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T h e purpose of this note is to characterize those distr ibutive lattices t h a t 
can be isomorphically embedded in free lattices. If it is known (cf. (2)) t h a t 
in a free lattice every element is either additively or multiplicatively irredu­
cible, and consequently every sublatt ice of a free lattice must also have this 
property. We therefore begin by studying the class of all those distr ibutive 
lattices in which this condition is satisfied. 

T h e notion of a linearly indecomposable lattice will play a fundamental 
role in these investigations. Given two non-empty subsets B and C of a 
part ial ly ordered set A, we write B < C if and only if either B = C or else 
b < c whenever b £ B and c £ C. I t is obvious t h a t under this relation the 
non-empty subsets of A form a partially ordered set. A lattice A is said to 
be linearly indecomposable if there do not exist sublattices B and C of A 
such t h a t A = B \J C and B < C. Clearly every lattice A is the union of a 
unique linearly ordered family © of linearly indecomposable lattices. Fur­
thermore, A is distr ibutive if and only if each member of ^ is distr ibutive, 
and in order for A to have the proper ty t h a t each of its elements is either 
additively or multiplicatively irreducible it is necessary and sufficient t h a t 
each member of ^ have this property. We therefore need only consider the 
case of a linearly indecomposable lattice. 

L E M M A 1. Suppose D is a distributive lattice with the property that every 
element of D is either additively or multiplicatively irreducible. If the elements 
Xi, X2, x% G D are such that no two of them are comparable, then they generate 
an eight-element Boolean algebra. 

Proof. Since the element 

(X2 + Xz) (Xz + Xi) (Xi + X2) = X2X3 + XzXi + X\X2 

cannot be both additively and multiplicatively reducible, either one of the 
factors on the left mus t be contained in the other two factors, or else one 
of the summands on the right must contain the other two summands . By 
symmet ry and duali ty we may assume t h a t X2X3 and X3X1 are contained in 
X1X2, so t h a t 

(1) x2x3 = X3X1 < X1X2. 
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Considering the element 

(Xi + X3) (x2 + X3) = X1X2 + X3, 

we see t h a t one of the following four inclusions must hold : 

(2) Xi + Xz < X2 + Xz, X2 + Xz < Xi + Xz, XXX2 > Xz, Xz > X1X2. 

If the first inclusion holds, then Xi = XiX2 + XiX3, and it follows by (1) t h a t 
X i = X\X2 < x2j cont rary to our hypothesis t h a t Xi, x2, Xz be incomparable. 
Similarly the second inclusion in (2) leads to a contradict ion, and obviously 
so does the third. Finally, if Xz > X\X2, then the inclusion in (1) can be re­
placed by an equali ty, and it follows t h a t Xi, x2, and x3 are the a toms of a 
Boolean algebra with eight elements. 

L E M M A 2. Suppose D is a linearly indecomposable distributive lattice with the 
property that every element of D is either additively or multiplicatively irreducible. 
Then the width of D is at most 3. Furthermore, if the width of D is 3, then D is 
a Boolean algebra with eight elements. 

Proof. By Lemma 1, if the width of D is 3 or more, then D contains as a 
sublat t ice a Boolean algebra B with eight elements. Let z and u be the zero 
and the uni t of B. We shall show t h a t if d is an element of D which does 
not belong to B, then either d < z or d > u. 

First observe t h a t if p is an a tom in B, then there exists no element d Ç D 
such t h a t z < d < p. In fact, if such an element d exists, and if q and r are 
the other two a toms of B, then the element 

q + d = (q + p)(q + d + r) 

is both addit ively and multiplicatively reducible. 
Now consider any element d of D and let 

p' = z + pd, qf = z + qd, and r' = z + rd 

where p, q, and r are the a toms of B. Then z < p' < p, hence p' = z or 
p' = p. Since p is multiplicatively reducible (in B and therefore also in D), 
it mus t be addit ively irreducible. I t follows t h a t if p' = p, then p = pd < d. 
Similarly, either qf = z or else q < d, and either r' — z or r < d. By symmet ry 
we need only consider four ou t of the eight cases t h a t may arise. 

If pf = q' = r' = z, then u(z + d) = z. Hence d < z, for otherwise the 
element 

p+d = (p + d + q)(p +d + r) 

would be both addit ively and multiplicatively reducible. 
If p < d and qr = r' = z, then (q + d)u = q + du = q + p. Since q + p 

is multiplicatively irreducible it follows t h a t 

q + p = q + d, d = d(q + d) = d(q + p) = dq + dp = p. 
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If p < d, q < d, and r' = z, then ud = p + q, hence d = p + q. 
If p < d, q < J, and r < d, then u ^ d. 

T h u s we see t ha t if d is not an element of B, then either d < z or else 
^ > z/. 

