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EQUALIZING THE COEFFICIENTS IN 
A PRODUCT OF POLYNOMIALS 

BY 

R. A. MACLEOD AND F. D. K. ROBERTS 

1. Introduction. In 1959, Moser [4] posed the following problem: how should a 
pair of «-sided dice be loaded (identically) so that, on throwing the dice, the 
frequency of the most frequently occurring sum is as small as possible? This can 
be recast in the following form: determine for each «(^1) , the polynomial Pn(x) 
which minimizes the maximum coefficient in the polynomial Pl(x) subject to the 
conditions that the coefficients of Pn(x) are nonnegative and sum to unity. 

In this paper we discuss various problems related to the problem of Moser, and 
also provide counter-examples to a conjectured solution of Moser's problem due to 
Clements [2]. The problems considered are the following: 

The Conjugacy Problem. Given a polynomial Pn(x)=p0+p1x+ bpnx
n, with 

IJLoPi**1» determine the polynomial Qn(x)=q0+q1x+- • -+qnx
n, with j ? . 0 ^ = l , 

so that the coefficients of the polynomial iW*)=^n(*)ôw(*)==f"o+ ri*H H 
r2nx

2n are as nearly equal as possible. 

The Minimum Conjugate Pair Problem. Given integers m, n>l, determine the 
polynomials Pm(x) and Qn(x) with J ^ L o / ^ ^ î U ? ^ ! » s o ^ a t * e coefficients of 
the polynomial Rm+n(x)—Pm(x)Qn(x) are as nearly equal as possible. 

The Minimum Square Problem. Given an integer n> 1, determine the polynomial 
Pn(

x) wit*1 Z i - o / ^ l s o ^ a t ^ e coefficients of the polynomial i?2n(^)=pj(^) 
are as nearly equal as possible. 

For each of these three problems, if we denote by k the degree of the product 
polynomial Rk(x), then since the sum of the coefficients of Rk(x) is also unity, 
we wish Rk(x) to be close to the polynomial Ik(x)=ll(k+l){l+x-{ hxk}. We 
consider the following three criteria: 

k I 1 I U: minimizeT r,— 
,-=o I fc+1 I 

i k I 1 \2)1 / 2 

/2: m i n i m i z e ^ ( r , - — ) j 

. . . . I 1 I 
/œ : minimize max r,— . 

i I fc+1 I 
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Existence of solutions to these problems can be demonstrated by a standard 
compactness argument. However, the solutions are not all necessarily unique (the 
lx and l^ norms for example are not strict). 

In the following three sections we obtain some analytic results and also discuss 
some numerical techniques for solving these problems. In the last section, Moser's 
problem is formulated as a nonlinear programming problem. A numerical tech­
nique is developed to obtain local minima for the problem. The minimum values 
produced by this technique for « = 3 , 5 , 6, 7, 8, 9, and 10 are less than the minima 
suggested by Clements, thus disproving his conjecture. 

2. The conjugacy problem. Given a polynomial Pn(x)=p0+p1x + - • '+pnx
n
9 

with 2 J L 0 ^ = 1 , we wish to determine a polynomial Qn(x)=q0+q1x+- • -+qnx
n, 

with 2 ^ 0 ^ = 1 , so that the coefficients of the polynomial R2n(x)=Pn(x)Qn(x)= 

^o+ri^H \-r2nx2n a r e a s nearly equal as possible (i.e. we wish R2n(x) to be close 
to the polynomial J 2 n (x)=l / (2 / i+ l ){ l+*+- • -+x2n}). 

We shall say that Qn(x) is conjugate to the polynomial Pn(x). We show that the 
determination of the coefficients of Qn(x) using the 1± and /^ criteria can be ac­
complished by linear programming, whereas the l2 problem can be reduced to the 
solution of a system of linear equations. 

