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SOME RESULTS IN THE THEORY OF VECTOR BUNDLES
HIROSHI UMEMURA

We have several definitions of the positivity of a vector bundle,
differentiable definitions, an algebro-geometric definition, a topological
definition etc. In §1 we review the definitions and the relations between
them. For a line bundle all the definitions are equivalent and every
one agrees that they are reasonable. For a vector bundle, however, the
definitions are not necessarily equivalent. One of the main results of
this paper is the equivalence of the definitions over a complete non-
singular curve. The proof is given in §2. We proved this over an
elliptic curve in Umemura [18]. In this case the proof was based on
Atiyah’s classification. To prove the equivalence over a curve of genus
> 2, the fundamental lemma is; A stable bundle of positive degree is
positive in the sense of Nakano. The tool used to prove this lemma is
the theory of stable bundles due to Narasimhan and Seshadri [11] —they
establish a correspondence between stable bundles and certain types of
irreducible unitary representations of a Fuchsian group.

We also discuss the H-stability of Takemoto from two points of view.
In §3, we prove that over an abelian surface, a ruled surface or a
hyperelliptic surface, H-stable bundle of rank 2 with ¢ — 4¢, > 0, ¢, > 0,
¢, > 0 is positive in the sense of Nakano. We ask in general: Is a
stable bundle of rank 2 over a surface with positive Chern class ample?
This is the analogue of the lemma that we mentioned above. But this
is false unless ¢ — 4¢, > 0, even over an abelian surface. Hence H-stability
is not very comfortable in this case.

In §4, we deal with vanishing theorems. The first theorem is well
known as the index theorem. In fact an algebraic proof is known. The
second theorem (4.2) is a generalization of the Kodaira vanishing theorem
and Mumford’s result [8]. We also remark that a vanishing theorem
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of Griffiths is proved easily by the standard argument using cohomological
dimension and the spectral sequence of de Rham cohomology.

In §5 we study H(¥) and #(F) for a vector bundle E. In general
H(E) and %(F) are too small. So we have to find a good family of
vector bundles F such that H(E) and ¢(F) reflect properties of E. Over
an elliptic curve, if E is stable, H(F) and %(F) are nice and give the
Heisenberg group. So it is quite natural to ask if H(E) and ¢(F) give
sufficient information concerning E for an H-stable bundle E over an
abelian surface. Unfortunately the answer is no unless ¢ — 4¢, = 0.
Here again the H-stability with ¢ — 4¢, < 0 is unpleasant.

§ 1. Preliminaries

(1.1) Let V be a non-singular projective algebraic variety of dimension
n defined over the complex number field C. Let E be a holomorphic
vector bundle of rank r defined over V. Let {U,} be an open covering
of V such that E is trivial on each U,. Let g,, be the transition matrix
of E'i.e. two elements z X &, and » X & with xe U, N U, &,,&,€C" are
identified if and only if g9,.(®)¢, = &,.

A hermitian metric on F is, by definition, a set of C=-maps %, from
U, to the space of positive definite hermitian matrices of degree 7 such
that g, () (2)9,,(2) = hy(2) for any ze U, N U,.

A (C~—~) connection on E is a set of 1-forms 4, on U, such that 6,
= 0,40, — w9, on U, N U, where v, = g;3dg.,. It is easy to see that
a connection defines a C-linear map D: E — QY(F) by putting

D(p,) = do, + 0. N\ ¢,
for a local section ¢, on each U,. Similarly we can define two operators:
D':E — QUE)
Put> Ao+ 0, N 9o s
D" E — Q(E)
9a> A,

so that D = D’ + D”.
D induces an operator from Q7(E) to 27+'(E) by the following formula

D@, ) = di-¢p + (=12 N\ Do,

where 2 is a local section of 27 and ¢ is a local section of E. We
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denote this operator also by D. D? is called the curvature form of the
connection 4 = {4,}.

- Let h = {h,} be a hermitian metric on E. Then by an easy calcu-
lation, we see that {r;'d’h,} defines a connection on E. Let {0,} be the
curvature form of the connection A~!'d’h. More explicitely 6, = df, +
0. N0, = —h*}dd"h, — h;*d’h, N\ h7*d’h,. We put

Ol = X5 O ;808 g

1<p,r0<7
1<i,j<n

where §=%§,---,§)eCp="(p, - ,7.)eC", 0= (lei,an @5ijdzi A
AZ)1<,.0<- a0d 25, -+ ,2, is a local coordinate system on V (we drop the
index o« when no confusion is possible).

We say that a vector bundle E is positive (resp. negative) and
denote it by E > 0 (resp. EF < 0) if there exists a hermitian metric &
on E such that 6,( ) is positive (resp. negative) definite any point P
of V for any & == 0.

A vector bundle F is non-negative (resp. non-positive) and we denote
it by £ > 0 (resp. £ < 0) if there exists a hermitian metric % such that
®.( ) is non-negative (non-positive) at any point P of V for any & # 0.

Remark (1.2) Let P be a point of V. By choosing a frame, we
may assume d’A(P) = 0 and W(P) = 1. Then the curvature form at P is
equal to —d'd”h.

Remark (1.3) Let {h,} be a metric on E. If we put ¢, = > hEE
with &€ =&, -+ ,&)eC” on each U, X C7, then ¢, is a well defined
function. Let P be a point of U,. We normalize # at P as in Remark

(1.2). Then the Levi form of ¢ at P X & is equal to

[ azhf sE&L azhi sEt
1<si<r 02,07, & 19,259 02,0%, o
: : 0
azhi sEL ., azh;- sEL
T 52,0, e m,zm 02,0%, e
0 h

J

Hence § {negative eigenvalues of 6,( ) at P} = n — # {negative eigenvalues
of the Levi form of ¢ at P}
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DEFINITION (1.4) A vector bundle E is positive (resp. non-negative)
in the sense of Nakano if there exists a hermitian metric 2 on E such
that

Z hf@zﬁg(mﬂg(v,ﬁ
1<p,5,0<7
1<4,j<n

is positive (resp. non-negative) at any point for any non-zero vector
(+.- E0D L) e O,

LEMMA 1.5) If a vector bundle is positive in the sense of Nakano,
then it is positive. The converse holds if either r =1 or n = 1.

Proof. Trivial from the definition.

Remark (1.6). A positive vector bundle is not positive in the sense
of Nakano in general.

LEMMA (1.7) Let E be a vector bundle on V. Let h be a hermitian
metric on E. Then h induces a natural hermitian metric b on E. We
have 6 = —'0 where O (resp. @v) is the curvature form of h (resp.h).

Proof. Let {h} define a metric on E. Then {*h;"} = {k,} is a metric
on E. In fact.
tgﬂahagﬂa = hﬂ
ga3 thi byt = thit
Casdnz gz = hy'
Let & be the connection of {t4;1}. Then

éa = CCh~)"'d/ R
— _d'ththt
= —4h~'d’h)
= 10 .

Hence 07 = —6¢.

