DISTRIBUTIVE SUBLATTICES OF A FREE LATTICE
FRED GALVIN anp BJARNI JONSSON

The purpose of this note is to characterize those distributive lattices that
can be isomorphically embedded in free lattices. If it is known (cf. (2)) that
in a free lattice every element is either additively or multiplicatively irredu-
cible, and consequently every sublattice of a free lattice must also have this
property. We therefore begin by studying the class of all those distributive
lattices in which this condition is satisfied.

The notion of a linearly indecomposable lattice will play a fundamental
role in these investigations. Given two non-empty subsets B and C of a
partially ordered set 4, we write B < C if and only if either B = C or else
b < ¢ whenever b € B and ¢ € C. It is obvious that under this relation the
non-empty subsets of 4 form a partially ordered set. A lattice 4 is said to
be linearly indecomposable if there do not exist sublattices B and C of 4
such that A = BU C and B < C. Clearly every lattice 4 is the union of a
unique linearly ordered family % of linearly indecomposable lattices. Fur-
thermore, 4 is distributive if and only if each member of ¢ is distributive,
and in order for 4 to have the property that each of its elements is either
additively or multiplicatively irreducible it is necessary and sufficient that
each member of @ have this property. We therefore need only consider the
case of a linearly indecomposable lattice.

LEMMA 1. Suppose D 1s a distributive lattice with the property that every
element of D 1s either additively or multiplicatively irreducible. If the elements
X1, X2, X3 € D are such that no two of them are comparable, then they generate
an eight-element Boolean algebra.

Proof. Since the element
(22 + x5) (x5 + x1) (X1 + x2) = X2X5 + X3¥1 + X%

cannot be both additively and multiplicatively reducible, either one of the
factors on the left must be contained in the other two factors, or else one
of the summands on the right must contain the other two summands. By
symmetry and duality we may assume that x.x3 and x3x; are contained in
x1Xs, so that

(1) XoX3 = X3X1 < X1Xo.
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Considering the element
(xx + xa) (x-; + x:s) = XX + X3,
we see that one of the following four inclusions must hold:
(2) X1+ x5 < X2+ xp, Xo + x5 < X1 + x5, X1X2 > X3, X3 > XiXo.

If the first inclusion holds, then x; = xx2 + x1x3, and it follows by (1) that
x; = X1x2 < X2, contrary to our hypothesis that x;, x», x3 be incomparable.
Similarly the second inclusion in (2) leads to a contradiction, and obviously
so does the third. Finally, if x3 > x1xs, then the inclusion in (1) can be re-
placed by an equality, and it follows that x;, xs, and x3 are the atoms of a
Boolean algebra with eight elements.

LEMMA 2. Suppose D is a linearly indecomposable distributive lattice with the
property that every element of D is either additively or multiplicatively irreducible.
Then the width of D 1s at most 3. Furthermore, if the width of D 1s 3, then D 1is
a Boolean algebra with eight elements.

Proof. By Lemma 1, if the width of D is 3 or more, then D contains as a
sublattice a Boolean algebra B with eight elements. Let z and « be the zero
and the unit of B. We shall show that if d is an element of D which does
not belong to B, then either d < z or d > u.

First observe that if p is an atom in B, then there exists no element d ¢ D
such that 2 < d < p. In fact, if such an element d exists, and if ¢ and 7 are
the other two atoms of B, then the element

g+d=(+p(g+d+r)

is both additively and multiplicatively reducible.
Now consider any element d of D and let

P =z 4+ pd, g =z + qd, and 7 =z+rd

where p, ¢, and r are the atoms of B. Then z < p’ < p, hence p’ = z or
p' = p. Since p is multiplicatively reducible (in B and therefore also in D),
it must be additively irreducible. It follows that if p’ = p, then p = pd < d.
Similarly, either ¢ = zorelse ¢ < d, and either 7’ = zor r < d. By symmetry
we need only consider four out of the eight cases that may arise.

If p/ =¢q" =+ =3z then u(z +d) = 2. Hence d < 3, for otherwise the
element

pt+d=@p+td+9p+d+r)

would be both additively and multiplicatively reducible.
If p<dandq =7 =3z then (¢ +d)u = ¢+ du = q + p. Since ¢ + p
is multiplicatively irreducible it follows that

g+p=gq+d, d=d(g+d) =d(g+p) =dg+dp = p.
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If p<d, ¢g<d, and v =3, then ud = p + ¢, hence d = p + ¢.

If p<d, ¢g<d, and r < d, then u < d.