We first note that the coefficients of R2n(x) are given in terms of the coefficients 
of Pn(x) and Qn(x) by the following matrix equation: 

<?0 

AnJ 

r2n-l 

- r2n J 

Po 
Pi 

0 
Po 

0 • 
0 • 

• 0 
•• 0 

0 
0 

Pn Pn-1 Pn-2 Pi Po 

0 
0 

0 
0 

0 • 

o • 
•• Pn 
•• 0 

Pn-1 

Pn • 

We re-write this as r=yl3Jq. 
The /x criterion. In the lx case we wish to minimize 2?=o lo—1/(2/7 +1) | subject to 

the linear constraints r=^f3)q, 2?=o(7i=l. Following Barrodale and Roberts [1], 
we introduce nonnegative variables wi? vj9 si9 ti9 and put rj—ll(2n + l)=uj—vj for 

y'=0, 1, . . . , 2ft, and qi=si—ti for i=0 , ! , . . . , « . The minimization may be ac­
complished by solving the following linear programming problem: minimize 
2î-o iu5+vi) subject to 

U—V-
2n+l 

e — [Ay Ap\ 
i=0 

ui9 vj9 si9 U > 0. 
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Here, u and v are (2«+l)-dimensional column vectors, and s, t and e are (n+1)-
dimensional vectors, e being a vector of ones. 

The /2 criterion. In the /2 case, the minimization of Q*20 fo—l/(2«+l))2}1/2 is 
equivalent to the minimization of 2 , " 0 r)9 since 2?=o 0 = 1- The constraints are the 
same as in the previous case, namely r=APq, ^ ^ ^ = 1 . This is a quadratic pro­
gramming problem which can be solved by introducing Lagrange multipliers 
^o, î i» • • • ' A*2n> a n d ^, and considering the auxiliary function F defined by 

F =2rH2^(r,-4q)+A2te-l)> 

where A°v is they-th row of Ap. If we set the partial derivatives of F equal to zero and 
eliminate //0, ^ l 9 . . . , //2n, the problem reduces to that of solving the system of 
linear equations 

,eT oj 
fq" = "0" 

where B=A%AP and e and 0 are the («+l)-dimensional column vectors of ones and 
zeros respectively. We note the matrix Av is of full rank n+l. 

The /œ criterion. In the /«, case we wish to minimize w=max0<i<2w 1^—1/(2/1+1)1 
subject to 1=^4^ and 2^=0 ? i = 1 - Putting rj—ll(2n+l)=uj—vj,j=0, I,. . . ,2n, 
and q—Si—ti, /=0 , 1, . . . , rc, we obtain the following linear programming pro­
blem: minimize w subject to Uj—VjKw and —Uj+Vj^w fory=0, 1, . . . , 2n; 

"si n 

A ; 2 ( s<- O = ! 5 and uj9 vj9 si9 ti9 w > 0. 
.tj i=0 

In practice, it is more efficient computationally to solve the dual formulation of this 
linear programming problem. 

The problem of minimizing the maximum coefficient of R2n(x) subject to the 
additional constraints ^ > 0 , /=0 , 1 , . . . , n, can similarly be recast as a linear 
programming problem. Also, these methods can be used for polynomials Pm(x) 
and Qn(x) of differing degrees. Finally, we note that, given polynomials Pm(x) 
and Rm+n(x), the problem of determining the polynomial Qn(x) so that Pm(x)Qn(x) 
best approximates Rm+n(x) can also be solved by these techniques. 

3. The minimum conjugate pair problem. Given integers m, « > 1 , we wish to 
determine polynomials Pm(x) and Qn(x), with ^LoPi^^El^o 5r»=l5 so that the co­
efficients of the polynomial Rm+n(

x)=Pm(x)Qn(x) a r e a s nearly equal as possible. In 
this problem we wish to determine the coefficients of both Pm(x) and Qn(x) so that 
the product is close to the polynomial Im+n(x)=ll(m+n+l){l+x-] \-xm+n}. 

As is well known, any polynomial with real coefficients can be factored into 
linear and quadratic polynomials with real coefficients. If « and m are both even, we 
can factor Im+n(x) into (m+w)/2 quadratic polynomials, and by selecting any m/2 

u—v- 2n + l 
e — [Ap Ap\ 
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of these factors as Pm(x), and the remainder as Qn(x) we have an exact factori­
zation. We can similarly obtain an exact factorization if m is odd and n is even, or 
vice versa. Thus, the only real problem arises if m and n are both odd. In this case 
it suffices to consider ra=l and n=2k+\, since the general case can be obtained 
from this by transferring quadratic factors from Q2jc+i(x) to P±(x). Thus, we consider 
the product (p0+p1x)(q0+q1x+' • •+fe+i^2&+1)-

