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Abstract

We prove that every sufficiently large even integer can be represented as the sum of two squares of primes,
four cubes of primes and 28 powers of two. This improves the result obtained by Liu and Lü [‘Two results
on powers of 2 in Waring–Goldbach problem’, J. Number Theory 131(4) (2011), 716–736].
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1. Introduction

In the 1950s, Linnik [3, 4] proved that every large even integer N is a sum of two
primes and a bounded number of powers of two,

N = p1 + p2 + 2v1 + 2v2 + · · · + 2vk1 .

Throughout the paper, p and v, with or without subscripts, denote a prime number and
a positive integer, respectively. The famous Goldbach conjecture implies that k1 = 0.
The explicit value for the number k1 was improved by many authors.

In 1999, Liu et al. [8] proved that every sufficiently large even integer N can be
represented in the form

N = p2
1 + p2

2 + p2
3 + p2

4 + 2v1 + 2v2 + · · · + 2vk2 (1.1)

and they also showed that there is a representation of the form (1.1) for some finite
value of vk2 . The best result so far is by Zhao [12], who obtained k2 = 39.

In 2001, Liu and Liu [7] proved that every large even integer N can be written as a
sum of eight cubes of primes and powers of two,

N = p3
1 + p3

2 + · · · + p3
8 + 2v1 + 2v2 + · · · + 2vk3 . (1.2)

The value k3 = 330 was determined by Platt and Trudgian [10].
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In 2011, Liu and Lü [9] considered the hybrid problem combining (1.1) and (1.2),
that is,

N = p2
1 + p2

2 + p3
3 + p3

4 + p3
5 + p3

6 + 2v1 + 2v2 + · · · + 2vk ,

and proved that every sufficiently large even integer can be written as a sum of two
squares of primes, four cubes of primes and 211 powers of two. In 2015, Platt and
Trudgian [10] improved the value of vk to 205. In this paper, we obtain a further
improvement of the value of vk.

Theorem 1.1. Every sufficiently large even integer is a sum of two squares of primes,
four cubes of primes and 28 powers of two.

2. Notation and preliminary lemmas

In this section, we introduce the necessary notation and lemmas for the proof of
Theorem 1.1.

Throughout, N denotes a sufficiently large even integer. We fix a positive constant
η < 10−10 and let ε < 10−10 be an arbitrarily small positive constant not necessarily the
same in different formulae. The letter p, with or without subscripts, is reserved for
a prime number. We write e(α) = e2πiα and eq(α) = e(α/q). By A ∼ B, we mean that
B < A 6 2B. We denote by (m, n) the greatest common divisor of m and n. As usual,
ϕ(n) stands for Euler’s function. Let

P2 =
1
2

√
(1 − η)N, U3 =

1
2

(
ηN
2

)1/3
, V3 =

1
2

(
ηN
2

)5/18
, L =

log(N/log N)
log 2

,

F(α) =
∑
p∼P2

(log p)e(αp2), S (α) =
∑
p∼U3

(log p)e(αp3),

T (α) =
∑
p∼V3

(log p)e(αp3), H(α) =
∑
v≤L

e(α2v), E(λ) = {α ∈ (0, 1] : |H(α)| ≥ λL}.

For the application of the Hardy–Littlewood method, we need to define the Farey
dissection. For this purpose, we set

Q1 = N(1/9)−2ε, Q2 = N(8/9)+ε

and, for (a, q) = 1, 1 ≤ a ≤ q, we define the major and minor arcs by

M(q, a) =

(a
q
−

1
qQ2

,
a
q

+
1

qQ2

]
, M =

⋃
1≤q≤Q1

q⋃
a=1

(a,q)=1

M(q, a),

J0 =

( 1
Q2

, 1 +
1

Q2

]
, m = J0 \M.
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Then it follows from orthogonality that

R(N) :=
∑

N=p2
1+p2

2+p3
3+p3

4+p3
5+p3

6+2v1 +2v2 +···+2vk

p1∼P2, p2∼P2, p3∼U3, p4∼U3, p5∼V3, p6∼V3, vk≤L

(log p1)(log p2) · · · (log p6)

=

∫ 1

0
F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα

=

( ∫
M

+

∫
m

)
F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα. (2.1)

Now we state the lemmas required in the proof of the main theorem. Lemma 2.1
will be used in the estimation of the integral overM and Lemmas 2.2–2.5 will be used
in the estimation of the integral over m.

Lemma 2.1 [5, Theorem 1.1]. For 1
2 N < n 6 N,∫

M

F2(α)S 2(α)T 2(α)e(−αn) dα =
1

22 · 34S(n)J(n) + O
(N11/9

L

)
.

