused on the oil layer with low viscosity μ∗ = 0.0065. Figure 6
depicts the evolution of the bubble near the oil layer with viscosity μ∗ = 0.0065 and
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Figure 6. The evolution process of cavitation bubbles near the wall-attached oil layer at t∗ = 0,

0.008, 0.155, 1.002, 1.862, 2.079, 2.123, 2.269, γ = 1.3, δ = 1.0, μ∗ = 0.0065. The black line represents the
bubble interface. The brown line represents the oil–water interface, and the arrows indicate velocity vectors.
The x∗ represents the radial coordinate. The lower part of each contour plot represents pressure, while the
upper part of each contour plot displays the equivalent shear stress.

a thickness of δ = 1.0. Figure 6(a) shows the initial moment that the bubble is filled
with high-pressure non-condensable gas. Figure 6(b) demonstrates the refraction and
transmission of the pressure wave emitted by the bubble at the oil-water interface, where
the transmitted wave is shown as a equivalent shear stress parameter |τ | = √

0.5τ : τ .
Observations indicate that shock waves and reflected waves form spherical shapes, while
equivalent shear stress appear non-spherical. This difference arises from the varying sound
speeds in silicone oil and water, with both pressure and equivalent shear stress propagating
at velocities comparable to sound speed. The sound speeds in this study are determined
using (2.5), defined here as cwater = 1540 kg s−1 and coil = 978 kg s−1. At t∗ = 1.002, the
bubble expands to its maximum radius. Due to the no-slip boundary at the rigid wall, a
thin region of high shear stress forms near the wall surface shown in figure 6(d). Zeng
et al. (2018, 2022) conducted detailed simulations of the wall shear stress, which has
significant applications in bubble cleaning. In figure 6(f ), the bubble collapses, creating
jets directed towards the silicone-oil layer and rigid wall. The jet penetrates the bubble,
entering the oil layer by t∗ = 2.123, at which point the bubble is completely immersed
in the oil layer. Figure 6(h) reveals the bubble jet’s impact on the rigid wall, generating a
region characterised by high pressure and shear stress. Guided by the bubble, the gas-water
mixture infiltrates the oil layer, a phenomenon explored in detail by Ohl et al. (2024), who
investigated various manifestations of the gas-water mixture within the oil layer.

Figure 7 illustrates the collapse of the bubble and variations in the oil–water interface
for oil-layer thicknesses δ = 0.2 and 0.8. The motion of the bubble is quite similar, with the
moments of maximum expansion (figure 7a) and jet penetration (figure 7b) being closely
matched. Figure 7(c) shows the division of the bubble by the annular jet. Notably, when
compared with the thinner oil layer, the volume ratio of the bifurcated annular bubbles
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Figure 7. Evolution of bubbles and silicone-oil interface at oil-layer thicknesses δ = 0.2 and 0.8, γ = 1.3,
μ∗ = 0.0065.

significantly increases at δ = 0.8. This effect arises primarily from the annular jets induced
by fluid vortices, whose formation is impeded by the thicker oil layer. The oil layer also
attenuates the bubble jet, resulting in a smaller wall impact pressure, as in figure 7(d).

Figure 8 illustrates the temporal evolution of the bubble radius, migration of the mass
centre, normalised oil-layer thickness, and the central pressure load on the rigid wall
across various oil-layer thicknesses. It is evident from figure 8 that the low viscosity of
silicone oil minimally influences bubble dynamics, a notion corroborated by the bubble
shape evolution shown in figure 7. Figure 8(a) demonstrates that with increasing oil-
layer thickness, bubbles possessing identical initial energy achieve a reduced maximum
radius, and the associated bubble oscillation period diminishes, yet the bubble’s minimum
collapse radius remains largely unaffected. For oil-layer thicknesses δ ranging from 0.2 to
1.2, the relative variations in bubble radius are 0.16 %, 0.17 %, 0.27 %, 0.35 % and 0.82 %,
respectively, signifying that the oil layer’s influence on the bubble escalates with thickness.
Figure 8(b) shows the progression of the bubble’s mass centre migration. Since gravity is
neglected, the main contributors to bubble migration are the walls and the ‘attraction’
of the oil layer. Taking the initial spherical centre of the bubble as the origin, the centre
of mass of the bubble moves away from the oil layer and the wall during the expansion
phase, as the oil layer hinders the bubble motion, causing the bubble to expand more
towards the water. Throughout the contraction phase, the centre of mass of the bubble
rapidly ascends. Upon jet penetration, the bubble’s mass centre remains nearly unchanged
for a brief period. An inset in figure 8(b) highlights this transient pause of the bubble’s
mass centre, accompanied by two subfigures illustrating the pressure and equivalent shear
stress contour maps at that instant.