EXAMPLE (1.8) Projective space P*. We put U; = {(&), @y, -+ - , 2,)
eP"|x; = 0} for 0 <4< n. The transition function g;, of O(—1) is
x;/x;. If we put hy=|ay/x;f + |2/ + - -+ @, /2% then h; = |x;/x; [k,
= |g,fh,. Hence {h;} defines a metric on O(—1). If we put z, = 2j/%,,
By = &y %y v+ 5 By = Ly [Ty Boy = X1/ Xy +++ 5 2y = X,/ ;, the connection
and the curvature form on U, are given by
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BT — z,dz, + z,dz, + -+ + z,dz,
T4z + 12 + - + (2]
o= —Ataf+ - 4z N dR A+ -+ d2 A dz) F
Ltfaf 4 o+ [2f :
+ @Fdz, + -+ + 2,d2)(2dZE, + -0 + 2,d7,) .

Hence O(—1) is negative and OQ) is positive.

EXAMPLE (1.9) An abelian variety. Let A = C"/I" be an abelian
variety where I is a lattice in C*. Since C" is Stein and simply con-
nected, every line bundle is defined by an element of H'(I", H(C", O%.))
i.e. by a cocycle u — e,(2) for I' with coefficients in H(C*, O%.):

6u+u'(z) == eu(z + ’M/)~6u/(2') .

Let H be a hermitian form on C* such that E = Im H is integral
onl'. Leta:I' —»{zeC||z| =1} be a map such that a(u, + u,) = e*F®uu,
a(u)-a(u,),u; ¢ I'. Then u — e,(z) = a(u)erFEW+AM=EwW g g cocycle for I’
with coefficients in H%(C", 0%.). Hence {e,(2)} determines a line bundle
L(H,x). The theorem of Appell-Humbert says that any line bundle
on A is uniquely determined by a pair, (H,«) satisfying the condition
above.

Let L = L(H,«) be a line bundle on A. If we put ¢(z) = e "#®a,
2eC", then ¢(2) is a metric on the trivial line bundle C* X C on C”.
Let e,(2) be the cocycle defined by (H,«), then we have

SD(Z + u) lenH(z,u)+(n/2)H(u,u) Iz — SD(z) A
In fact,

So(z + u) leﬂH(Z,u)+(7r/2)H(u,u)l2

— 6—nH(z+u,z+u) !euH(z,uH(x/:Z)H(u,u) !Z

— @~ ~H(z2) —sH(z,u) —xH(u,2) ~xH (u,u) lenH(z,u)+(,/z)H(u,u)lz
— e—nH(z,z) . ezﬂe(-nH(z,u))—xH(u,u) ,enH(z,u)+(x/2)H(u,u) lz

— o HE)
= ¢(z) .

Hence ¢(2) = |e,(2)] p(z + u) i.e.p(z) defines a metric on L(H,ax). We
calculate the curvature.

dp = —n‘( 5 hijzjdzi>go
1< n
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&' = —n( 5 hijzidzj)go

1<4,7<n

dd'p = —d'p A n'( 5 hijzidzj)

1<, j<n

— QT z: h@ﬂizi/\ de

1<i,7<n
@ — ¢~2(__50d/d//$0 + d/¢ /\ d//so)
=T 2: h@jdzi A\ de

1<i,j<n

where H = (h;)).

PrRoOPOSITION (1.10) Let E be a vector bundle. If E is positive (resp.
non-negative), then so is any quotient bundle F of E.

Proof. We prove the dual assertion. Let E be negative (resp. non-
positive) and F be a sub-vector bundle, then F is negative (resp. non-
positive) by considering the induced metric. For the details see Griffiths
[4] p. 197.

PROPOSITION (1.11) Let E and F be vector bundles

(i) E>0and F>01if and only if E@QF > 0

(i)Y FE and F are positive in the sense of Nakano if and only if
E @ F s positive in the sense of Nakano.

() If E>0and F >0, then EQF > 0.

(i) If E is positive in the sense of Nakano and F is non-negative
in the sense of Nakano, then E Q@ F is positive in the sense of Nakano.

Proof. (i) is an easy consequence of Proposition (1.10) and the defini-
tions. The proof of (i)’ is similar.

Let hy and Ay be metrics on E and on F, respectively. The pairing

(E®QF) % (E@F)h—'"‘@-h—"—)cc?c:c

(a ® b, c ® d) h’E(a’, c)hF(b, d)

defines a metric on £ ® F. Calculation shows that the curvature of Zzgyr
is ;I + I, ® 5 where r (resp. s) is the rank of E (resp. F). (ii)
and (ii)’ follow from what we have shown (See Griffiths [4] p. 209).

DEFINITION (1.12) A vector bundle E is negative in the sense of
Grauert if there exists a relatively compact and strongly pseudoconvex

https://doi.org/10.1017/50027763000015919 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015919

VECTOR BUNDLES 103

neighbourhood of the zero-section of E. A vector bundle is positive in
the sense of Grauert if E is negative in the sense of Grauert.

A vector bundle E over V is said to be ample if, for any coherent
sheaf F' on V, we have

H(V,S"E)® F) = 0 for sufficiently large » and 7 > 0.

PROPOSITION (1.13). A wvector bundle E is ample if and only if the
tautological bundle is ample.

Proof. See Hartshorne [5] p. 69.

PROPOSITION (1.14). A wector bundle E is positive in the sense of
Grauert if and only if E is ample.

Proof. If E is positive in the sense of Grauert, then E is ample
by Grauert [3] p. 344 Hilfssatz 1.

If F is ample, then E is positive in the sense of Grauert by Hartshorne
[6] p. 72 Proposition (3.5).

We recall a well known

PROPOSITION (1.15) A line bundle is positive if and only if it is
ample.

PRrROPOSITION (1.16) A positive vector bundle E is ample.

Proof. We deduce the Proposition from Proposition (1.15) and from
the direct calculation of the curvature form of the metric on O,y (1)
induced by the metric on E (See Griffiths [4]).

Another proof. We shall show that E is negative in the sense of
Grauert. Consider the function ¢ on E defined as in Remark (1.3).
Then {QeE|p(Q) <1} is a relatively compact strongly pseudoconvex
neighbourhood of the zero-section. Hence EF is negative in the sense of
Grauert. It follows that E is ample by Proposition (1.14).

THEOREM (1.17) (Andreotti and Grauert [1], p. 257)

Let E be a vector bundle. If ©.( ) is non-degenerate at any point
P of V for any & + 0, then the number i of the megative eigen wvalues
of ©.( ) is independent of P and & if & + 0 and we have

H«V,S™E)) = 0 for sufficiently large m if i #+ q .
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Sketch of the proof. First, Andreotti and Grauert show that there
exists a filtration in HY(F, Op) such that the associated graded module
GHY(E, Oy) is isomorphic to @ HUV,S*(E)). Secondely, by Remark (1.3),

n20
considering the functions ¢ and e * with ¢ > 0, we deduce that E is

strongly (g + 1)-pseudoconvex and strongly (n 4+ r — ¢)-pseudoconcave.
HYE,Op) is finite dimensional if ¢ ##¢. Now the theorem follows from
what we have seen. For the details see Andreotti and Grauert [1].
(cf. Theorem (4.1.1), Theorem (4.2) and Theorem (4.3.1))

(1.18) Let ¢ = {p,} and ¢ = {,} be E-valued differential forms. We
define the inner product of ¢ and + by

mszgm%A@W

This defines a positive definite hermitian metric on the space of F-valued
differential forms. The adjoint operators of D and d” exist

Doyd, d’ 39

where 9, = 8¢, — %0, /\ x¢,, 0’ = —xd”’+ and ¢’ = —«d’x. Then, (D"D’
+ D'D")p, = 0,9,. We set 0 =D"9 + 9D”. An E-valued form ¢ is
called harmonic if ¢ = 0 or equivalently D"y = 0, 9p = 0.

