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1. Introduction and notation. Valentine (1, Theorems 2 and 3) has 
defined a three-point property which he called P 3 and has shown that a closed 
subset of the euclidean plane possessing this property is expressible as the 
union of at most three convex sets. He also showed that if the number of 
isolated points of local non-convexity of such a set is one, finite and even, or 
infinite, the set is the union of two convex sets. In this paper we give properties 
which, together with Valentine's results, characterize those subsets of a plane 
which may be represented as a union of two closed, convex sets. 

The closed metric segment joining p and q in the euclidean plane E2 will 
be denoted by S(p, q). A set A is star-like with respect to p Ç A if S(p, q) 
lies in A for every q £ A. The set of star-like points of A is called the kernel 
of A. The boundary of A and the kernel of A will be denoted by B(A) and 
K(A) respectively. A set A is said to have the property P 3 if for each triple of 
its points p, q, r at least one of the segments S(p, q), S(q, r), or S(p, r) lies in 
A. By a convex polygon we mean a simple closed curve which is the union of 
a finite number of line segments and which bounds a convex set in E2. 

Suppose pi, p2, . . • , pk are the vertices of a convex polygon ordered in the 
counter-clockwise manner around the polygon. Two lines containing adjacent 
sides of the convex polygon intersect at a vertex pj and determine four closed 
sectors whose intersection is pj. That closed sector which has only pj in 
common with the polygon will be denoted by ^ j - Now consider a side 
S(pj, pj+i) (where the index k + 1 is identified with the index 1) of the convex 
polygon. The line determined by pj and pj+i divides the plane into two half-
planes. Let H(pj, pj+i) be the closed half-plane which contains 2 ; ^ 2 m» 
and let 

T(pj9 pj+i) = H(p„ £ ,+ i ) \ (Ë i U E J+I). 
The set T(pj, pj+i) will be referred to as a T set. A T set may be triangular 

or unbounded. The intersection 2 ; ^ T(p^ pj+i) is either a ray with initial 
point pj or is a segment with one endpoint pj. The intersection 2 ; ^ Ey+i 
is either null or contains interior points of both ][];- and $Zm- Then the sides 
of the polygon determine in the plane 2k + 1 sets: (1) the interior of the 
polygon, (2) the k sets £^ , and (3) the k sets T(pjt pj+i). 

2. Preliminaries. In this section results are obtained which enable us to 
provide the desired characterization of certain subsets of E2. 
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LEMMA 1. Let S, a connected subset of'E2, have property P 3 , and let pi, p2, . . . , pk 

(k > 3) be all of the points of local non-convexity of S. Then pi, p2, . . . , pk 

are the vertices of a convex polygon, and the interior of each Y^j(j = 1> 2 , . . . , k) 
contains no points of S. 

Proof. Since S has P 3 , for each j,pj € B(K(S)) (1, Corollary 1). Since 
K(S) is convex, the points pi are the vertices of a convex polygon. 

Suppose a Ç S and t h a t q is an interior point of a J^, say Xi - Since S(p2, pk) 
C K(S), every point of S(p2, pk) can be joined to g by a segment which lies 
in S. Then the interior and boundary of the triangle determined by q, p2, and 
pk contains only points of S. Since pi is an interior point of this triangle, S is 
locally convex a t pi. This is a contradiction. 

Suppose p is a point of the boundary of a closed, convex set A in the plane. 
If there is a line tangent to B(A) a t p, then this line is the only support line 
for A a t p. Otherwise, there exist a unique right-hand and a unique left-hand 
semitangent to B(A) a t p. Each is a support line of A. 

LEMMA 2. / / ph p2, . . . , pk (k > 3) are all the points of local non-convexity 
of a bounded, closed subset S of E2 possessing property P%, then the intersection of 
S and any T set is convex. 

Proof. If for any T set, say T(ph p2), T P\ S is not convex, then there exist 
points q, r Ç T P \ 5 such t h a t none of the points of S(q, r) between q and r 
lie in S. Each of the points q and r can be joined by a segment in T C\ S to 
S(pi,p2). If S(q,r) extended meets S(pi,p2), there is a contradiction. T h u s 
the segment S(q, r) must be parallel to S (pi, p2) or must be on a line which 
intersects S (pi, p2) extended. In either case the points pi, p2, q, and r determine 
a convex quadrilateral . The labelling may be selected so t h a t the diagonals 
of the convex quadrilateral are S (pi, r) and S(p2, q). Now there exist points 
Pi € S(pi, q) and p2 6 S(p2, r) such t h a t pi ^ pi ^ r, p2 ^ p2 ^ q and 
the quadrilateral determined by pi, p2, q, and r is convex. 