Here S(n) is defined by

S(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

S ∗2
2(q, a)S ∗3

4(q, a)eq(−an)
ϕ6(q)

, S ∗k(q, a) =

q∑
r=1

(r,q)=1

eq(ark)

and satisfies S(n)� 1 for n ≡ 0 (mod 2); J(n) is defined by

J(n) =
∑

n=m1+m2+m3+m4+m5+m6
P2

2<m1,m2≤4P2
2, U3

3<m1,m2≤8U3
3, V3

3<m1,m2≤8V3
3

(m1m2)−1/2(m3m4m5m6)−2/3,

and satisfies

N11/9 � J(n)� N11/9.

Lemma 2.2 [9, Lemma 4.3]. For α ∈ m, F(α)� N4/9+ε.

Lemma 2.3. We have

(i)
∫ 1

0
|S (α)T (α)|4 dα� U3V3

4;

(ii)
∫ 1

0
|F(α)T 2(α)|2 dα� N10/9Lc;

(iii)
∫ 1

0
|F(α)S (α)T (α)|2 dα ≤ 6.4894513U3

2V3
2.

Proof. For (i), see [11, Equation (2.7)].
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For (ii),∫ 1

0
|F(α)T 2(α)|2dα� L6

∑
p1,p2≤P2

1
∑

q1,q2,q3,q4∼V3
p2

1−p2
2=q3

1+q3
2−q3

3−q3
4

1

� L6
( ∑

p1=p2

∑
q1,q2,q3,q4∼V3

q3
1+q3

2−q3
3−q3

4=0

1 +
∑

q1,q2,q3,q4∼V3
q3

1+q3
2−q3

3−q3
4,0

τ(|q3
1 + q3

2 − q3
3 − q3

4|)
)

� L6V4
3 + LcN10/9

� N10/9Lc,

where we have used [1, Equation (2.1)] in the second sum.
For (iii), we recall the definition of J(n):

J(n) =
1

22 · 34

∑
m1+m2+m3=n1+n2+n3

P2
2<m1,n1≤4P2

2

U3
3<m2,n2≤8U3

3

V3
3<m3,n3≤8V3

3

(m1n1)−1/2(m2n2m3n3)−2/3.

Noting that

m1 = n1 + n2 + n3 − m2 − m3 ≥ n1 + U3
3 + V3

3 − 8U3
3 − 8V3

3 ≥ (1 − 3η)n1

and ∑
U3

3<m≤8U3
3

m−2/3 ∼ 3U3,
∑

V3
3<m≤8V3

3

m−2/3 ∼ 3V3,
∑

P2
2<m≤4P2

2

m−1 ∼ 2 log 2, (2.2)

we obtain

J(n) ≤
1

22 · 34

∑
m1+m2+m3=n1+n2+n3

P2
2<m1,n1≤4P2

2

U3
3<m2,n2≤8U3

3

V3
3<m3,n3≤8V3

3

(1 − 3η)−1/2n−1
1 (m2n2m3n3)−2/3

≤
1 + o(1)
22 · 34 (1 + 3η) · 2 log 2 · (3U3)2(3V3)2

≤

( log 2
2

+ o(1)
)
U3

2V3
2.

We deduce from [14, Lemmas 3.1 and 4.1] that∫ 1

0
|F(α)S (α)T (α)|2 dα ≤ 2.3405748 × (8 + o(1))

( log 2
2

+ o(1)
)
U3

2V3
2

≤ 6.4894513U3
2V3

2.

This completes the proof of (iii). �
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In the following lemma, we chose the exponent 13
18 instead of the earlier exponent

53
63 in Liu and Lü [9] because it leads to a smaller λ and fewer powers of two.

Lemma 2.4. We have meas(E(λ))� NE(λ), with

E(0.8709277) > 13
18 + 10−10.

Proof. Let

Hh(α) =
∑

0≤n≤h−1

e(α2n),

G(ξ, h) =
1
2h

2h−1∑
r=0

exp
{
ξRe

(
Hh

( r
2h

))}
,

E(λ) =
ξλ

log 2
−

log G(ξ, h)
h log 2

−
ε

log 2
.

Then, for any h ∈ N, ε > 0 and ξ > 0, we have meas(E(λ)) � NE(λ). For the
proof, we refer the reader to Heath-Brown and Puchta [2]. We confirmed the
estimate E(0.8709277) > 13

18 + 10−10 by taking ξ = 1.174 and h = 23 and running the
computation on a PC for about 15 minutes. �

Lemma 2.5 [13, Lemma 3.1]. For k ≥ 3 andA ⊆ (P, 2P)
⋂
N, we define

g(α) =
∑
x∈A

e(αxk)

and

ωk(puk+v) =

{
kp−u− 1

2 , u ≥ 0, v = 1,
p−u−1, u ≥ 0, 2 ≤ v ≤ k.