H«V, 2?(E)) =~ {E-valued harmonic (p, q) forms} .

LEMMA (1.19) (Nakano). Let ¢ be an E-valued harmonic form. Then

VT

5 (40 N ¢, 0) > 0.

Proof.

~Y2Luo A g = =YL 0D + DD, g)

— \/2—1 (AD”D’QD,QD)
=—“;1«—WHy+w%w%@,

since Ad” — d’A = —+/—1& (See Weil [19]).
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- ‘/ —18D'p, ) + (d"AD'p, 9))
_ ~/ T18Dg, ) + (D' AD'g, )
= ‘/ L (—y=1 18'Dy, ) + (AD'g, 9))

_ V?((—«/?ia'pgo,@

= —3('Do, ¢)

= —1(D¢, Dg) < 0
q.e.d.

§2 Positive vector bundles over a compact Riemann surface

LEMMA (2.1) Let V be a manifold or an algebraic variety defined
over an algebraically closed field k. Let E, and E, be vector bundles on
V. Let E, be the extension of E, by K,;

0O—-KE—-E,—-FE,—0

determined by an element & ¢ H(V,Hom (E,, E\)). Then E, ~ E,, for any
0+ 2ek.

Proof. Consider the commutative diagram

0O—-E —>E, -FE,—0

]

0-E, —~E,—>E -0

id

where the vertical arrow on the left is the multiplication by 2.

LEMMA (2.2) Let V be a non-singular projective algebraic variety
defined over C. Let E, and E, be vector bundles on V. If E, and FE,
are positive in the sense of Nakano, then an extension of K, by E, is
positive in the sense of Nakano.

Proof. Let E be defined by v ¢ H(V,Hom (F,, E))). Take a sufficiently
fine open’ covering {U,} of V so that the extension F, is given by patch-
ing E,,,®E,y. and E,;,Q Eyy, on U, N U, by ({) ?ﬁ“) where a,, ¢
rw,n U,a’ Hom (,, E))) and (x,, ¥,) € El]UaG‘) Ez]U,, and (xp’ yp) € EllUﬂ @ Ez]Up
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are identified if (x, + @Y. ¥o) = (%5, ¥,). Then the extension E,, is de-
fined by replacing ({) ?”") by ({) 2?‘“). Since an extension is differen-

tiably trivial, there exists a C* homomorphism b,: K, — E,;, for each
« such that a,,=b,— b, on U, N U,;

(I 2a,;,,>
Elan®E2|Ua ¢! .EllUﬁGDE?IUﬂ
G 7 167

Brio, ® By, —— B, ® By

Let hy, and Ay, be hermitian metrics on E, and E, such that their
curvature forms,
2. hp, 20y &R0 80P

1<p,r0 <7
1<i,j<n

and

P B (p,8) £(a, 1)
Z h/Eg r@Eg aij 2 ? 52 ’
1<p,7,0<s

1<4,j<n

are positive definite. We set

[ t(I —zba>(h1a 0)(1 —Zb,,) .
0 I 0 A,/\0 1
{hg,. defines a hermitian metric on E,,. If we set H(% =
St kg, O, ti; E@P ECD, then Hy( ) is a hermitian form at each point
Pof V. We fix a point P. Then there exists a number ¢, > 0 and an
open neighbourhood U, of P such that H, is positive definite at any
point Qe U, if || < ¢,, since H, is positive definite at P. Since V is
compact, there exists a number ¢ > 0 such that H, is positive definite
at any point if || < ¢. Now the lemma follows from lemma (2.1).

LEMMA (2.3) Let V be a non-singular projective algebraic variety
defined over C. Let E be a vector bundle of rank r on V. Let {U,} be
an open covering of V such that E,y, is trivial. Assume that the transition
matrices g,, can be written in the form ¢,,= fs, U,, where f;, is a
scalar function and U,, s o unitary matric on U, N U, If det& is
positive, then E is positive in the sense of Nakano. In particulor E is
positive and ample.
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Proof. Let{h,} be a hermitian metric on det £ such that its curvature
form is positive definite. From the definition [detg,.[h, =k, on
U, NU; ie. |fouf"-he=h,. Hence |fs['hY" = hY". Consider the matrix
RYI,. This is a positive definite hermitian metric on E|U,. On the
other hand, we have

Lgpahyrlrgﬂa = f—ﬂa' tl_]ﬂa' hyrlr 'f,s« : Uﬂa
= 'fpa'zh}x/r lUﬂaUﬂa
= eI,
= nyl, .

Hence {rY"I,} defines a hermitian metric on E. Let @ be the curvature
form of {r,}. Then the curvature form of {rY"I,} is given by (1/7)6I,.
Hence E is positive in the sense of Nakano. q.e.d.

(2.4) We need some results of Narasimhan and Seshadri [11].

Let S be a compact Riemann surface of genus g = 2. Let = be a
discrete group acting effectively, properly and holomorphically on the
unit disc T such that T /= ~ S and such that the projection P: T — S
is unramified except at only one point x, and ramified with order » at
%,. Such a group = always exists. Let p:z— GL(n; C) be a represen-
tation. Then x operates on the trivial bundle T' X C"® by (¥, v) = (¥, o(»)v),
yeT,veC" rer. We denote by E. (o) this vector bundle carrying the
action of . We denote by P5(E(p)) the subsheaf of P, (E(p)) consisting
of elements invariant under the action of z. Then P3(E(p)) is a vector
bundle of rank n on S. We call E (p) the z-bundle associated to p. The
vector bundle P (E(p) is called the vector bundle arising from the re-
presentation p of .

Let y,e p~'(x,) and z,, be the isotropy group of = at y,. Let z be
a coordinate system around y, such that the action of =, is multiplication
by {* where ¢ is a primitive n'* root of unity. Let y, be the generator
of r,, corresponding to multiplication by {. Let ¢ be a character of =,,.
If z(y,) = ¢,0 < s <m, then the integer s is independent of s and =z.
The integer s is called the associated integer to .

A homomorphism p:z — U(n,C) is a representation of type z, by
definition, if for every yenr,, we have p(y) = «()1,.

A vector bundle E of rank » over a compact Riemann surface is
said to be stable if
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degree K < degree F'
rank K rank F'

for any quotient bundle F of E.