The thickness of the silicone oil plays a crucial role in investigating the impacts of
bubble jets. Figure 8(c) illustrates the evolution of the normalised oil-layer thickness at the
symmetry axis, where h∗ = h/δ, with the initial thickness set at 1.0, and h∗ = 0 indicating
the disappearance of the oil layer. Influenced by the upper surface of the bubble, the

1014 A9-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
18

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10180


J.-T. Feng, J.-H. Xing, S.-P. Wang, Y.-L. Liu, H. Tang and A.-M. Zhang

0
1.3 10.0 19.6 27.8 35.4 0.00 0.02 0.04 0.06 0.07

–0.4

–0.8

–1.2

–0.5 0.50
x∗

p∗ |τ|∗
t∗ =2.165

z∗

t∗ =2.140

p∗ |τ|∗
t∗ =2.165

0

1.3 10.0 19.6 27.8 35.4 0.00 0.02 0.04 0.06 0.07

–0.4

–0.8

–1.2

z∗

0.50–0.5

x∗

1.3 11.8 23.5 33.6 00.0 0.16 0.32 0.50 0.6342.8

0.50–0.5

0

–0.4

–0.8

–1.2

p∗

z∗

|τ|∗
x∗

0 0.5

2.12 2.16 2.20

1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

0.19

0.20

0.21

0.22

R∗

h∗

t∗

t∗

t∗
0 0.5 1.0

2.12 2.16 2.20

1.5 2.0 2.5

0 0.5 1.0 1.5 2.0 2.5

δ increasing

0

0.2

0.4

0.6

0.8

 δ increasing

0

0.2

0.4

0.6

0.8

1.0

δ = 0.2

δ = 0.2

δ = 0.4

δ = 0.6

δ = 0.8

δ = 1.0

δ = 1.2

δ = 0.4

δ = 0.6

δ = 0.8

δ = 1.0

δ = 1.2

0.48

0.52

0.56

0.60

(a) (b)

(c)

z∗

δ = 0.2

δ = 0.4

δ = 0.6

δ = 0.8

δ = 1.0

δ = 1.2

t∗
0 0.5 1.0 1.5 2.0 3.02.5

0

20

40

60

80

100

Shock-wave load

Jet

impact

load

(d)

p∗

δ = 0.4

δ = 0.8

δ = 1.2

0.9

0.0 12.0 36.7 47.1

6.6 12.9 18.4 23.4

–0.5

–1.2

–0.8

–0.4

0

0.50
x∗

p∗

p∗

z∗

Bubble pulsation load

Reflected shock wave

0

–0.4

–0.8

–1.2

–0.5 0.50
x∗

z∗

t∗ =2.206

25.2

t∗ =2.313

–0.5

0.41.3 11.8 23.8 33.6 42.8 0.00 0.16 0.32 0.52 0.63 1.4 2.4 3.3 4.1 0.00 0.09 0.17 0.27 0.35

–1.2

–0.8

–0.4

0

0.50

|τ|∗
0

p∗ |τ|∗
t* =2.314

z∗

–1.2

–0.8

–0.4

z∗

t* =2.140

–0.5 0.50
x∗

p∗

x∗

Figure 8. Time evolution for (a) bubble radius, (b) centre of mass position, (c) oil-layer thickness, (d) wall
centre pressure at oil-layer thickness δ =0.2–1.2, stand-off distance γ = 1.3, viscosity μ∗ = 0.0065.

oil-layer thickness gradually decreases during the bubble expansion phase and conversely
thickens during the bubble collapse phase. Upon jet penetration, the oil layer returns to
its maximum thickness, with relative thicknesses of the oil layer at h∗ = 0.95, 0.79, 0.70,
0.61, 0.55 and 0.48, respectively. This indicates that in the first oscillation period of the
bubble, the thinner the oil layer, the less it is influenced by the bubble. Subsequently, under
the forceful impact of the bubble jet, the oil layer rapidly thins until it impacts the wall.
Notably, the oil layer at δ = 1.2 disappears earlier in comparison with thinner oil layers.