T h e element s is multiplicatively reducible and must therefore be addit ively 
irreducible, whence it follows t h a t if there exist elements d Ç D with d < z, 
then the set A consisting of all these elements must be a sublatt ice of D. T h e 
set C = D — A is precisely the set of all elements d £ D with z < dy and 
we therefore have A < C. We therefore see t ha t if A were non-empty, then 
D would not be linearly indecomposable as required by the hypothesis. Simi­
larly, the assumption t ha t there exists d 6 D with u < d leads to a contra­
diction, and we conclude t ha t D = B. 

L E M M A 3. Suppose D is a linearly indecomposable distributive lattice with 
the property that every element of D is either additively or multiplicatively irre­
ducible. If the width of D is 2, then D is isomorphic to a direct product of two 
chains, one of which has exactly two elements. 

Proof. We consider two cases depending on whether D does or does not 
have a zero element. In each case the proof will be divided into several par ts . 

Case I. D has a zero element z. 

Statement la . There exists an a tom p of D which is multiplicatively irre­
ducible 

Proof. The zero element z must be multiplicatively reducible, for otherwise 
the set D — {z\ would be a sublattice of D, and D would not be linearly 
indecomposable. T h u s there exist p, q 6 D such t h a t z = pq, z < p, and 
z < q. If neither p nor q were an a tom, then there would exist x, y G D such 
t h a t z < x < p and z < y < q, and the elements p, q, and x + y would be 
incomparable, which is impossible because the width of D is only 2. We may 
therefore assume t h a t p is an a tom. 

If p is multiplicatively reducible, p = ab with p < a and p < b, then two 
of the three elements a, b, and q mus t be comparable. Since ab is properly 
contained in a and in b, a and b cannot be comparable, and since p is not 
contained in q, neither a nor b can be contained in q. Therefore either a or b 
must contain q, and we can assume t h a t q < a. 

For any x G D with z < x < q we have x + p = a {x + b). Now x < x + p 
and p < x + p. Also, the equali ty x + p = x + b is excluded because it would 
imply t h a t bKx + b = x-\-pKa. We must therefore have x + p = a, 
q < x + p, q = x-\-pq = x-\-z = x. Thus q is an a tom of D. 

If q is also multiplicatively reducible, q = cd with q < c and q < d, then 
p is contained in either c or 6?, say p < c. Observe t ha t 6 does not contain q, 
and therefore contains neither d nor p -\- q. Similarly, d contains neither b 
nor p + q. Fur thermore , b(p + g) = p < b and d(p + q) = q < d, so t h a t 
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p + q contains neither b nor d. Consequently b, d, and p + q are incom­
parable. This contradicts our hypothesis, and we conclude that either p or q 
must be a multiplicatively irreducible atom. 

Statement lb. If p is a multiplicatively irreducible atom of D} then the set 

C = {x | x £ D and £x = z] 

is a chain and an ideal of D, and D is the inner direct product of C and of 
the two-element chain C = {z,p}. 

Proof. Clearly C is an ideal of D, and if x, y £ C, then either x < y or 
3/ < x, because otherwise the three elements x, y, and p would be incom­
parable. Since C and C are ideals of D and have only the zero element in 
common, their inner direct product A = C X C exists and is an ideal of 
D. The proof will be completed by showing that if the set B = D — A were 
non-empty, then B would be a sublattice of D and A < B. 

Given x £ B we have x $ C, whence px ^ z, and thus p < x. For all y £ C 
we have x(y + /?) = x;y + p, whence it follows that p < xy or xy < /? or 
x < ; y + £ o r ^ + / ? < x . The first case is excluded because py = z < p} 

and the third case is ruled out because it would yield x = xy + p Ç A. The 
case xy < p yields xy = z, x(y + p) = p, and since p is multiplicatively 
irreducible it follows that y + p = p, y K p, y = z, y + p = p < x. Finally, 
in the last case the equality y + p = x is ruled out since y + p G A. Thus 
p -\- y < x wmenever x (z B and 3/ £ C, whence it follows that 4̂ < 5 . 

Clearly, if #1 6 J3 and Xi < x2, then #2 G J5. To show that B is a sublattice 
of D it is therefore sufficient to show that if Xi, x2 G 5 , then xxx2 £ -B. If 
this fails, then X]X2 Ç .4. Since every member of B contains p, we have 
p < xix2, and therefore XiX2 = p + y for some y G C But since X]X2 is multi­
plicatively reducible, and is therefore additively irreducible, it follows that 
y = z, p = XiX2. However, this is excluded because p is multiplicatively 
irreducible. 

The next statement will be needed in the treatment of Case II below. 

Statement Ic. The set C in lb consists of all the additively irreducible 
elements of D, except the element p. 