Let Q be the set of points interior to and on the boundary of the quadri­
lateral with vertices pi, p2, q, and r. Then T C\ Q is convex. Since q, r £ T 
r\ Q r\ S and S(q, r) (£T r\QC\S, then m Q C\ S is not convex. Hence 
5 has a point of local non-convexity in T different from pi and p2. This is a 
contradiction. 

Let C(j,j + 1 ) = S H r ( p , , £ m ) for j = 1, 2, . . . , £. In the following if 
we denote t h a t the three points ph p2, and pz are consecutive points on a 
simple closed curve, we mean to indicate the order in which these points are 
encountered in traversing the simple closed curve in such a manner t h a t the 
bounded component of its complement is always on the left. 

LEMMA 3. Let pi, p2, pz be any three consecutive points of local non-convexity 
of a set S satisfying the hypothesis of Lemma 2. Then for j = 1,2 each of the 
semitangents to C(j,j + 1) at p2 is a support line for K(S). 
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Proof. W e shall show t h a t K(S) lies in only one of the closed half-planes 
determined by the r ight-hand semitangent to C( l , 2) a t p2. T h e proof for the 
left-hand semitangent to C(2, 3) is similar. 

T h e r ight-hand semitangent is a suppor t line for the triangle with vertices 
pi, p2, and pz. Let H be t h a t open half-plane which does not contain the triangle. 
Assume q G Hr\K(S). Clearly q $ C( l , 2) ; hence q G C(2, 3). Consider the 
line L containing S(q, p2). Since L is not a suppor t line for C(\, 2), bo th open 
half-planes determined by L contain points of C( l , 2). Let r be a point of 
C( l , 2) in t h a t open half-plane which contains the interior of 2 2. Since 
g 6 K(S), S(q,r) (Z S and 5(g, r) P ^ 2 is not null. This contradic ts Lemma 1. 

L E M M A 4. Let pi, P2, pz be points satisfying the hypothesis of Lemma 3. / / 
h G C( l , 2) awd £2 G C(2, 3), h 9^ p2 9^ U, are such that S C\S(ti, t2) = £1 
U ^2, then ti(t2) is in the closed half-plane not containing K(S) determined by 
the left-hand (right-hand) semitangent to C(2, 3) (to C ( l , 2)) at pi. 

Proof. Since K(S) C\ C(l, 2) is not null, by Lemma 3 the r ight-hand semi­
tangen t a t p2 is a suppor t line for K(S) U C( l , 2). Note t h a t the r ight-hand 
semitangent is also a support line for ]£ 2 and t h a t ^ 2 lies in the closed half-
plane not containing K(S). Since S(ti, t2) has points in common with the 
interior of ^ 2 , S(tu to) intersects the r ight-hand semitangent to C(\, 2). A 
similar a rgument holds for t2 and the left-hand semitangent t o C(2, 3) a t p2. 

T H E O R E M 1. Let S be a bounded, closed, and connected subset of E2. Suppose S 
has property P 3 and that S contains at least one point of local non-convexity. If 
there exists a point q £ S such that q G K (S) P \ B (S) and S is locally convex 
at q, then S can be expressed as the union of two closed and convex sets. 

Proof. If the number of points of local non-convexity of 5 is one, finite and 
even, or infinite, then the desired conclusion is immediate (1 , p . 1232, Theorem 
3) . Otherwise, denote the points of local non-convexity of 5 by £1, . . . , p2n+u 
n > 1, ordered in a counter-clockwise manner around B(K(S)). Set 2n + 1 
= k. Since q lies in one of the T sets of the polygon pu . . . , pk, the labelling 
may be selected so t h a t q G T(pk,pi). Since q G B(S), then by Lemma 2, 
g is a point of the boundary of the convex set C(k, 1). Then q lies on an arc 
A(pn, pi) contained in B(S) with endpoints pk and pi. At every point of this 
arc except a t pk and pi, S is locally convex. Since S is not locally convex a t pi, 
there is a point, say r, of the arc A (pk, pi) such t h a t r is not in K(S) and r 
is in the subarc of A(pk, pi) from q to pi. Since K(S) and C(k, 1) are closed 
and convex, there is a subarc A (qu pi) of A (pk, pi) with endpoints qi and pi 
such t h a t A(qi, pi) r\K(S) = qi KJ pi. Similarly there is a subarc A(qkj pk) 
of A (pk, pi) such t h a t A (qk, pk) Pi K(S) = pkKJ qk. 

In T(pj, pj+i) P B(S), denote the arc joining pj and pj+i by AT(pj} pj+i) 
for j = 1, 2, . . . , k (where pk+i = pi). Also for each two dist inct points a 
and b in B(K(S))y let AK(a, b) be the arc connecting a and b in B(K(S)) in 
the counter-clockwise direction. If a = b, then let AK(a, b) = a. Let 
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D = AK(qh px) KJAT(pu p2) U AK(p2l p3) U . . . \J AT(pk_2, PJC-I) U 

AK(pk_hpk) U AT(pk, qk) U 4 * (g*, gi). 