The pressure evolution at the centre of the wall is illustrated in figure 8(d), with
pressure measurement points denoted by red pentagrams in the subfigure. Four notable
characteristics are discernible in the pressure readings depicted in the figure. Initially, the
pressure wave emitted by the bubble reaches the measurement point after traversing the
interface, generating a pronounced shock-wave load, followed by multiple reflections of
the shock wave between the wall and the oil–water interface, depicted as an oscillatory
curve. As the bubble collapses to its minimum radius, pulsating pressure waves emanate
outward, succeeded by the jet’s impact on the wall, resulting in an impact pressure load.
Figure 8(d) highlights significant disparities in jet-impact loads under various thicknesses,
primarily attributed to the oil layer’s attenuation of jet velocity and consequent reduction
in impact load. This is of paramount importance for attenuating the cavitation erosion
induced by the impact of the bubble jet.

1014 A9-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
18

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10180


Journal of Fluid Mechanics

Annular

jet penetration

Jet penetration

High pressure region

Annular

jet penetration

Bubble splitting

High-shear

stress-region Impact wall

Shear stress 

Water film

δ = 0.0

(a) (b) (c) (d )

δ = 0.4

δ = 0.8

δ = 1.2

p∗ p∗ p∗ p∗

p∗

p∗ p∗ p∗

p∗ p∗ p∗|τ|∗ |τ|∗ |τ|∗ |τ|∗

p∗|τ|∗ |τ|∗ |τ|∗ |τ|∗

p∗ p∗ p∗ p∗|τ|∗ |τ|∗ |τ|∗ |τ|∗

0
0

0

0

0 0.1 0.2 0.3 0.4 0 0.02 0.03 0.05 0.07 1 131 274 398 510 0 0.13 0.25 0.39 0.50 1.0 23.247.7 69.0 88.3 0 5.1 9.8 15.4 19.7 0.1 2.5 5.2 7.5 9.7 0 0.66 1.26 1.98 2.53

0.1 0.2 0.3 0.4 0 0.02 0.04 0.06 0.07 0.6 1.2 1.8 2.3 2.7 0 0.05 0.10 0.150.20 1.6 12.2 23.9 34.0 43.2 0 0.93 1.78 2.79 3.56 0.1 2.1 4.2 6.1 7.8 0 0.51 0.99 1.55 1.98

0.1 0.2 0.3 0.4 0 0.02 0.04 0.06 0.07 0.4 0.9 1.5 2.0 2.5 0 0.03 0.05 0.08 0.11 1.5 10.6 20.7 29.4 37.3 0 0.20 0.39 0.610.78 0 3.9 8.2 12.0 15.4 0 0.71 1.38 2.16 2.75

0.1 0.2 0.3 0.4 0.4 1.0 1.7 2.3 2.9 1.6 15.1 28.6 42.0 55.5 0.6 3.9 7.3 10.6 14.0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗

z∗

0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗ 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗ 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗ 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗

z∗

0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗ 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗ 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

x∗

x∗ x∗ x∗ x∗

x∗ x∗ x∗ x∗

0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

z∗

0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0

z∗

0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0 0.5 1.0

0

–0.5

–1.0

–1.5

–2.0

–1.0 –0.5 0 0.5 1.0

t∗ = 1.057 t∗ = 1.969 t∗ = 2.121 t∗ = 2.298

t∗ = 1.051 t∗ = 1.966 t∗ = 2.118 t∗ = 2.333

t∗ = 1.031 t∗ = 1.967 t∗ = 2.081 t∗ = 2.369

t∗ = 0.974 t∗ = 1.967 t∗ = 1.996 t∗ = 2.284

Figure 9. Evolution of bubbles and silicone-oil interface for different oil-layer thicknesses
δ = 0.0, 0.4, 0.8, 1.2, at γ = 1.3, μ∗ = 0.065.

3.2.2. Effect of viscous oil-layer thickness on bubbles at μ∗ = 0.065
For oil layers with higher viscosity μ∗ = 0.065, the bubble dynamics underwent more
significant changes as the oil thickness increased. The evolution of bubbles in the vicinity
of different thicknesses of μ∗ = 0.065 silicone oil is compared in figure 9.