THEOREM (2.4.1) (Narasimhan and Seshadri [11]) A wvector bundle
F of rank n and degree —n < q < 0 over a compact Riemann surface
of genus > 2 is stable if and only if F is isomorphic to Pi(E(p)) where
o 18 an irreducible unitary representation of type t and the associated
integer to t is q.

COROLLARY (2.4.2). Let E be a stable vector bundle of rank r over
a compact Riemann surface R of genus > 2, then there exists an open
covering {U,} of R such that Ky, is trivial for each « and such that the
transition matrices can be written in the form;

Scalar function X unitary matrix.

Proof of the Corollary. If the transition matrices are of the desired
form, so are the transition matrices of £ ® L for any line bundle L on
R. Hence we may assume —n < deg F < 0. In this case the corollary
is an easy consequence of the Theorem and Narasimhan and Seshadri
[11] Remark 6.2. p. 550.

LEMMA (2.5) A stable bundle of positive degree over a compact
Riemann surface of genus > 2 is positive in the sense of Nakano.

Proof. The Lemma is an easy consequence of Lemma (2.2) and
Corollary (2.4.2).

THEOREM (2.6) Let R be a compact Riemann surface of genus g.
Let E be a vector bundle of rank r over R. Then the following are
equivalent.

(i) FE 1is positive in the sense of Nakano.

(ii) FE s positive.

(iil) FE is ample.

(iv) The degree of every quotient bundle of E (including E itself)
s positive.

Proof. The equivalence of (i) and (ii) follows from Lemma- (1.5).
(ii) = (iii) follows from Proposition (1.16). Since any quotient bundle
of an ample vector bundle is ample, (iii) = (iv). Hence it is sufficient
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to show that (iv) = (i). Let E be a vector bundle on R such that the
degree of any quotient bundle is positive. If g = 0, F is the direct sum
of line bundles. Hence the assertion follows from Proposition (1.11).
If g =1. The assertion was proved in Umemura [18]. We may assume
g > 2. We proceed by induction on the rank r of E.

If » =1, the assertion (iv) = (i) follows from Proposition (1.15) and
the Riemann-Roch theorem.

Now we assume that the assertion (iv) = (i) is proved for rank
strictly less than ». Suppose that E contains a subbundle E, which is
positive in the sense of Nakano:

0O—-E —-FEF—>E,—-0.

E, is positive by the inductive hypothesis since every quotient bundle of
FE, has positive degree. Hence by Lemma (2.2), E is positive in the
sense of Nakano. If E does not contain a subbundle which is positive
in the sense of Nakano, then E is stable. In fact, let F be a subbundle
of . We prove that the degree F' is < 0. We use induction on the
rank s of F. If s =1, then the degree F < 0 since otherwise F would
be positive in the sense of Nakano. Now we suppose that the degree
of a subbundle is < 0 if its rank is less than s. Let F be a subbundle
of rank s. By the inductive hypothesis every subbundle of F' has degree
< 0. Hence if the degree of F' were positive, every quotient bundle of
F would be positive. By the inductive hypothesis F' would be positive
in the sense of Nakano. Hence we may assume E to be stable. Since
the degree of E is positive, E is positive in the sense of Nakano by
Lemma (3.5).

Remark (2.7). Hartshorne proved the equivalence of (iii) and (iv)
(cf. Hartshorne [6]).

§ 3. Some positive vector bundles of rank 2 over an algebraic surface.™

(3.1) We recall the results of Takemoto [14] and [15]. Let S be a non-
singular projective surface defined over C. Let E be a vector bundle
of rank 2 over S. Let H be an ample line bundle over S.

DEFINITION (3.1.1) E is said to be H-stable (resp. H-semi-stable) if
for any successive blowing ups n:S"— S and for any sub line bundle F
of #*E, we have

® See [20].
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(det E,H)/2 > (F,=*H)
(resp. >)

where (, ) denotes the intersection number.

PROPOSITION (3.1.2) An H-stable bundle is simple i.e. H'(S, End (E))
=C.

THEOREM (3.1.3) The set of all H-stable vector bundles of rank 2
with fixed numerical Chern class is bounded i.e. there exists a scheme
T of finite type over C and a vector bundle E on T X S such that, for
any H-stable vector bundle F of rank 2 with the fixed numerical Chern
class, there exists a closed point te T with F ~ E|;,5.

THEOREM (3.1.4) Let H,,H, be ample line bundles on S. Assume
that S is relatively minimal and NE) = 2 — 4¢, > 0 where c¢; is i-th
Chern class of E. Then E is H,-stable if and only if E is H,-stable.

Remark (3.1.5) If N(E) < 0, the H-stability depends on the choice
of an ample line bundle H. (See Takemoto [14]. See also Example (3.3)).
By the Riemann-Roch theorem, N(F) <0 on an abelian surface and
N(F) < —2 on P

PROPOSITION (3.1.6) Let G be a finite solvable group. Let G operate
on S holomorphically so that the projection n:S — S/G is unramified.
Let H be an ample line bundle on S/G. Let E be an H-semi-stable
bundle on S/G. Then n*E is =*H-semi-stable.

DEFINITION (3.1.7) A non-singular projective surface S is said to
be hyperelliptic if the first Betti number of S is 2 and if there exist an
elliptic curve 4 and a smooth morphism z:S — 4 such that every fibre
is an elliptic curve.

THEOREM (3.2) Let S be either an abelian variety of dimension 2,
a geometrically ruled surface or a hyperelliptic surface. Let E be a
vector bundle of rank 2 over S. Let H be an ample line bundle on S.
If K is H-stable with N(E) >0 and ¢, > 0, then E is positive in the
sense of Nakano.

Proof. Case I. S =A is an abelian variety. In this case, we
prove a slightly more general assertion: If E is H-semi-stable with
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N(E) > 0, and ¢, > 0, then E is positive in the sense of Nakano. If F
is simple, then by Oda [12], there exists an isogeny p: A’ — A of degree
2 and a line bundle L on A’ such that p,L ~ E. We have p*p,L ~

@ TiL by Oda [12] where T, denotes translation by z. Since p is

xEKer p

finite and det p, L is ample by the Nakai criterion and the hypothesis,
det (p*p,L) is ample. Since L and T*L are numerically equivalent,
det (p*p,L) is numerically equivalent to L®2. It follows that L®? is ample
by the Nakai criterion hence L is ample or equivalently positive in the
sense of Nakano. The direct image p,L is positive in the sense of
Nakano.

If F is not simple, then, by Proposition (5.2), Takemoto [14],* E is
written in the form E' ® M where E’ is an extension:

0-0—-E —-0-0
and M a line bundle on A. Hence

oB) =1+ MdHA + MY
=14+ M®%t + (Mt .

From our hypothesis M®? is positive, hence ample by the Nakai
criterion. It follows that M is ample. Since M is a line bundle, M is
positive in the sense of Nakano by Proposition (1.15). By Lemma (2.2)
the extension 0 - M — E' ® M — M — 0 is positive in the sense of Nakano.

Case II. Geometrically ruled surfaces. Let p:S = P(V)—C be
a geometrically ruled surface over a curve C of genus g. We know
from the hypothesis and Takemoto [14] that there exist a stable vector
bundle F of rank 2 over C and a line bundle L on P(V) such that
E ~ L® p*F.