Proof. Since C is a chain, every element of C is additively irreducible in C, 
and since C is an ideal of D, it follows that every element of C is additively 
irreducible in D. On the other hand, if a G D, a $ C, and a ^ p, then a = p -{- y 
for some 3> Ç C, and therefore a is additively reducible. 

Case II. D does not have a zero element. 

Statement Ha. If z Ç D is multiplicatively reducible, then the dual ideal 
generated by z is linearly indecomposable. 

Proof. There exist a, b G D such that s = ab, z < a, and z < b. Let D^ be 
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the dual ideal generated by z, and suppose there exist sublattices A and B 
of Dz such t h a t Dz = A \J B and A < B. Clearly a, b G A. U x £ D and 
x $ Z)2, then x < a or x < b, for otherwise the elements a, 6, and x would 
be incomparable. I t readily follows t ha t if A' is the set of all those elements 
x G D which are contained in some member of A, then D = A' \J B and 
A' < B, contrary to our hypothesis. 

Statement l i b . Every element of D contains a multiplicatively reducible 
element. 

Proof. If x G D is not itself multiplicatively reducible, then either x is the 
largest element of D, or else there exists y £ D such t ha t x and 3/ are incom­
parable, for otherwise D would be the union of the two sublattices 

A = {y I x > y G D] and B = {y \ x < y G D) 

with A < B. Thus xy < x, and xy is multiplicatively reducible. 

Statement l i e . The set 4̂ consisting of all the additively irreducible elements 
of D is a chain, and every member of A is covered by a unique member of 
D - A. 

Proof. Suppose a, b G A. Since .D does not have a zero element, there 
exist x, y (z D such t ha t x < y < ab, and by l i b there exists a multiplicatively 
reducible element z with s < x. Let Z>2 be the dual ideal generated by z. In 
view of H a we can apply la , b, c with D replaced by Dz. Let p and C be 
as in l b . Then a 9^ p 9^ b because a and b do not cover z, and it follows by 
Ic t h a t a, b G C. Since C is a chain, we conclude t h a t a < & or 6 < a. T h u s 
/4 is a chain. Finally, by lb , a is covered by p + a and by no other addit ively 
reducible element. 

Statement l i d . Let A be the set consisting of all the addit ively irreducible 
elements of D, and for each a G A let a' be the unique member of D — A 
t ha t covers a. Then the mapping (0, a) —» a, ( l , a ) — > a ' is an isomorphism 
of the outer direct product {0, 1} X A onto P . 

Proof. For each multiplicatively reducible element z oî D let Dz be the 
dual ideal generated by z and let Az = A r\ Dz. In view of H a we may apply 
la , b , c with D replaced by Dz. Observe t h a t p = z' satisfies the hypothesis 
of l b , and denote by Cz the corresponding set C defined in l b . Clearly A z C Cz. 

If zo and z\ are multiplicatively irreducible elements of D with Zo < Zi, 
then we see by l i b t ha t %\ — z0

f + Z\ and z0 = Zo'zi, and hence t h a t CZ1 C C20. 
Now suppose z is multiplicatively reducible, a G Dz and a$Az. Then there 
exist b, c (z D such t h a t a = £ + c, b < a, and c < a. We can then find a 
multiplicatively reducible element z0 with s0 < be. Then a is addit ively 
reducible in Dzo so t h a t a $ C20. Consequently a $ Cz. T h u s we see t h a t 
Cz C .4 2, hence 4̂ 2 = C2. 

https://doi.org/10.4153/CJM-1961-022-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-022-8


270 FRED GALVIN AND BJARNI JONSSON 

By lb , the mapping (0, a) —> a, (1 , a) —* a' = z' + a is an isomorphism of 
{0, 1} X Cz onto Dz. T h e lattices {0, 1} X Cz form a chain whose union is 
{0, 1} X A, and the lattices Dz form a chain whose union is D. Consequent ly 
the indicated mapping is an isomorphism of {0, 1} X A onto D. 

T H E O R E M 4. For any distributive lattice D the following conditions are equiva­
lent: 

(i) Every element of D is either additively or multiplicatively irreducible. 
(ii) D is the union of a linearly ordered family *& of sublattices such that 

each member of c£ is either a one-elememt lattice or an eight-element Boolean 
algebra, or else is isomorphic to a direct product of two chains, one of which 
consists of exactly two elements. 

Proof. As we observed in the introduction, D is the union of a simply ordered 
family of linearly indecomposable sublatt ices. T h a t (i) implies (ii) therefore 
follows from Lemmas 2 and 3, together with the obvious observation t h a t a 
lattice of width 1 (a chain) is linearly indecomposable if and only if it con­
sists of jus t one element. 