Figure 9 illustrates the collapse process of bubbles near oil layers of varying thicknesses
(μ∗ = 0.065), including the maximum bubble radius, annular jet impact, jet penetration,
and jet impacting on the wall, and also compares with the situation without a viscous
oil layer (δ = 0.0). In figure 9(a), notable differences in bubble shape arise at δ = 1.2,
where shear stress from the oil layer impede the upper portion of the bubble, resulting
in a reduced expanded volume compared with the lower portion. Bubbles near thin oil
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Figure 10. Time evolution for (a) bubble radius, (b) centre of mass position, (c) oil-layer thickness, (d) wall
centre pressure at oil-layer thickness δ =0.2–1.2, stand-off distance γ = 1.3, viscosity μ∗ = 0.065.

layers have minimal contact with the oil layer during expansion. During bubble collapse,
those with δ = 1.2 produce a necking effect and an annular jet, generating a strong high-
pressure region upon impact, dividing the bubble into two parts, each forming upward
and downward jets. In contrast, the bubble near thinner layers or pure wall did not exhibit
annular jets, but there were significant differences in bubble shape. In figure 9(c), the time
of bubble-jet impact decreases with increasing oil-layer thickness for all cases. Following
jet impact, high-pressure and high-shear-stress regions form in water and the oil layer,
respectively. Peak pressures and shear stresses increase with oil-layer thickness, with peak
pressure ratios of 1.16 and 2.04, and shear stress ratios of 4.56 and 5.53 for the three cases
with viscous layers, respectively. There is a greater difference in shear stress, mainly due to
higher-speed jets near thick oil layers, resulting in a more concentrated energy distribution.
Upon bubble rebound, annular tearing occurs for bubbles with δ = 0.4 in figure 9(d), but
not observed for δ = 0.8 and 1.2. Comparing scenarios figures 9(d) and 9(c), the jet width
decreases significantly with increasing oil-layer thickness.

Figure 10 illustrates the evolution of the bubble radius, migration of the mass centre,
normalised oil-layer thickness, and the central pressure load on the rigid wall across
various oil-layer thicknesses. In comparison with low-viscosity silicone oil (see § 3.2.1),
the dynamics of bubbles exhibits significant variations with changes in the oil layer. In
figure 10(a), the bubble period decreases as the oil layer thickens, with relative reductions
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of 1.1 %, 1.1 %, 1.3 %, 1.8 % and 2.8 %, respectively. With increasing oil-layer thickness,
the distance between the bubble and oil diminishes, augmenting the hindrance of bubbles
by silicone oil. The initial bubble’s mass centre shifts away from the rigid wall and oil
layer, with migration speed and magnitude significantly increasing as the oil layer thickens.
Near the δ = 1.2 oil layer, the maximum bubble migration reaches 0.178, benefiting from
the repulsion exerted by the oil layer. The horizontal dashed line in figure 10(b) denotes the
position of the oil–water interface under corresponding operational conditions. Bubbles at
δ = 1.0 and 1.2 enter the oil layer upon jet penetration, with subsequent bubble pulsation
primarily occurring in the oil–water mixture, crucial for emulsifying the oil. The oil layer
has an impact on the migration of bubbles towards the wall surface and exerts an indirect
influence on the load at the wall surface, thereby reducing the impact of the pulsating load
of the bubbles. During the first pulsation period (t∗ < 2), the steeply rising curve segment
at δ = 1.2 indicates rapid bubble migration. Combining with figure 9, it becomes evident
that bubble migration in this phase depends on bubble collapse and jet, with the high-speed
annular collapsing jet assuming a more pivotal role under the δ = 1.2 condition.