The /2 problem is to minimize {J,Zt* (>,—l/(2fc+3))2}1/2, or equivalently to 
minimize ^£X*r), subject to the constraints r0=p0q0; 0 =?<)?;+/7i9/-i> 7 = ^ 
2 , . . . ,2/c+l; ^fc+2=Pife+i; />o+/V=l; ?o+?i+---+fe+i==1- This can be 
accomplished by introducing Lagrange multipliers 1 and JX, and considering the 
auxiliary function F given by 

2&+1 

F = vlq\+ 2 (p0qj+Piqj-i)
2+phljc+i+KPQ+Pi--l)+K<lo+<li+' ' •+«2w-i-1)-

By setting the partial derivatives of F with respect to^0 and J?! equal to zero, we 
obtain 

2fc+l 2Jc+l 

2p0 2 <i*+2Pi 2 «i-i«i+^ = o 

and 
i=o 

2fc+l 

i = l 

2fc+l 

2p0 2 4i-i«i+2p! 2 q*+?i = 0, 

which, together with the equation/>o+.Pi=l> imply thatpa=px=\. (It is easy to 
show that S E o ^ f f i 1 <?,-*)• 

If we set the partial derivatives of F with respect to q0, qly. . . , q2jc+i equal to zero, 
and include the constraint ^S^ô1 qj=l, we obtain the linear system 

2 
1 
0 

0 
0 

Li 

1 
2 
1 

0 
0 
1 

0 
1 
2 

0 
0 
1 

0 0 0 1~| 
0 0 0 1 
0 0 0 1 

1 2 1 1 
0 1 2 1 
1 1 1 OJ 

r «o 

1* 

l2k 

Qik+1 

L2^ J 

0 
0 
0 

0 
0 

_ 1 _ 

The solution to these equations is given by 

la = 

f i = -

k+l-j 
(fc+l)(fc+2)' 

2fc+3 

Qzi+i — 
J + l 

(fe+l)(fc+2)' 

2(fc+l)(fc+2) 

j = 0 ,1 , . . . , k, 

https://doi.org/10.4153/CMB-1973-087-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-087-x


1973] COEFFICIENTS IN A PRODUCT OF POLYNOMIALS 535 

Thus the solution to the /2 problem is given by 

Pi(x) = i + K 
Ô2*+l(*) 

( fc+l)+l •x+k-x2+2-xz+(k-l)-x*+3-x5+-- + l-x2k+(k+l)'X2M 

(fc+l)(fc+2) 
1 2 3 v 4 5 v2fc+l „2fc+2 

«2JH-2W = —— + -^—+-JL- + -JL- +~ 2 L -+ - 2 L - + - ' • + - +~ , 
+ 2fc+4 2fc+2 2k+4 2k+2 2k+4 2k+2 2k+2 2k+4 

1/ 1 \1/2 fyV,- _ 1 Y ) 1 / a _ 1 

l A V ' 2fc+3/J 2 l(fc+l)(fc+2)(2fe+3)J 

We note that Q2k+i(~-l)=Q> and hence Q21c+1{x) has a factor (x+l). However, 
there does not appear to be a convenient analytic technique for obtaining the 
quadratic factors of Q2k+i(x) *n general. A numerical solution may be obtained by 
using Bairstow's method (see for example Frôberg [3]). 

In the l± and 1^ cases, when either m or n is even, we can obtain an exact factori­
zation of Im+n(x) as in the /2 case. A possible numerical technique when m and n 
are both odd is to select the coefficients ofP{^\x) arbitrarily, and then compute the 
polynomial Qn\x) which is conjugate to P(m(x). The polynomial P^ix) is then 
chosen to be conjugate to Qn}(x) and the process repeated until the coefficients of 
the polynomials P{^(x) converge. This algorithm has been tried and used success­
fully. The disadvantage of the method is that it can converge to local minima and 
hence a global minimum cannot be guaranteed. 

4. The minimum square problem. Given an integer n, the minimum square 
problem is to determine the polynomial Pn(x) with ^=0p{=l so that the co­
efficients of Pl(x) are as nearly equal as possible. The following iterative technique 
has been tried for each of the three criteria. The coefficients pQ,px,. . . ,pn are 
selected arbitrarily, subject to the condition 27=0Pi~ 1- We denote this polynomial 
by Pn\x). The polynomial Q^ix), which is conjugate to Pl0)(x), is then computed 
using the methods of §2. The polynomial Pn\x) is then computed by 

This process is repeated until a polynomial i5* (x) is produced which is conjugate to 
itself. 