LetM be the union of the intervalsM(q, a) for 1 ≤ a ≤ q ≤ Pk21−k
and (a, q) = 1, where

M(q, a) = {α : |qα − a| ≤ Pk(21−k−1)}. Let

J0 = sup
γ∈[0,1]

∫
M

ω2
k(q)|h(α + γ)|2

(1 + Pk|α − a/q|)2 dα.

Suppose that G(α) and h(α) are integrable functions of period one. Let n ⊆ [0, 1) be a
measurable set. Then∫

n

g(α)G(α)h(α) dα� PJ0
1/4

( ∫
n

|G(α)|2 dα
)1/4
J(n)1/2 + P1−2−k+εJ(n),

where

J(n) =

∫
n

|G(α)h(α)| dα.
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3. Auxiliary estimates

We are now equipped to establish the auxiliary estimates needed in this paper. We
initiate our proof by recalling the Farey dissection (2.1):

R(N) =

∫ 1

0
F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα

=

( ∫
M

+

∫
m

⋂
E(λ)

+

∫
m\E(λ)

)
F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα.

3.1. The evaluation of the integral overM.

Lemma 3.1 [6, Lemma 4.2]. Let

Ξ(N, k) = {(1 − η)N ≤ n ≤ N : n = N − 2v1 − 2v2 − · · · − 2vk }.

For k ≥ 2 and N ≡ 0 (mod 2), ∑
n∈Ξ(N,k)

n≡0 (mod 2)

1 ≥ (1 − ε)Lk.

Lemma 3.2 [9, Section 5]. We have S(n) > 0.592836481.

Lemma 3.3. For (1 − η)N 6 n 6 N,

J(n) ≥ 84.8230017U3
2V3

2.

Proof. The domain of J(n) can be written as

D =

{
(m1, . . . ,m6) :

P2
2 < m1,m2 ≤ (2P2)2, U3

3 < m3,m4 ≤ (2U3)3,
V3

3 < m3,m4 ≤ (2V3)3, m1 = n − m2 − · · · − m6

}
.

Define

D
∗ =

{
(m1, . . . ,m6) :

P2
2 < m1,m2 ≤ 3P2

2 − 3ηN, U3
3 < m3,m4 ≤ (2U3)3,

V3
3 < m3,m4 ≤ (2V3)3, m1 = n − m2 − · · · − m6

}
.

For (m1, . . . ,m6) ∈ D∗, we can deduce from (1 − η)N 6 n 6 N that

P2
2 < n − m2 − 2ηN ≤ n − m2 − · · · − m6 = m1 < (2P2)2.

Thus, D∗ is a subset of D. Since (1 − η)N 6 n 6 N, a simple calculation gives

J(n)

≥
∑

(m1,...,m6)∈D∗
(m1m2)−1/2(m3m4m5m6)−2/3

≥
∑

P2
2<m2≤3P2

2−3ηN

((n − m2 − 2ηN)m2)−1/2
∑

U3
3<m3≤(2U3)3

U3
3<m4≤(2U3)3

(m3m4)−2/3
∑

V3
3<m5≤(2V3)3

V3
3<m6≤(2V3)3

(m5m6)−2/3

≥
∑

P2
2<m2≤3P2

2−3ηN

m−1/2
2 ((1 − η)N − m2)−1/2

∑
U3

3<m3≤(2U3)3

U3
3<m4≤(2U3)3

(m3m4)−2/3
∑

V3
3<m5≤(2V3)3

V3
3<m6≤(2V3)3

(m5m6)−2/3.
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Replacing m2/(1 − η)N by t and applying Euler–Maclaurin summation and (2.2) gives

J(n) ≥
( ∫ 3/4

1/4
t−1/2(1 − t)−1/2 dt −

∫ 3/4

3/4−3η/(1−η)
t−1/2(1 − t)−1/2 dt

)
(3U3)2(3V3)2

≥

( ∫ 3/4

1/4
t−1/2(1 − t)−1/2 dt − 10η

)
(3U3)2(3V3)2

≥ 84.8230017U3
2V3

2. �

Proposition 3.4. We have∫
M

F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα ≥ 0.1552042U2
3V2

3 Lk.

Proof. Lemmas 2.1 and 3.1–3.3 reveal that∫
M

F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα =
∑

n∈Ξ(N,k)

∫
M

F2(α)S 2(α)T 2(α)e(−αn) dα

=
1

22 · 34

∑
n∈Ξ(N,k)

S(n)J(n) + O(N11/9Lk−1)

≥ 0.1552042U2
3V2

3

∑
n∈Ξ(N,k)

1 + O(N11/9Lk−1)

≥ 0.1552042U2
3V2

3 Lk. �

3.2. The estimation of the integrals over m.

Lemma 3.5. We have ∫
m

|F(α)|2|S (α)T (α)|5/2 dα� N(107/72)+ε.