Combining with figure 10(c) illustrates the evolution of the normalised thickness of the
oil layer, displaying an initial decrease followed by an increase in thickness. The thickness
decreases in various cases as δ increases. In contrast to the low-viscosity cases, for δ = 0.2
and 0.4, the rebound thickness of the oil layer surpasses the initial thickness due to bubble
adsorption. This phenomenon, termed weak adsorptive collapse by Tang et al. (2023) in
the examination of the interaction between explosion bubbles and non-Newtonian fluids,
correlates with the distance between bubbles and oil layers as well as the viscosity of the
oil layer. Changes in pressure at the centre of the rigid wall are also recorded, shown in
figure 10(d). As pressure waves propagate in the liquid at nearly the speed of sound, and
the speed of sound in silicone oil is lower than that in water, the shock-wave load at the
wall centre lags with an increase in δ. During the initial two pulsation cycles, the centre
pressure of the rigid wall also exhibits four significant characteristics: shock-wave load,
pressure-reflection-wave load, pulsation load and jet-impact load. Due to the penetration
of annular jets, an additional high-pressure region forms below the δ = 1.2 oil layer, as
indicated in the subgraph of figure 10(d). However, as the annular impact takes place
beneath the bubble, the bubble obstructs the propagation of the shock wave. Despite the
considerable impact pressure (p∗ = 510), it does not induce significant disturbance in the
pressure curve at the wall measurement point. When the jet collides with the rigid wall,
the low-viscosity oil layer experiences a more pronounced slamming pressure.

3.3. Bubble dynamics with different silicone-oil viscosities
This section investigates the influence of silicone-oil viscosity on bubble dynamics and
pressure load. The initial bubble parameters mirror those of § 3.2, with an initial bubble–
wall distance set at γ = 1.3. Our focus was on an oil-layer thickness of δ = 0.8, and
numerical simulations were conducted across silicone-oil viscosities ranging from μ∗ =
0.0065 to 0.39.

Figure 11 illustrates four significant stages of bubble evolution across three viscosity
conditions: initial jet penetration, minimum volume, annular tearing, and jet impact on
the wall. With a substantial increase in viscosity, variations in bubble collapse shapes
become apparent. In figure 11(a), jet penetration occurs earlier as the oil-layer viscosity
increases. With the highest viscosity condition, the bubble is notably repelled by the oil
layer, remaining above it during jet penetration (above the red dashed line), forming a
butterfly-shaped annular bubble profile, and exerting an attractive force on the oil layer.
As the bubble collapses further, it enters the low-viscosity oil layer and slides along the
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Figure 11. Evolution of bubbles and silicone-oil interface with different viscosities of silicone oils, at δ = 0.8,
stand-off distance γ = 1.3.

surface of the high-viscosity oil layer, as depicted in figure 11(b). The jet’s entry into the oil
layer induces a zone of high shear stress. In figure 11(c), at an oil-layer viscosity of μ∗ =
0.013, most of the bubble has entered the oil layer, leading to annular splitting. Conversely,
for viscosity μ∗ = 0.39, the bubble persists near the oil layer’s surface, with larger bubbles
fragmenting into multiple smaller ones. Bubbles with viscosities μ∗ = 0.013 and 0.065
penetrate the oil layer, impacting the wall at t∗ = 2.3 and 2.378, respectively. However,
bubbles near the oil layer with viscosity μ∗ = 0.39 do not reach the rigid wall, leaving
only an impact pit in the oil layer. At medium viscosities, along with increased oil-layer
thickness, collapsing bubble edges undergo significant curvature deformation, resulting in
pinch-off similar to that observed in figure 9(c), a phenomenon commonly encountered in
scenarios where the bubble–oil distance very small.

Figure 12 illustrates the evolution of both the centre of mass of bubbles and the thickness
of oil layers under varying viscosity conditions. In figure 12(a), it is evident that as the
viscosity increases, bubble migration is significantly reduced. At higher viscosity, the
bubble can hardly penetrate the oil layer during pulsation, tending to remain near the
oil–water interface. Furthermore, a rebound effect observed during bubble-jet penetration
causes the bubble’s centre of mass to move downward. The subfigure in figure 12(a),
which compares the positions of bubbles at μ∗ = 0.013 and 0.13 to their initial positions
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(red dashed line), effectively illustrates the displacement of bubbles and the barrier posed
by the high-viscosity oil layer. Figure 12(b) shows the normalised thickness of the oil
layer, indicating a decreasing trend in the rate of change of the oil-layer thickness with
increasing viscosity. In current cases, the oil layers with μ∗ = 0.13 and μ∗ = 0.39 have
not disappeared, while the depth of impact craters formed by the bubble jet on the oil
layer with μ∗ = 0.39 is merely 0.6δ. The evolutionary diagram of the oil–water interface,
presented in figure 13(a) at viscosities of μ∗ = 0.065 and 0.39, aids in understanding
the dynamic changes in the oil layer due to jet impact. Both viscosities result in the
formation of a relatively wide pit under the jet’s impact, while areas not directly impacted
by the jet are elevated due to the adsorption effect of the bubbles. In the oil layer with
μ∗ = 0.065, the interface moves continuously towards the wall during ongoing bubble
pulsations, eventually impacting the wall. In contrast, the oil layer with μ∗ = 0.39 shows
the greatest displacement without direct wall contact. The viscosity reduces high-curvature
deformations at the interfaces; the interface at μ∗ = 0.39 is smoother, whereas the oil layer
at μ∗ = 0.065 shows a curling effect on the sidewalls.
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Figure 14. Evolution of bubbles and silicone-oil interface with different stand-off distances, at δ = 0.2,
μ∗ = 0.065.