In the /2 case, this algorithm has proved successful. The method was tried using 
several starting values for various values of n. The convergence of the method 
appears to be linear, and the convergence rate is approximately \. In Table I, we 
list the coefficients of P^(x) (to 6 d.p.) obtained by this method for n=l, 2 , . . . , 6. 
In the l± and /«, cases the method may not converge for all starting values, and can 
also converge to local minima which are not necessarily global minima. 
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Coefficients of P*(x) J | r , _ _ L _ \ 
io [r>-2^ 

1 0.500000,0.500000 0.041667 
2 0.373439,0.253122,0.373439 0.028015 
3 0.310460,0.189540,0.189540,0.310460 0.020644 
4 0.271252,0.157514,0.142469,0.157514, 0.016264 

0.271252 
5 0.243883,0.137479,0.118638,0.118638, 0.013393 

0.137479, 0.243883 
6 0.223398,0.123472,0.103654,0.098952, 0.011375 

0.103654, 0.123472, 0.223398 

TABLE I. Coefficients of the /2 minimum square polynomials. 

In the lx case, we have the following theorem, the proof of which uses a general­
ization of a method of Moser [5]. This theorem yields a lower bound which is valid 
for all polynomials of fixed degree. 

THEOREM. For » = 1 , 2 , . . . , and any choice ofp^O, / = 0 , 1 , . . . , « , we have 

2n 

j=0 
3 2n+l 

1 ' > » 

Proof. Writing ô i =r i —l/(2«+l) , we have 

3=0 i=o \ 2n + l / 

2ra 1 1 __ v 2 w + 1 

j=o 2n + l 1—x 

Now, let Jc0=ea"/<2'^+1,, x^e 4 "* ' 1 2 "* 1 ' , fc=l, 2 , . . . , n. Then 

2n 

J\i(**) = 2 ^ i 4 ? fe = 0, 1, . . . , Tl9 
3=0 

so that 

2n 
(1) \P%xJ\ = |PM(x,)|2 £ 2 W . fe = 0 , 1 , . . . , n. 

3=0 

Also, 

i=0 j=0 

j=o 2n+l i=o 2n + l 

https://doi.org/10.4153/CMB-1973-087-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-087-x


1973] COEFFICIENTS IN A PRODUCT OF POLYNOMIALS 

Writing 0=277/(2n+l), 

\2 / n \ 2 

and 

or 

| p" ( x° ) | 2 = {%Pi c o s ^ J + ( | / > sin->e)2> 

\PJM)\ > IP, sin JO , 0 < jO £ ^22L < w 
I i-o I 2n+ l 

l'»WI > 2>; sinJe = 2>; |sin j6|. 
Similarly, 

\Pn(xk)\ > 

Consider now the Fourier series 

2PiCOs2fe/0 
5=0 

k = 1, 2 , . . . , n. 

TT , *cos2fc<£ 
l = T | s i n ^ | + 2 2 - T - v , 0 £ # < i r . 

Since 

we have 

S cos 2fc^ 
^ + 1 4 f e 2 ~ l 

<y _2_=y /_L__J_\__I_ 
"~*=n+i4fc2-l *4r+i\2fc-l 2Jk+l/ 2 n + r 

1 77-, . fl " cos2fc<A 1 

2 n + l ~ - 2 ' ' "" *~4fc 2 - l ^ " " 2 n + l 

Taking <£=y0, we know O<j'0<7r, and hence 

Now, suppose that 

^ ? 2 > i Isin j f l l+22 - f - | > , cos 2kj0 I 

2 »=i 4/c — 1 

1-

\Pn(xJ\< ^ T " f o r k = 0,l,...,n. 
' + 1 - : * 

Then 
2 2 n + l 

1 

!_-JL_< ' 2»+ 
2 n + l Z + 1 _ 1 \2 *=i4k 2 - l / 2n+ l* 

2 2 n + l 
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Thus, for some value of k, 

IKMU 2"+1 ' 
77 1 77 77 

- + 1 — — 1+^+ — 
2 2n + l 2 An and hence, from (1), 

2n 

2W> j=0 H+tJ 
We note that the right side is an increasing function of n, and for large n is greater 
than 0.15. Inasmuch as the polynomial of degree 6 with coefficients (0.27395196, 
0.07579365, 0.09290929, 0.11469020, 0.09290929, 0.07579365, 0.27395196) yields a 
value of 2*2o 1̂ 1 °f 0.23016749, it is unlikely that a method such as that given 
in this theorem can yield a significantly greater lower bound. 