Note that each arc of the form A T or ylx can have only endpoints in common 
with another AT or AK. Hence D is a simple closed curve. Let M denote the 
closure of the bounded component of E2\D. It is clear from the manner in 
which D was constructed that K(S) C M and that the set M is the union of 
K(S) and a certain collection C of the sets C(j,j + 1). Hence M C S. 

ASSERTION. The set M is convex. 

Proof. Let x, y £ M. If either x or y is in K(S), then 5(x, 3>) C M. Suppose 
neither x nor y is in i£(5) ; then each is in a T-set. If x and y belong to the same 
T-set, then 5(x, y) C M. If x and 3> are in T-sets whose intersection is null, 
then there exist points Xi and yi in B(K(S)) such that S(x,y) = 5(x, Xi) 
KJ 5(xi, 3/1) W 5(yi, 3/). Since each of the three segments of the decomposition 
of 5(x, 3/) is in M, then 5(x, 3/) C M. Suppose then that x and y are in 2"-sets 
whose intersection is a point of local non-convexity pjm If j 9^ 1, then one of 
the points x, y is in K(S). This has been considered previously. Suppose j = 1. 
If x G 7\£i, P2), y G C(fe, 1) but 3/ is not in the closed convex set F bounded 
by AT(pk, qk) and S(pk, q_k), then 3; G K(S). If 3; G F, then x and y lie on the 
same side of the left-hand semitangent to C(l , 2) at pu If 5(x, y) <X 5, then 
Lemma 4 would be contradicted. Hence 5(x, 3/) is of the form 5(x, Xi) U 
5(xi, 3/1) U 5f^i, 3/) where Xi U 3/1 C B(K(S)). That is, if x and 3/ are in M 
then 5(x, 3/) C -M", and the assertion has been proved. 

Let E denote the simple closed curve which is the set-theoretic union of the 
sequence of arcs^4r(gi, pi),AK(pi, pi), . . . , AT(pk-i, pk)> AK(pk, qk), AT(qkJ q±) 
and let N be the closure of the set of points interior to and on E. By an 
argument similar to that used for M, the set N is convex and K(S) C N C 5. 

If x Ç 5, then either x Ç K(S) or x G C(j,j + 1) for some j . In either 
case x is in M or N. By construction M U N C 5, and hence S = M ^J N 
where ilf and N are convex. Thus the theorem has been proved. 

THEOREM 2. / / a bounded, closed, connected subset S of the plane E2 is the 
union of two closed, convex sets, each of which contains the kernel of S, and if S 
has an odd number > 3 of points of local non-convexity, then S contains a point 
of local convexity which lies in K{S) C\ B (5). 

Proof. Let the points of local non-convexity be denoted pi, . . . , pk, k odd 
and k > 3, as K(S) is traversed in the counter-clockwise manner. Let 5 
= M U N where K(S) C M C\ N with M and N each closed and convex. 

Consider AT(p1, p2). Since 5 has P3 , points pi and p2 each belong to K(S) 
= M H N. If any other point of AT(pi, p2) belongs to both M and N, the 
proof is complete. So let it be assumed that AT(pu p2) C M, and AT(pi, p2) 
r\ N = pi yj p2. 

Then consider AT{p2,pi). There exists a point of AT{p2,pi) and a point 
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of AT(php2) which cannot be joined b y a segment in S. Such a point of 
AT{p<2.,pz) is in N. Again if a point of local convexity (with respect to S) 
of AT(p2jpz) belongs to MC\N, t he proof is complete. T h u s it m a y be 
assumed t h a t every point of AT(p2, p%) belongs to N, and t h a t the only points 
of AT(p2l pz) belonging to M are pi and pz. 

Continuing around the polygon pi, . . . , pk in this manner gives 

AT(p2j-h p2j) CM . _ k - 1 

AT(p2j,p2j+1)CN J - — - - 2 ' 

and AT(fikfpi) CM. 

But AT(pk, pi) and AT(ph p2) are contained in M. Then any point of either 
of these arcs may be joined to any point of the other by a segment lying in 
M C S. This violates the local non-convexity of 5 a t pi and nullifies the 
assumption t h a t no point of any of the AT arcs except endpoints belongs to 
both M and N. 

T h e following example shows t h a t the hypothesis of Theorem 2 cannot be 
weakened by deleting the condition t h a t S be bounded. Let M be the set of 
points (x, y) Ç E2 in the closed first quad ran t ; and let N be the set of points 
(x, y) G E2 satisfying both y > 1 — x and y > x — 3. T h e points of local 
non-convexity of S = M VJ N are (0, 1), (1 ,0 ) , and (3, 0). This set 6* has no 
point q of local convexity such t h a t q G B(S) C\ K(S). 
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