Figure 13(b) illustrates the evolution of the central wall pressure over time. The
viscosity reduces both impact- and reflective-wave loads, leading to a decrease in pulsating
pressure with increasing viscosity. However, the timing of these pulsations does not vary
monotonically with viscosity, indicating non-monotonic changes in the bubble period. At
t∗ = 0.1, fluctuations in pressure emerged, which was attributed to the reflection of the
shock wave between the wall and the two-phase interface. Although the reflected pressure
was not substantial, repeated impacts would still exert an influence on the erosion of the
wall. In the present cases, due to bubbles not being able to penetrate higher-viscosity oil
layers and the collapsing jet failing to reach the rigid wall, the pressure load curve under
high viscosity does not display jet-impact pressure.

3.4. Bubble dynamics with different stand-off distances
For wall load, bubble-induced shock waves, jets and pulsations exhibit distinct modes of
action. Specifically, shock waves are characterised by high peak values but have a short
duration, reflecting off the wall surfaces. Bubble jets primarily generate water hammer
pressures, which may be lower in magnitude compared with shock waves, yet they persist
for longer durations and can direct transient pressure stagnation points. Shock waves
attenuate with distance during propagation; therefore, the distance between the bubble
and the wall is critical for wall load. Additionally, greater distances between the bubble
and the wall also reduce jet intensity. In this section, a silicone-oil layer with a viscosity
of μ∗ = 0.065 and a thickness of δ = 0.2 is selected, and the scenarios where the stand-
off distance ranges from 0.4 to 2.0 are explored. As depicted in figure 14, two cases with
stand-off distances of 0.4 and 1.5 are presented, and the distinctions in bubble-pulsation
behaviour and viscous-layer variations are quite evident. The bubble with a stand-off
distance of 0.4 assumes a semicircular shape when it expands to the maximum radius,
which is rather similar to the bubble shape near the wall (Reuter et al. 2022b). The
difference is that the upper surface of the bubble will be immersed in a viscous liquid
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Figure 15. Time evolution for (a) centre of mass position, (b) wall centre pressure at μ∗ = 0.065, δ = 0.2,
γ = 0.4−2.0.

and take the form of an arc. In contrast, the bubble with a stand-off distance of γ = 1.5
remains nearly spherical throughout the expansion process, indicating a weaker influence
of the oil layer on the bubble’s shape. At this distance, the bubble still generates a jet
directed towards the wall, and the jet penetration occurs before the bubble rebounds. When
γ = 0.4, the bubble jet approximately occurs concurrently with the bubble’s rebound, and
the load acting on the wall is the superposition of the jet-impact load and the bubble-
pulsation load. Subsequently, the bubble expands in the vicinity of the wall and enters the
second cycle. The jet of the bubble with a stand-off distance γ = 1.5 does not reach and
impact the wall until t∗ = 2.36. Due to the larger distance, the velocity decays significantly
and the jet-impact load is relatively small. Subsequently, we still conducted analyses on
the displacement of the bubble’s centre of mass and the pressure on the wall, as shown
in figure 15. During the expansion phase, all bubbles move away from the wall–oil-layer
direction and the degree of migration decreases with increasing stand-off distance. This
is readily understandable as the asymmetric boundary leads to the asymmetric expansion
of the bubble. Subsequently, the bubble generates a jet and rapidly moves towards the
wall direction, and an inflection point emerges at t∗ = 2. The bubble continues to migrate
downward for some time, and this instant corresponds to the minimum radius of the
bubble. The migration law of the bubble during the rebound remains the same as in
the initial expansion phase. In general, when the stand-off distance is less than 1.5, the
migration of the bubble varies monotonically with the distance.