Conversely, it is easy to show t h a t under the hypothesis of (ii) each mem­
ber C of cé has the proper ty t h a t every element of C is either addit ively or 
multiplicatively irreducible, whence it follows t h a t D also has this proper ty . 

L E M M A 5. Every simply ordered subset of a free lattice is denumerable* 

Proof. Let F be a free lattice generated by a set X. The a l ternat ive case 
being trivial, we assume t h a t X is non-denumerable . Let X0 be a denumerably 
infinite subset of X, and let F0 be the sublat t ice of F generated by X0. 

For a, b £ F wri te a = b if and only if there exists an automorphism / of 
F such t h a t f{a) = b. Clearly = is an equivalence relation over F. For each 
a (z F there exists a finite subset Y of X such t ha t a belongs to the sublat t ice 
of F generated by Y. We can find a permuta t ion p of X which maps Y into 
XQ, and p can be extended to an automorphism / of F. Consequent ly a = j\a) 
Ç FG. T h u s every equivalence class modulo = contains a member of Fc. 
T h e number of equivalence classes mus t therefore be denumerable , and the 
proof will be completed if we showT t h a t no simply ordered subset of F con­
tains more than one element from any one equivalence class. T h a t is, it 
suffices to show t h a t if a = b and a < b, then a = b. 

Suppose / is an au tomorphism of F such t ha t f{a) = b. There exists a 
finite subset Y of X such t h a t a belongs to the sublat t ice of F generated 
by Y. If Z is the image of Y under / , then there exists a permuta t ion p of 
X such t h a t p(x) = f(x) whenever x Ç Y, and p(x) = x whenever x Ç X — 
( Y U Z ) . If g is the au tmorophism of F such t h a t g(x) = p{x) whenever 

*A somewhat more involved argument can be used to show that if F is a free lattice and 
if Y is a subset of F with K a elements, where X« is a non-denumerable, regular cardinal, then 
Y contains a subset Z with K a elements such that Z generates a free sublattice of F. 
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x £ X, then g (a) = f(a) = b, and g is of some finite order n. If now a < b, 
then 

a < g(a) < g\a) < . . . < ?{a) = a, 

hence a < b < a, hence a = b. This completes the proof. 

THEOREM 6. i w aw^ distributive lattice D the following conditions are equiva­
lent: 

(i) D is isomorphic to a sublattice of a free lattice. 
(ii) D is isomorphic to a sublattice of a free lattice with three generators. 

(iii) D is denumerable, and every element of D is either additively or multi-
plicatively irreducible. 

(iv) D is the union of a denumerable, linearly ordered family *%> of sub-
lattices where each member of v is either a one-element lattice or an eight-element 
Boolean algebra, or else is isomorphic to a direct product of a two-element chain 
and a denumerable chain. 

Proof. Clearly (ii) implies (i) and, as we observed in the introduction, (i) 
implies that every element of D is either additively or multiplicatively irre­
ducible. Using Theorem 4 and Lemma 5, we therefore see that (i) implies 
that D is denumerable. Thus (i) implies (iii). Since (iii) and (iv) are equiva­
lent by Theorem 4, it remains only to prove that (iv) implies (ii). 

If F is a free lattice generated by x, y, and z, then it is easy to check that 
the elements yz, zx, and xy generate an eight-element Boolean algebra. Also, 
F contains as a sublattice a free lattice F' with five generators x0, x1? x2, x3, x4. 
If C is a denumerable chain, then there exists an isomorphism / of C into the 
sublattice generated by Xz, x3, and x*. Defining the mapping g of A = {0, 1} X C 
into Ff by the conditions 

g((l, c)) = xQ + Xif(c), g((0, c)) = (xo + xi/(c))xi, 

for all c (z C, we shall see that g is an isomorphism of A into Ff. 
Let h be the endomorphism of F' such that 

h(xo) = 0, h(xi) = 1, and h(xi) ~ xt for i = 2, 3, 4. 

Then 
* g « l , c » =f(c) = Ag«0,c» 

for all c G C. Consequently g is one-to-one on the set of elements of the form 
(1, c), and also on the set of elements of the form (0, c). Furthermore, if 
c, c' e C, then g«0, c)) < xx and g« l , c')) < xu so that g«0, c)) * g((l, c')). 
Thus g is one-to-one. 

If c, cr G C and c < c', then it is easy to check that 

««1 , c» + f «0, c'» = g« l , c'», 
g((h c))g((0, c')) = g « 0 , c ' » , 

and since g is obviously order-preserving, it follows that g is an isomorphism. 
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Thus we see that, under the hypothesis of (iv), every member of v is 
isomorphic to a sublattice of a free lattice with three generators, and we 
conclude by (1, Theorem 2.4) that (ii) holds. This completes the proof. 
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