Proof. Consider∫
m

|F(α)|2|S (α)T (α)|5/2 dα =

∫
m

S (α)T (α)S (α)T (α)|S (α)T (α)|1/2|F(α)|2 dα.

By taking g(α) = S (α), h(α) = T (α) and G(α) = S (α)T (α)|S (α)T (α)|1/2|F(α)|2 in
Lemma 2.5, we see that the integral is

� U3J0
1/4

( ∫
m

|F4(α)S 3(α)T 3(α)| dα
)1/4( ∫

m

|F2(α)S 3/2(α)T 5/2(α)| dα
)1/2

+ U3
(7/8)+ε

∫
m

|F2(α)S 3/2(α)T 5/2(α)| dα

=: I1 + I2, (3.1)

where

J0 = sup
γ∈[0,1]

∫
M

ω2
3(q)|T (α + γ)|2

(1 + U3
3 |α −

a
q |)

2
dα, M =

⋃
1≤q≤U3/4

3

q⋃
a=1

(a,q)=1

[a
q
−

1

U3/4
3

,
a
q

+
1

U3/4
3

]
.
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By arguments similar to those of Zhao [14],

J0 ≤ V2
3

∑
q≤U3/4

3

ω2
3(q)τc(q)

∫
|β|≤U−9/4

3

1
(1 + U3

3 |β|)
2

dα

≤ V2
3

∑
q≤U3/4

3

ω2
3(q)τc(q)

( ∫
|β|≤U−3

3

1 + U−6
3

∫
U−3

3 <|β|≤U−9/4
3

1
|β|2

dα
)

� V2
3 U−3

3 (log N)c

� N−4/9+ε, (3.2)

where Lemma 2.1 in [14] is used in the estimation of
∑

q≤U3/4
3
ω2

3(q)τc(q). From the
Cauchy–Schwarz inequality and Lemmas 2.2 and 2.3(i) and (iii),∫

m

|F4(α)S 3(α)T 3(α)| dα

� max
α∈m
|F(α)|3

( ∫ 1

0
|F(α)S (α)T (α)|2 dα

)1/2( ∫ 1

0
|S (α)T (α)|4 dα

)1/2

� N(8/3)+ε. (3.3)

Similarly, it follows from the Hölder inequality and Lemma 2.3(ii) and (iii) that∫
m

|F2(α)S 3/2(α)T 5/2(α)| dα�
( ∫ 1

0
|F(α)S (α)T (α)|2 dα

)3/4( ∫ 1

0
|F(α)T 2(α)|2 dα

)1/4

� N(43/36)+ε. (3.4)

Combining (3.1)–(3.2) together with (3.3)–(3.4) yields

I1 � N(107/72)+ε, I2 � N(107/72)+ε.

Hence, ∫
m

|F(α)|2|S (α)T (α)|5/2 dα� N(107/72)+ε

and Lemma 3.5 is proved. �

Proposition 3.6 (The estimation over m
⋂
E(λ)). We have∫

m
⋂
E(λ)

F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα� U2
3V2

3 Lk−1.

Proof. An application of Hölder’s inequality together with Lemmas 2.2, 2.4 and 3.5
yields∫

m
⋂
E(λ)

F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα

� Lk max
α∈m
|F(α)|2/5

( ∫
m

|F(α)|2|S (α)T (α)|5/2 dα
)4/5( ∫

Eλ

1 dα
)1/5
� U2

3V2
3 Lk−1.

This completes the proof of Proposition 3.6. �
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Proposition 3.7 (The estimation over m\E(λ)). We have∫
m\E(λ)

F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα ≤ 6.4894513U2
3V2

3λ
kLk.

Proof. By Lemma 2.3(iii),∫
m\E(λ)

F2(α)S 2(α)T 2(α)Hk(α)e(−αN) dα ≤ (λL)k
( ∫ 1

0
|F(α)S (α)T (α)|2 dα

)
≤ 6.4894513U2

3V2
3λ

kLk. �

4. Proof of Theorem 1.1

On combining Propositions 3.4, 3.6 and 3.7,

R(N) ≥ (0.1552042 − 6.4894513λk)U2
3V2

3 Lk.

When k ≥ 28 and λ = 0.8709277,

R(N) > 0

for all sufficiently large even integers N. This completes the proof of the theorem.
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