In figure 15(b), the shock-wave load decreases as the distance parameter increases,
consistent with the expected attenuation of shock waves over stand-off distance. This
behaviour is similar to that observed for bubbles near a rigid wall and does not highlight the
influence of the viscous oil layer. This also succinctly indicates that in terms of the impact
erosion of cavitation bubbles, the distance between bubble walls is of great significance.
During the subsequent bubble-collapse phase, the pressure-load characteristics on the wall
become more complex. Generally, the pressure load decreases as the stand-off distance
increases; however, the load distribution varies significantly at different distances. When
the stand-off distance γ is less than 1.0, the timing of the bubble-pulsation pressure and
jet-impact pressure is nearly simultaneous, leading to their superposition and resulting
in a higher wall load. This peak load can approach the peak shock-wave pressure
(e.g. γ = 0.7). In contrast, at larger γ , there is a noticeable time lag between the jet load
and bubble-collapse load, which are reflected separately on the pressure-evolution curve.
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Figure 16. Spatio–temporal wall pressure during the shock-wave stage (upper image) and the bubble-collapse
stage (lower image) at (a) γ = 0.4, δ = 0.2, μ∗ = 0.13; (b) γ = 1.3, δ = 0.2, μ∗ = 0.0065; (c) γ = 1.3, δ = 0.8,
μ∗ = 0.39.

From this analysis and data comparison, it is evident that the distance between bubbles
significantly influences the bubble–wall–oil-layer system. However, by contrasting with
previous literature (Wang et al. 2015; Reuter et al. 2022b), we find that the effect of
distance on the bubble–wall–oil-layer system mirrors that on the bubble–wall system,
indicating that the role of the viscous oil layer is minimal. The same law is also applicable
to the initially thicker oil layer.

To enhance understanding of pressure-distribution characteristics on a wall, the spatio–
temporal pressure distribution on a rigid wall is illustrated in figure 16. Three distinct cases
were employed for comparative illustration of the functional effects of viscosity, thickness
and stand-off distance. In figure 16, the three graphs in the upper part depict the spatio–
temporal distribution of wall pressure during the initial shock wave phase. For figure 16(a),
considering that the bubble is the closest to the wall, the shock wave initially reaches the
wall, and simultaneously, the pressure peak is the highest. Comparing figure 16(b) with
figure 16(c), given the identical initial stand-off distance, the shock wave reaches the wall
in figure 16(b) earlier. This is because the propagation speed of the shock wave in oil is
slower than that in water, thereby requiring more time to pass through a thicker oil layer.
At approximately t∗ = 0.013, a secondary pressure peak appears on the wall in figure 16(b)
due to the reflected pressure wave at the oil–water interface undergoing a second reflection,
which then impacts the wall and generates the secondary peak. This reflected wave may
intensify the damage to the wall caused by the shock wave. In thicker and more viscous
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Figure 17. (a) Phase diagram of bubble-period distribution under different oil-layer conditions when γ = 1.3,
where Twall = 2.165 represents the bubble-pulsation period without oil layer at the same stand-off distance
(reference period) and Toil represents the bubble period when there is an oil layer. The downward-pointing
triangles represent Toil < Twall , and the upward-pointing triangles represent Toil > Twall . The red triangles
are Ohl et al. (2024) results and the purple triangles are the experimental results. (b) Graph of the combined
function relationship between bubble period T ∗ and δ and μ∗, with the black line indicating the envelope line
of the period distribution.

layers (figure 16c), the secondary peak occurs later and is of lower magnitude because the
viscous layer increases the wave propagation distance and dissipates the wave energy.

In the bubble-collapse stage, the three highly typical load patterns on the wall are
depicted in the lower graphs of figure 16. In figure 16(a), merely one prominent pressure
peak emerges. Based on the previous analysis, this is the combined consequence of bubble-
collapse and jet-impingement loads. In the second case, as depicted in figure 16(b), the
bubble-collapse load occurs initially, followed by the jet impact. The rationale behind
this is that the jet velocity is lower than the shock-wave velocity, and the jet reaches and
impinges on the wall only after the bubble rebounds to a certain degree. Figure 16(c)
presents the third situation, namely, when the oil layer is particularly thick or the viscosity
is substantial, the jet virtually fails to impinge on the wall, and the wall merely receives
a relatively minor bubble-collapse load. Furthermore, there is another situation not
presented here, namely that the jet load precedes the bubble-collapse load, which typically
occurs at a smaller stand-off distance and when the viscous effect is not prominent.