5. Moser's min-max problem. Given an integer n>l, we wish to determine the 
polynomial Pn(x)=p0+p1x-\ \-pnx

n, with S L o / ^ l * which minimizes the 
maximum coefficient of the polynomial R2n(x)=Pl(x). In this problem we restrict 
the coefficients po,/?!,. . . ,pn to be nonnegative. 

Clements [2] observes that the coefficients in [(1— xyl/2]2=l+x+x2A are 
actually equal, and conjectures that the coefficients /?*,/?*,...,/>* of the mini­
mizing polynomial are in fact the first (n+l) coefficients in the MacLaurin ex­
pansion of (1— x)"112 normed so as to add to 1. That is 

i = 0, 1 , . . . , n, 

where 

K(n) = {|o ^ ( - l ) * p = 2(4)(6) • • • (2n)/3(5) • • • (2n+l). 

(For this choice, the maximum coefficient of R2n(x) is K2(n).) He has proved this 
for the cases «=1,2, and shows that this is at least a local minimum for all other 
values of n. His conjecture that this is a global minimum for all n is false as we shall 
demonstrate for the cases «=3,5, 6, 7, 8,9, and 10. The problem can be converted 
to a nonlinear programming problem as follows. 

Let w denote the maximum coefficient in Pl(x). We wish to minimize w subject 
to the constraints Ajp<we, 2!LoPi= * > Pi^.®> z==^> 1 , . . . , « and w>0 where e is 
the 2n+l-dimensional column vector of ones. 

This problem may be solved as a sequence of linear programming problems. 
At the A:+lst stage, let pi, pi,. . . ,pk

n be the estimates obtained from the previous 
stage. The constraints for the nonlinear programming problem contain products 
such as PiPj. If we replace these terms by the linear approximation 

p^MVi-p^MPi- P1)PI 
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Coefficient 
ofR\(x) 
0.444444 
0.284444 
0.205558 
0.165120 

Clements' 
Maximum 

0.444444 
0.284444 
0.208980 
0.165120 

0.133397 0.136463 

then we obtain a linear programming problem. The solution of this problem 
by the simplex method yields new estimates /?*+\ z=0, 1 , . . . , n. This algorithm is 
not guaranteed convergence from all starting values, and may also converge to a 
local minimum. However, the algorithm usually converges in practice and the 
convergence rate is very rapid. 

In Table II we list the polynomials P*(x) of degrees one through ten which we ob­
tained by using the above technique repeated for each value of n for twenty different 
arbitrary starting polynomials Pn{x). For n= 1, 2 and 4 we reproduce the values of 
Clements, but for all other values of n which we tried, our method yields smaller 
maximum coefficients, thus disproving Clements' conjecture. 

Maximum 

n Coefficients ofP*(x) 

1 0.333333,0.666667 
2 0.200000,0.266667, 0.533333 
3 0.248959,0.096080,0.394295, 0.260665 
4 0.111111, 0.126984, 0.152381, 0.203175, 

0.406349 
5 0.162011, 0.196836, 0.292118, 0.056782, 

0.079349, 0.212904 
6 0.154412, 0.123333, 0.023393, 0.117394, 

0.272579, 0.132616, 0.176272 
7 0.117534, 0.133603, 0.161075, 0.236756, 

0.040355, 0.049518, 0.069804, 0.191354 
8 0.140374, 0.042319, 0.029668, 0.131689, 

0.075393, 0.059902, 0.216415, 0.163547, 
0.140693 

9 0.176478, 0.063449, 0.044698, 0.036288, 
0.031312, 0.201419, 0.137790, 0.114874, 
0.101473, 0.092219 

10 0.106261, 0.076596, 0.118225, 0.101108, 
0.195597, 0.080762, 0.010309, 0.050848, 
0.029258, 0.098114, 0.132922 

TABLE II. Counter examples to Clements' conjecture. 
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