Thus we see that if d is not an element of B, then either d < z or else
d > u.

The element z is multiplicatively reducible and must therefore be additively
irreducible, whence it follows that if there exist elements d € D with d < 2,
then the set A4 consisting of all these elements must be a sublattice of D. The
set C =D — A4 is precisely the set of all elements d € D with z < d, and
we therefore have 4 < C. We therefore see that if 4 were non-empty, then
D would not be linearly indecomposable as required by the hypothesis. Simi-
larly, the assumption that there exists d € D with u < d leads to a contra-
diction, and we conclude that D = B.

LemMA 3. Suppose D is a linearly indecomposable distributive lattice with
the property that every element of D 1s either additively or multiplicatively irre-
ducible. If the width of D is 2, then D is 1somorphic to a direct product of two
chains, one of which has exactly two elements.

Proof. We consider two cases depending on whether D does or does not
have a zero element. In each case the proof will be divided into several parts.

Case I. D has a zero element z.

Statement la. There exists an atom p of D which is multiplicatively irre-
ducible

Proof. The zero element z must be multiplicatively reducible, {or otherwise
the set D — {2z} would be a sublattice of D, and D would not be linearly
indecomposable. Thus there exist p, ¢ € D such that z = pq, z < p, and
z < g. If neither p nor ¢ were an atom, then there would exist x, y € D such
that z < x < p and 2 < ¥ < ¢, and the elements p, ¢, and x 4+ ¥ would be
incomparable, which is impossible because the width of D is only 2. We may
therefore assume that p is an atom.

If p is multiplicatively reducible, p = ab with p < @ and p < b, then two
of the three elements a, b, and ¢ must be comparable. Since abd is properly
contained in ¢ and in &, ¢ and b cannot be comparable, and since p is not
contained in ¢, neither a nor & can be contained in g. Therefore either a or
must contain ¢, and we can assume that ¢ < a.

Foranyx € Dwithz < x < gwehavex +p =a(x +8). Nowx < x + p
and p < x + p. Also, the equality x + p = x + b is excluded because it would
imply that 8 < x4+ b =x + p < a. We must therefore have x + p = q,
g<x+p, ¢g=x—+pg =x+ 2z =x Thus ¢ is an atom of D.

If g is also multiplicatively reducible, ¢ = ¢d with ¢ < ¢ and ¢ < d, then
p is contained in either ¢ or d, say p < ¢. Observe that & does not contain g,
and therefore contains neither d nor p + ¢. Similarly, d contains neither
nor p + ¢. Furthermore, 6(p +¢) = p < b and d(p + ¢) = ¢ < d, so that
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p + g contains neither 4 nor d. Consequently &, d, and p 4+ ¢ are incom-
parable. This contradicts our hypothesis, and we conclude that either p or ¢
must be a multiplicatively irreducible atom.

Statement Ib. If p is a multiplicatively irreducible atom of D, then the set
C=f{x|x€D and px =g

is a chain and an ideal of D, and D is the inner direct product of C and of
the two-element chain C’ = {z, p}.

Proof. Clearly C is an ideal of D, and if x,y € C, then either x < y or
vy < x, because otherwise the three elements x, y, and p would be incom-
parable. Since C and C’ are ideals of D and have only the zero element in
common, their inner direct product 4 = C’ X C exists and is an ideal of
D. The proof will be completed by showing that if the set B = D — .1 were
non-empty, then B would be a sublattice of D and 4 < B.

Given x € B we have x ¢ C, whence px # 3z, and thus p < x. Forally < C
we have x(y + p) = xy + p, whence it follows that p < xy or xy < p or
x<y+pory+p<x The first case is excluded because py = z < p,
and the third case is ruled out because it would vield x = xy + p € 4. The
case xy < p vields xy = 2, x(y 4+ p) = p, and since p is multiplicatively
irreducible it follows thaty +p = p, y < p, ¥y = 2, vy + p = p < x. Finally,
in the last case the equality ¥ 4+ p = x is ruled out since y + p € 1. Thus
p + vy < x whenever x € B and y € C, whence it follows that 4 < B.

Clearly, if x; € B and x; < x9, then x» € B. To show that B is a sublattice
of D it is therefore sufficient to show that if xi, xs € B, then xwx. € B. If
this fails, then xyxs € 4. Since everv member of B contains p, we have
p < x1x2, and therefore x1xs = p + y for some y € C. But since x;x» is multi-
plicatively reducible, and is therefore additively irreducible, it follows that
y =z, p = x1x2. However, this is excluded because p is multiplicatively
irreducible.