If g =0, we have nothing to prove, since there is no stable bundle
of rank 2 on C.

If g = 1, there exist an isogeny n: (C’— C of elliptic curves and a
line bundle I/ on C’ such that =, L’ = F by Oda [12]. Consider the
diagram:

W =P(V) x ¢ > P(V),
(4}

lz‘) lp

¢ T C.

® See (Added in proof) p. 127.
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Since r is affine, we have p*F ~ z,p*L’. Hence 7, (p*L' @ z*L) ~ E.
Let N be the kernel of . Then W is a Galois covering of P(V) with
Galois group N. By Takemoto [15], we have #*E ~ P T} @P*L' ® a*L)

gEN
where T, denotes the operation of g on W. As in case I, we know

det P*L' @ z*L @ T}(®*L' ® #*L)) is ample with e = ge N. On the other
hand, T}(®*L' ® z*L) ~ T¥(®*L) ® TF@*L) = p*(T}L) ® z*L. Since TFL’
and L’ are numerically equivalent, we proved that det p*L’ ® 7*L @
T¥@*L' ® z*L)) is numerically equivalent to (P*L’' ® z*L)®%. Hence
p*L’ ® #*L is ample by the Nakai criterion and the direct image
7.(0*L’ @ a*L) = E is positive in the sense of Nakano.

If g > 2, then by Corollary (2.4.2) the transition matrices of F can
be written in the form:

Scalar function X unitary matrix.

Hence z*F and #*F @ L have the same property. By Lemma (2.3),
the Theorem is proved for geometrically ruled surfaces.

Case III. Hyperelliptic surface. In this case, there exists an abelian
variety A and a finite abelian group G such that G operates on 4,4/G
is isomorphic to S and the projection z: A/G — S is unramified. By
Proposition (8.1.6), z*E is n*H-semi-stable with N(xz*E) = 0. By what
we have proved in case I, z*E is positive in the sense of Nakano.
Hence r,*E is positive in the sense of Nakano. Since E is a direct
summand of z,z*E,E is positive in the sense of Nakano by Proposition
1.11). q.e.d.

EXAMPLE (38.3) Let E|, E, be elliptic curves. Let M, be a line bundle
of degree 1 on K;,1=1,2. We put A =F, X F, and pfM; = M, for
1= 1,2 where p; is the projection p,: A =FE, X E,— E,. We set L, =
ME™ @ MP™, L, = M¥™= Q@ M¥™. We define a vector bundle E of rank 2
by the exact sequence

0O—-L —-E-—-L,—-0.
Then

CI(E) — M(lg(n1+m1) ® M<2®(’nz+mz)
c(E) = nm, + nym, .

If n, — m, and n, — m, are coprime, n, > m,,n, < m, and if we take a
non-trivial extension, then, by Takemoto [14] p. 41, E is H-stable for a
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certain ample line bundle H on A. But there exists an ample line
bundle H’ such that E is not H’-stable. In fact we have ¢ — 4¢, < 0.
It is easy to see that ¢, > 0,¢, > 0,¢2 — ¢, > 0 if and only if #n, + m,
>0,n, + m, >0, n;m, + nm,>0,2nn, + nm, + mmn, + 2m;m, > 0. Hence
if we take n, = 1000, n, = 0, m, = —1,m, = 1, then F is H-stable with
¢ > 0,6,>0,62~¢,>0 and ¢ — 4¢, < 0. Since L, is not ample, F is
not ample. (see Remark (3.1.5)).

Remark (3.4) Theorem (3.2) is an analogue of Lemma (2.5). It is
natural to ask:

PROBLEM (3.4.1) Let S be a non-singular projective surface defined
over C. Let H be an ample line bundle. Let E be a vector bundle of
rank 2 on S. Assume that E is H-stable with N(F) = ¢ — 4¢, > 0,
¢, > 0,¢,>0. Then is £ ample ?

(3.4.2) The answer may be negative in characteristic p > 0, because in
characteristic p > 0, there exists a curve C of genus g > 2 such that
there exists a stable bundle of positive degree on C which is not ample
(cf. Hartshorne [6]).

§4. Vanishing theorems
(4.1) The following theorem is well known. We prove it by our own
methods.

THEOREM (4.1.1) Let A be an abelian variety of dimension n defin-
ed over C. Let L = L(H,x) be a non-degenerate line bundle over A.
Then,

HY(A,L) =0 if 1 # #{negative eigen values of H} .

Proof. Let r be the number of negative eigen values of H. We
choose a coordinate system (z,---,2,) of the universal covering space
C™ of A so that H is written in the following form:

—1I, 0
o 1 7.
n—1r+1 .

We use the metric ¢(z) defined in Example (1.9). Then the curvature
form @ is given by
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0= —n(dz, Ndz, + --- + dz, N\ dZ,)

n_r+1(dzr+1/\dzr+1+ +dzn/\d2n).

We define a kiihler metric on C" hence on A by w = +/—1/2 37 dz; A dz,.
Now the theory of harmonic integrals (1.18) is applied.

LEMMA (4.1.2) If ¢ = @dz;, N\ -+ N d2;, is a (0, q)-form with coe-
fficients in L, then

V=1 n
- A0 A 0, 0) > (r— ~_—__) ,
5 ( P, =7 q 1 (@, 0) .
Proof of the lemma. We compare integrands. We may assume that
¢ = dZ, N\ --- N\ dZ; since the question is local.
1

—~O N o= n((olz1 ANdz, + o + dz, N\ dZ,) — I (241 N AZpyy

. +dzn/\d2n)>/\d2¢1/\--- A dz,, .

We use the following notation:

I={in i, N={, -0}, o,=dzAdz.
—~OANp=r X Az, A AdE, Ao,

LEN—{r¥1,+e,n}—1I

7r ~ —
T 3 dl IO dl .
n-—r —l— 1£€N—(§.,1)~I zl /\ /\ zq /\ @y

Hence

‘/1A@/\¢—n > da, A Adz,

LeN~ {1,007}~ 1

T — .
—_ Z dzh/\ A /\dziq.
n—r 4+ 1ev-p53,- n)-1

The lemma follows from the inequality

BN —(r+ 1, ) — I} — 1+—T><#{N 1, =1
Z{n“(n*—r)“‘Q}—‘Fi“ﬁ:T—Q*—ﬁ%.

q.e.d.

Let ¢ be a harmonic form of type (0,q) with coefficients in L. Let
¢ = 2. ror where I = {i;, -+ ,4,} C N and ¢; = ¥;dZ;, N\ --- N\ dZ;, and the
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summation is taken for all such I’s.