After investigating the collapse, migration and deformation of the oil layer, as well
as the impact of wall load on viscosity and oil-layer thickness, we discovered that the
bubble period varies non-monotonically with changes in these two parameters. Therefore,
we expanded the range of viscosity parameters selected to study the variation law of the
bubble period. From the above analysis, we can find that the effect of the stand-off distance
on the bubble–wall–oil-layer system is the same as that on the bubble–wall system.
Therefore, there is no need to repeat the study of the stand-off distance. Here, we still select
a distance parameter γ = 1.3 and study the periodic changes of the bubble by altering the
thickness and viscosity of the oil layer. This helps us to understand the pulsating-load law
on the wall. The non-monotonic variation of the bubble-pulsation period under special
conditions was mentioned in the previous text, and it is difficult for us to clarify the reason.
Here, the period of a pulsating bubble near a pure wall with a stand-off distance of 1.3 is
used as a reference period to study the effect of the oil-layer conditions on the bubble-
pulsation frequency. As shown in figure 17(a), the distributional phase diagram of the
bubble period is obtained by comparing it with the reference period and combining the
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viscosity and thickness of the oil layer. There is a clear boundary between the two cases of
bubble periods, which is linear in the logarithmic coordinate system and can be expressed
as δ = 0.756 + 0.35log10μ

∗ (it should be noted that all values here are dimensionless, so
the effect of the units of the variables is not taken into account). Above the line, the bubble
period associated with the oil layer is smaller than the reference period, indicating that the
presence of the oil layer accelerates the bubble pulsation. The reasons for this are that the
oil layer reduces the pulsation scale of the bubble, resulting in a shorter period. Conversely,
when the viscosity of the oil layer is larger or the thickness of the oil layer is smaller,
the bubble period increases instead. The reason is that the upper boundary of the bubble
is dragged by the viscous oil layer during the contraction process, thereby reducing the
collapse speed. Based on this boundary line, a new parameter δ − 0.35log10μ

∗ is obtained
by combining δ and μ∗, and the relationship between the new parameter and the period
is plotted as shown in figure 17(b). The period can be enveloped by two straight lines,
with the horizontal line representing the reference period. The intersection point of the
envelope is the boundary point of the size relation between the bubble period and the
reference period. The presence of the envelope region indicates that there is a range of
variability in the bubble period, with definite bounds on the value of the bubble period
except for approximately twice the Rayleigh collapse time.

4. Conclusion
In this paper, we explore the motion of a cavitation bubble adjacent to a rigid wall with a
viscous oil layer and the characteristics of the pressure load at the centre of the wall. The
effects of the thickness of the viscous oil layer, the viscosity and the stand-off distance of
the bubble–wall–oil-layer system are analysed separately. The principal conclusions thus
obtained are as follows.

(i) The influence of the distance parameter γ on the wall-pressure law of the bubble–
wall–oil-layer system is identical to that on the bubble–wall system, both diminishing
with the increase of the distance parameter. When γ < 1.5, the bubble migration
increases monotonically with γ ; however, when γ is relatively large, the bubble
migration no longer varies monotonically.

(ii) Generally, the increase in the thickness or viscosity of the viscous layer results in the
reduction of the bubble radius, migration and peak wall pressure. At μ∗ = 0.0065,
the bubble period decreases with the increase of δ, yet the minimum bubble radius is
scarcely affected. At μ∗ = 0.065, the bubble shape changes significantly with δ, and
the jet occurrence time advances with the increase in thickness. At μ∗ = 0.39, the jet
hardly penetrates the oil layer, and the bubble oscillates in the vicinity of the interface.

(iii) In comparison with the pure wall condition under the same distance, in the μ∗, δ

coordinate system, there exists a boundary line satisfying the logarithmic relationship
for the bubble period: δ = 0.756 + 0.35log10μ

∗; the bubble period is related to δ −
0.35log10μ

∗, and there is a definite boundary.
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