The next statement will be needed in the treatment of Case II below.

Statement Ic. The set C in Ib consists of all the additively irreducible
elements of D, except the element p.

Proof. Since C is a chain, every element of C is additively irreducible in C,
and since C is an ideal of D, it follows that every element of C is additively
irreducible in D. On the other hand,ife¢ € D,a ¢ C,anda # p,thena = p + vy
for some y € C, and therefore a is additively reducible.

Case 11. D does not have a zero element.

Statement 1la. 1f z € D is multiplicatively reducible, then the dual ideal
generated by z is linearly indecomposable.

Proof. There exist a, b ¢ D such that 3 = ab, z < a, and z < b. Let D, be
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the dual ideal generated by z, and suppose there exist sublattices 4 and B
of D, such that D, = A4\UB and 4 < B. Clearly a,b ¢ 4. If x € D and
x ¢ D, then x < a or x < &, for otherwise the elements a, 8, and x would
be incomparable. It readily follows that if 4’ is the set of all those elements
x € D which are contained in some member of 4, then D = 4’ U B and
A’ < B, contrary to our hypothesis.

Statement I1b. Every element of D contains a multiplicatively reducible
element.

Proof. If x € D is not itself multiplicatively reducible, then either x is the
largest element of D, or else there exists ¥ € D such that x and y are incom-
parable, for otherwise D would be the union of the two sublattices

A={y|lx>y¢€ D} and B={y|lx<y¢€ D}
with 4 < B. Thus xy < x, and xy is multiplicatively reducible.

Statement [1c. The set A consisting of all the additively irreducible elements

of D is a chain, and every member of .4 is covered by a unique member of
D — 4.

Proof. Suppose a,bd € A. Since D does not have a zero element, there
exist x, ¥ € D such that x < y < ab, and by IIb there exists a multiplicatively
reducible element z with z < x. Let D, be the dual ideal generated by z. In
view of Ila we can apply Ia, b, ¢ with D replaced by D,. Let p and C be
as in Ib. Then a # p # b because a and & do not cover g, and it follows by
Ic that @, b € C. Since C is a chain, we conclude that ¢ < b or & < a. Thus
A is a chain. Finally, by Ib, a is covered by p + a and by no other additively
reducible element.

Statement 11d. Let A be the set consisting of all the additively irreducible
elements of D, and for each a € 4 let @’ be the unique member of D — 4
that covers a. Then the mapping (0, a) —a, (1,a) —d’ is an isomorphism
of the outer direct product {0, 1} X 4 onto D.

Proof. For each multiplicatively reducible element z of D let D, be the
dual ideal generated by zand let 4, = 4 M D,. In view of Ila we may apply
Ia, b, ¢ with D replaced by D,. Observe that p = 3z’ satisfies the hypothesis
of Ib, and denote by C, the corresponding set C defined in Ib. Clearly 4, C C..

If 20 and 2; are multiplicatively irreducible elements of D with 2, < 2,
then we see by IIb that 2,/ = 2y’ + z;and 29 = 2¢'z1, and hence that C,; C C,,.
Now suppose z is multiplicatively reducible, ¢ € D, and a ¢ 4,. Then there
exist b,¢ € D such that a = b + ¢, b < a, and ¢ < a. We can then find a
multiplicatively reducible element 2, with 2, < bc. Then a is additively
reducible in D,, so that a ¢ C,,. Consequently a ¢ C.. Thus we see that
C,C 4, hence 4, = C,.
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By Ib, the mapping (0, a) —a, {1,a) > a’ = 5’ + a is an isomorphism of
{0, 1} X C, onto D,. The lattices {0, 1} X C, form a chain whose union is
{0, 1} X 4, and the lattices D, form a chain whose union is D. Consequently
the indicated mapping is an isomorphism of {0, 1} X 4 onto D.

THEOREM 4. For any distributive lattice D the following conditions are equiva-
lent:

(i) Every element of D 1s either additively or multiplicatively irreducible.

(ii) D is the union of a linearly ordered family € of sublattices such that
each member of € is either a one-elememt lattice or an eight-element Boolean
algebra, or else is 1somorphic to a direct product of two chains, one of which
consists of exactly two elements.

Proof. As we observed in the introduction, D is the union of a simply ordered
family of linearly indecomposable sublattices. That (i) implies (ii) therefore
follows from Lemmas 2 and 3, together with the obvious observation that a
lattice of width 1 (a chain) is linearly indecomposable if and only if it con-
sists of just one element.