2

—1
«/ (/1@ A\ ZSDDZQDI)
2 T T
since (dz; N\ -+ AdZ) N*(dz;; \ -+ NdZ;) =0
lf {il"“,iq}i{jl”";jq})

=3 ‘/;1 U6 A op 1)

(40 N ¢,9) by Lemma (1.19)

by lemma (4.1.2)
> ((y g _ﬂzi_%, 50,)

n—r+1
n—r
el r — _— N
ﬂ(21< a n—r—{—l)% 2;'501)
n—r
= r — —_—— , .
n( 1 n—r-}—l)(sosp)

Hence if r —¢q— -1/ —r+ 1) >0 ie. r>gq, we have HY(A,E)
= 0. The line bundle I, dual to L(H,®) is given by L(—H,a™ ") (cf.
Mumford [9]). Hence by Serre duality we have H%(A,L) = 0 for q > .
This completes the proof of the theorem. q.e.d.

THEOREM (4.2)% Let V be a projective non-singular variety defined
over C. Let L be a line bundle on V such that L®™ is generated by
global sections for large m. Let ¢:V — W C P¥ be a morphism defined
by L®™, If dim W = q, then H(V,L) =0 for 1 < q — 1.

Proof. Let H be a hyperplane section of P¥. Then, L®" = ¢*H.
Let &' be a metric on H. Then & = h'o¢p is a metric on L®™. The
curvature form @, of 4 is, by an easy calculation, given by

@h - J@h/ ‘j

where J is the Jacobian of ¢ and 6, is the curvature form of #'.
Hence hY* defines a metric on L and its curvature form is 1/£0,. Let
6 be the curvature form of L-'. We fix a kihler metric » on V. From
what we have seen, at a point Q@ ¢ V, we may assume that

*® This result is independently proved by C. P. Ramanujam: Remarks on the
Kodaira vanishing theorem, Jour. of the Indian Math. Soc. 36 (1972) p. 41-51.
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6@ = ~4 . w@=1,.

0 0
and that there exists a point @ such that 1, > 0,1 < i < q. i.e. a point
where J attains its maximal rank ¢. Let ¢ be a non-zero harmonic
(0, p)-form with coefficients in L='. Then ¢ is non-zero on a dense open
setin V. Asin the proof of Lemma (4.1.2), the integrand of —(A40 A ¢, ¢)
is non-negative at any point @ and there exists a point @ where the
integrand is positive if » <¢. Hence if p < ¢, we have —v/ —1/2(40 A\ ¢, ¢)
> 0. On the other hand —+ —1/2(40 A ¢,¢) <0 by Lemma (1.19). This
is a contradiction. Hence when ¢ is non-zero, p > gq. q.e.d.

(4.8) Let V be a non-singular projective variety of dimension » defined
over C. Let E be a vector bundle of rank »r <n. Let s be a section
of E. s is said to be a regular section if S = {z¢ V|s(2) = 0} is non-
singular and of codimension ». Griffiths [4] proved the following
vanishing theorem.

THEOREM (4.3.1)* If E is positive, r = 2 and if E has a regular
section, then HY(V,E) =0 for i <mn — 2.

His proof depends on the generalized Lefschetz theorem and the
Hodge decomposition. In fact he compared the cohomology group of V and
S with coefficients in Z by using Morse theory. But to obtain the vanish-
ing theorem, we need only the generalized Lefschetz theorem with coe-
flicients in C. We remark here that the generalized Lefschetz theorem
with coefficients in C is proved by a standard technique using cohomological
dimension and de Rham cohomology.

LEMMA (4.3.2) Let V be a non-singular projective variety of dimen-
ston n defined over C. Let E be o vector bundle of rank r < n. Let S
be a zero locus of a regular section s. If E is positive, then V — S 18
r-complete. In particular aned (V — S) < r — 1 where aned (V — S) de-
notes the analytic cohomogical dimension of V — S (¢f. Umemura [16]).

* The author learned that a more general result is obtained by J. Le Potier:
Théoréme d’annulation en cohomologie, C. R. Acad. Sc. Paris, t.276 (12 février 1973)
Serie A 535.
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Proof. Let h be a metric on E. Consider the function ¢(z) =
is(x)h(z)s(z) on V — S. Since o) >0 on V-8, we can put ¢() =
— log (). We shall calculate the Levi form of y(z) at a fixed point O
in V"— 8. We may assume that 2(0) = I, d’h(O) = 0, hence we have
0(0) = —d'd’n(0). Then, by a direct calculation,

(ot )o = [0+ S (s 2 (G) - o5 2l

It is sufficient to show that the Levi form [(@*))/(92:0%,)], is positive de-
finite on an n — r + 1 dimensional subspace. Since >, <, (1/¢p) ‘580,577
is positive definite, it suffices to show that the forminy = (', ---,p)eC"

_ 08 0's _( 0's 0s .
4.3.3 [(‘s——)( s) — lss(——~ ——)] 7
( ) 1S§Sn azz azj az_f azi 07) 7

vanishes on an n — r 4+ 1 dimensional subspace. Let s = !(s!,s? -..,s").
Consider the equation

(9s* st 9s') ra ol
0z, 072 0z,
0s’ :
azl 2 vz == 2
asr --------- as’r n r
| 02, 02, Jo 7" 5" Jo

for some 1¢C.

Then the dimension of the vector space W = {ne C*[(3s%/0z,)0 1 =
2-8(0) for some 2eC}>n—1r + 1. We show (4.3.3) vanishes on W. In
fact we have >, ;.. (‘5:(05/92,))0((3°9)/(95,) - 8)on'! = |2 (*3(0)s(0))* and
2z, i<n (18(0)s(0)((0°5/(07,) [ (9s /0277 = |4[(*s(0)s(0))*.  Hence (4.3.3) =

0on W.

The last assertion of the lemma follows from Andreotti and Grauert
[1]. g.e.d.

THEOREM (4.3.4) Using the notation of lemma (4.3.2), the homo-
morphism

HY(V,C) — H¥S, C) is bijective for ¢ <n — r — 1 and injective for
t=mn—"1.

Proof. Consider the spectral sequence of de Rham cohomology :
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77 = H(V — 8,2°) = Hf,(V — 8S) = H¥(V — §,0) .
Since aned (V — S) < r — 1, we have:
I"=0 ifqg>r or p>n+1.

Hence H(V — S,C) =0 for ¢ > n + r and consequently H¥V,S;C) =0
for j <m —r. The theorem follows from the exact sequence of co-
homology

— H7(S,C) - H/(V,S; C) - HI(V,C) - HI(S,C) - H*(V,8;C) — .

Proof of Theorem (4.3.1). The following argument is due to Griffiths
[4]. Let I be the ideal sheaf of S:
OHI—)OV——)OS‘-)O .

We have the commutative diagram

T T

HYV,Oy) —> H*S, Oy)
0 0 )
since the Hodge decomposition is functional.

By the Theorem (4.3.4), we have H(V,I) =0 for 1 <n—7r. From now
on we suppose that the rank » of E is equal to 2. Since s is regular,
we can construct an exact Koszul complex by using s;

0> MK >E—>I—-0
By Kodaira vanishing theorem or Theorem (4.2), H¥V, AE) =0 for
i<mn—1 Hence H(V,E)=0 for i <mn — 7. q.e.d.

§5. #(E) and H(E)

(5.1) Let H be a finite abelian group. Let k& be an algebraically closed
field of characteristic p. We consider a central extension,

0-k*>G—-H-—>O0.

Let z,y be elements of H. We put e(x,y) = 2%y where %,5c G
lie over z,y. e(x,y) is an element of £* and is independ of the choice
of # and . Then e(x,y) is a skew-symmetric bilinear pairing from H
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to k*. A subgroup K of G is said to be a level subgroup if K N k* =
{0} i.e. K is isomorphic to its image in H. Let K be a subgroup of
H such that the pairing e(x,y) is trivial on K, then there exists a level
subgroup K lying over K. In fact in this case the extension is com-
mutative over K and in the category of commutative group schemes
over k, an extension of a finite group by k* is trivial. If the pairing
is degenerate, there exists a subgroup K such that the pairing e is
trivial on K and such that |K]? > |H|. Hence there exists a level sub-
group K of order > |HJA

LEMMA (5.1.1) Let H be o finite abelian group. Let 0— k* — G

2> H -0 be a central extension of H. If G has a representation of
degree 1 on which k* operates as the noatural character, then G is iso-
morphic to k* x H.

Proof. Let V be a representation of G of degree 1 on which k*
operates as the natural character. We denote by U, the operation of
zeG on V. Let K be maximal level subgroup. Then there exists a
character y,c Hom (K , k*) such that U,-s = y(x)-s for any =z ¢ K and
any seV. Let yeG. Setting 'y 'zy = y¥(x), z ¢ K, y¥(x) is an element
of k*. yV:K — k* is a character. If z(y) ¢ n(K), then y¥ is not trivial
since K is maximal. It is sufficient to show that z(K) = H. Hence we
have to show that y¥ is trivial for any ye G. In fact, if « ¢ K, we have

w@U,-s=U,U,s
=U,,-s
= Upya's
=" @U,U,-s
= Xy(x)Uy'Xo(x)‘S
= ¥ (@X)p(@)U, s
Hence () = y*(x)y(x) and x¥(x) = 1. »¥ is trivial. q.e.d.

(5.2) Let A be an abelian variety of dimension ¢ defined over an
algebraically closed field k& of characteristic p. Let E be a vector bundle
on A. We put
HE)={acA|E = T}E where T,:A— A4}
T+ 0
Y(E) = {(a,p)|ac HE) and ¢:E = TiE}.
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Let (a,¢), (b,y) e ¥(F). Consider the composition T}y op: E — TFE

DY prrsE — T5,B. If we define (b,4)o(a,¢) = (@ + b, THpog), then

Z(E) is a group. We have an exact suquence
1> Autl - 2F)—-> HE)—O.

Let = (a,9) e %(E). Then U,: H(A,E) — H(A,E) defined by U,s =
T*,(p(s)) is a representation of %(X).

(5.2.1) If F =L is of rank 1 and ample, the structure of #(L) is well
known and #(L) plays a very important role in the algebraic theory of
theta functions. We recall some basic properties of @(L) (For the details
see Mumford [7]). From now on, for simplicity we assume that ch k =
p is zero. However all the results hold in positive characteristic if we
avoid inseparable isogenies.

H(L) is a finite subgroup of A. Since Aut L =~ k*, we have the
exact sequence studied in (5.1) and (5.1.1):

0—-k*>9(L)— HL)—0

By the Riemann-Roch theorem, there exists an integer d such that
dim HY(X,L®") = d-n? for all n > 1. Let A be the dual of A. We de-
fine A(L): A — A by sending x to T*L ® L. Then we have

d? = |y(L)|} = degree A(L) = |H(L)| .

Given a level subgroup K C %(L), L descends to A/K i.e. there exists
an invertible sheaf L’ on A/K such that p*L’ ~ L where p is the pro-
jection p: A — A/K. Conversely let K be a finite subgroup of A4, the
descent data associated to L is given by a level subgroup lying over K.

PROPOSITION (5.2.2) There exist o subgroup K of H(L) and an in-
vertible sheaf L' on A/K such that y(L') =|H(L)| =1 and p*L' =~ L
where p is the projection A — A /K.

THEOREM (5.2.3) HYA, L) is the unique irreducible representation of
@Z(L) in which k* operates by its natural character.

What is ¢(E) for a vector bundle £ on A?

(5.2.4) Assume A is of dimension 1, an elliptic curve. Let E be an
ample irreducible vector bundle of rank 7 and of degree d, in Atiyah’s
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notation, F ¢ E(r,d). First we assume 7,d are coprime. Then E is
stable and in particular, simple: H°(4, End (F)) ~ k. Hence we get the
exact -sequence 0 — k* — ¥(F) —» H(E) — 0 and a level subgroup of %(E)
corresponds to a descent data for E. By Oda [12], there exists an iso-
geny p: A’ — A of degree r and an ample line bundle L of degree d on
A’ such that E is isomorphic to the direct image p,L and the inter-
section of Kerp and Ker A(L) is just 0. Moreover, d = dim H%(A4,FE) =
dim H°(A’, L). Since the intersection of H(L) and Kerp is 0, a non-
trivial translation by an element of H(L) induces a non-zero element of
H(E). Hence H(L) is a subgroup of H(E). We have |H(L)| = d?, hence
|H(E)| > d?®. 'There exists a level subgroup of order > d. If we had
|H(E)| > d?, then there would exists a level subgroup of order d’ > d.
Hence there would be an isogeny ¢: A — A” of degree d’ and a vector
bundle E” on A” such that p*E’ ~ E. But we have d = y(A, E) = d'y(4’, E).
This is a contradiction. Hence H(E) = H(L) and #%(F) is nothing but
%(L) and the unique representation of #(F) is given by H%A,E). There
exists an isogeny +: A — B and a vector bundle E” on B such that
x(E") =1 and F is isomorphic to the inverse image *E".

(5.2.4.1) In other words the theory of %(&) for a stable bundle over an
elliptic curve is absorbed in the theory of the usual Heisenberg group
and its representation.

If ,d are not coprime, then H(E) is too small it is not useful to
consider #(E). Say r = d = 2. Then by Atiyah [2], F is isomorphic to
F,® L where L is a line bundle of degree 1 and F, is the non-trivial
extension uniquely determined up to isomorphism by the exact sequence
0-0—F,—-0—0 with I'(A,F,) +# 0. F, is homogeneous :F,~ T*F,
for any ac¢ A. Hence if x ¢ H(E), we have F; Q L~ E ~ T¥(F,Q L) =~
T*F,QT*L ~ F,Q T*L. 1t follows that L —~ T#L. In fact consider the
diagram

0—s L SF,QL - L —>0

il

", .
0—> T*L —> F,® T*L —> T*L — 0 .

If L and T}L were not isomorphie, then the composite 7,0 o4, : L — T*L
would be trivial since HY(L'® T*L) = 0. Hence ¢ot¢, would factor
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through T¥L. And ¢o4, would be injective. But this is impossible since
H(L* @ T*L) = 0.

We proved that H(E) = H(L). On the other hand by (5.2.1), we
have |[HL) =1*=1. HYA,E) is two dimensional. Hence H(F) is too
small.