Conversely, it is easy to show that under the hypothesis of (ii) each mem-
ber C of € has the property that every element of C is either additively or
multiplicatively irreducible, whence it follows that D also has this property.

LeMMA 5. Every simply ordered subset of a free lattice is denumerable ™

Proof. Let F be a free lattice generated by a set X. The alternative case
being trivial, we assume that X is non-denumerable. Let X, be a denumerably
infinite subset of X, and let Fy be the sublattice of F generated by X,.

For a, b € F write @ = b if and only if there exists an automorphism [ of
F such that f(a) = b. Clearly = is an equivalence relation over F. For each
a € F there exists a finite subset Y of X such that a belongs to the sublattice
of F generated by Y. We can find a permutation p of X which maps Y into
X, and p can be extended to an automorphism f ol /. Consequently a = f(a)
€ Fo. Thus every equivalence class modulo = contains a member of F.
The number of equivalence classes must therefore be denumerable, and the
proof will be completed if we show that no simply ordered subset of I con-
tains more than one element from any one equivalence class. That is, it
suffices to show that if ¢ = b and e < b, then @ = b.

Suppose f is an automorphism of /' such that f(a) = b. There exists a
finite subset Y of X such that a belongs to the sublattice of F generated
by Y. If Z is the image of Y under f, then there exists a permutation p of
X such that p(x) = f(x) whenever x € Y, and p(x) = x whenever x € X —
(YU Z). If g is the autmorophism of F such that g(x) = p(x) whenever

*A somewhat more involved argument can be used to show that if Fis a free lattice and
if Y is a subset of F with N, elements, where N, is a non-denumerable, regular cardinal, then
Y contains a subset Z with N, elements such that Z generates a free sublattice of F.
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x € X, then g(a) = f(a) = b, and g is of some finite order #. If now a < b,
then
a<gl) <ge)<...<g"@) =aq

hence ¢ < b < a, hence a = b. This completes the proof.

THEOREM 6. For any distributive lattice D the following conditions are equiva-
lent:

(1) D 1is isomorphic to a sublattice of a free laitice.

(i1) D s isomorphic to a sublattice of a free lattice with three gemerators.

(ii1) D is denumerable, and every element of D is either additively or multi-
plicatively 1rreducible.

(iv) D is the union of a denumerable, linearly ordered family € of sub-
lattices where each member of C is either a one-element lattice or an eight-element
Boolean algebra, or else is tsomorphic to a direct product of a two-element chain
and a denumerable chain.

Proof. Clearly (ii) implies (i) and, as we observed in the introduction, (i)
implies that every element of D is either additively or multiplicatively irre-
ducible. Using Theorem 4 and Lemma 5, we therefore see that (i) implies
that D is denumerable. Thus (i) implies (iii). Since (iii) and (iv) are equiva-
lent by Theorem 4, it remains only to prove that (iv) implies (ii).

If Fis a free lattice generated by x, v, and z, then it is easy to check that
the elements vz, zx, and xy generate an eight-element Boolean algebra. Also,
F contains as a sublattice a free lattice F’ with five generators xo, X1, X2, X3, X4.
If Cis a denumerable chain, then there exists an isomorphism f of C into the
sublattice generated by xs, x3, and x4. Defining the mapping gof 4 = {0, 1} X C
into F’ by the conditions

g(<1) C>) = Xo + x1f(C), g(<07 C>) = (.’Xfo + xlf(c))xly

for all ¢ € C, we shall see that g is an isomorphism of 1 into F’.
Let % be the endomorphism of F’ such that

h(xo) =0, h(x) =1, and k(x;) =x; for =23, 4.
Then
hg (1, ¢)) = f(c) = hg((0, )

for all ¢ € C. Consequently g is one-to-one on the set of elements of the form
(1, ¢), and also on the set of elements of the form (0, ¢). Furthermore, if
¢, ¢’ € C, then g({0, ¢)) < x1 and g({1, ")) € x,, so that g({0, ¢)) = g({1, ¢")).
Thus g is one-to-one.

If ¢,c" € Cand ¢ < ¢, then it is easy to check that

g1, 0) + g0, ")) = g1, ")),
g1, e)g (0, ¢")) = g0, ")),

and since g is obviously order-preserving, it follows that g is an isomorphism.
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Thus we see that, under the hypothesis of (iv), every member of ¥ is
isomorphic to a sublattice of a free lattice with three generators, and we
conclude by (1, Theorem 2.4) that (ii) holds. This completes the proof.
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