This shows that the group %(E) does not give sufficient information
concerning E for a general vector bundle E. We have to restrict our-
selves to a certain appropriate family of vector bundles. Over an elliptic
curve, as we have seen above, the family of stable vector bundles is
nice. So it is natural to ask if the group ¢ (E) has good properties for
H-stable bundles over an abelian surface. Unfortunately, the answer is
no.

EXAMPLE (5.2.5) Let A be an abelian surface. Let E be an ample
vector bundle of rank 2 over A. Let H be an ample line bundle on A.
We assume that E is H-stable.

(5.2.5.1) In the case ¢ — 4¢, > 0 (This automatically is = 0), since F
is simple, there exist an isogeny A’ %5 Aandan ample line bundle L on
A’ such that F is isomorphic to the direct image n,L. By the same
argument as in (5.2.4), we conclude that %(F) is nothing but the
Heisenberg group %(L), H'(A, E) is the unique representation of #(E) and
that E descends to E’ with y(E’) = 1. %(E) is considered to be reasonable.

EXAMPLE (5.2.6) We use the notation of Example (3.3). We sub-
stitute n, =n,=0,m, =1, m, = —1 and we consider a non-trivial extension:

0-0—-F—->M®®M;*—0. Then E is H-stable for a certain ample
line bundle H. Let L = M, ® M,. Let q be a prime number. Tensor-
ing L®" with the exact sequence above, we get an exact sequence

0 — L8  F @ Lo — YPu™+D @ M@~ 0 .

If »>2, then EF®L®" is ample and dim H'(E Q L®") = ¢** +
(" + D" = 1) = 2-¢" — L.
Let x e HE ® L®?) ie. E® L®" ~ THE ® L®™"),

0—> Lo % B QLo My MR © Y- 5 0

‘A
i ‘”lz

0 —> T*L®" iz, T*(E @ L®") 2, TH(ME@+» Q@ M-V — 5 ()
Since the index of L® " Q TH(MP D Q MP@-Y) is 1, we have
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HY(L® " Q@ TH(MP+0 @ M —9)) =0. It follows that z,0¢p04, = 0. Hence
pot, factors through T#L®". For the same reason, ¢~' o4, factors through
T*L%?". Hence ¢ induces isomorphisms L®" 5 T¥L®" and MP"+Y Q M-
= THMPe+» @ M9 ), This proves x € H(L®™) N HMP@+D Q MPa"-)
and so H(E ® L®"™) C H(L®™) N HM®"+ Q@ MP9"-V). On the other hand,

[H(L®q")| — hO(L®q")2 — q4n

[H(M@@ b @ MU V)| = h(MP@ D @ MPa D)2 = (g — 1),
Hence |(H(L®)| and |[HMP+> @ MP"-Y)| are coprime and consequently
H(LP™) N HMP e+ @ MP“") = {0} .

We proved HY(A,E ® L®") =2.¢"* — 1 and HE ® L) = {0} for =
> 2. %(F) is too small in this case.

Remark (5.2.7) In the example above c¢i(F ® L®") — ¢(F ® L®") <0
and the stability of F depends on the choice of an ample line bundle.
Again, by the conclusion that we have deduced above, the notion of an
H-stable vector bundle with ¢ — 4¢, < 0 is not very agreeable (See Ex-
ample (3.3))

Remark (5.2.8). Let A be an abelian surface. Let E be a vector
bundle of rank 2 on A. The following are equivalent.

(1) E is H-stable for any ample line bundle H on A and ¢ — 4c,
(2) E is H-stable for an ample line bundle H on A and ¢ — 4c,

(3) F is simple and ¢ — 4¢, =0

(4) There exist an isogeny zn:A’— A of abelian surfaces and an
ample line bundle L’ on A’ such that Ker A(L/) A Kerz = {0} and E is
isomorphic to the direct image =, L’.

(5) FE is simple. For any ample line bundle L on A and for suf-
ficiently large n, we have

0k >2EQLY ->HERL®™) -0
is a Heisenberg group: the pairing e(x,y) is non-degenerate and
|H(E ® L®)| = 1th(L®*" @ det E)? .

(6) FE is simple. The same assertion as in (5) holds for one ample
line bundle L and for infinitely many » > 0.
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Proof. The equivalence of (1), (2), (3) and (4) follows from Takemoto
[14] and Oda [13] if we note that an extension of O, by O, is not a
simple vector bundle.

We prove that (4) = (5). Let E be a simple vector bundle and let
H be an ample line bundle. By (4) F ® L®" is isomorphic to the direct
image of L'®@#*L®. LetxeKerr A\ Ker AL’ Qz*L®). Then L’ Qz*L&"
~ T¥(L/' @ r*L®") = T*L' ® T*zr*L®" = T*L' @ n*L®. Hence L' = T*L':
zeKerz A A(L). It follows that x = 0. As in (5.2.4), we get

|H(L/ ® =*L8")| < |H(E Q L8| .

By descent theory (cf. (5.2.4)), we conclude that H(L' ® »*L®") = H(E ® L®)
and |[H(E ® L®)| = hE @ L®)* if I/ ® L®" is ample. By the Riemann-
Roch theorem

h(E ® L®") = y(E ® L®") = {(E ® L®") — c(E ® L®™)
= $ci(E Q@ L®") — Li(E Q@ L®) = Lci(E ® L®)
= L(L®™" @ det E)* = 3h°(L®" @ det E) .

Since (6) is a special case of (5), (6) = (6) is trivial.

Now we show that (6) = (3). Let E be a simple vector bundle of
rank 2. We assume that (6) holds. Then there exist an integer n and
an ample line bundle H on A such that H(4,E ® L®") + 0, HY(A,E ® L®")
=0fori=1,20—-k*— 9FE QL®) - HFE Q L®) - 0 is a Heisenberg
group and |H(E @ L®")| = 1h'(L®*" @ det E)*. Since E ® L®" is simple,
by the Riemann-Roch theorem, we have ci(E Q@ L") — 4¢,(E ® L8 < 0.
Hence

(*) 1< h(EQL®) = $c(E QL% — c(E ® L®) < 1(E ® L8
— (" ® det E) .

Since 9(E @ L®") is a Heisenberg group and 2%E @ L®") is a representa-
tion of ¥(E ® L®") in which k* operates by its natural character, h%(E ®Q L")
is divisible by |H(E ® L®"[* = 1 (L®" @ det E). By inequality (¥), we
get W'(E @ L®") = 1h'(L®" @ det ). Hence ic(E ® L®") — c(E ® L®) =
LB Q LP): ¢i(E Q@ LP™) — 4c(E @ L) = 0. If follows that c¢i(E) — 4c,(E)
= 0. This completes the proof. q.e.d.

ExAMPLE (5.2.9) Let A be an abelian surface. Let L be a very
ample line bundle over A. Let ¢ = (¢, 0, 0)) € H'(A,L)®. We assume
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that ¢, ¢,, o3 do not vanish simultaneously. This we can define the vector
bundle E(p), frequently referred to as Kleiman’s example, by the exact
sequence

(**) 0—0— L% Ep) —0.
10 (o1, 020 00)
LEMMA (5.2.10) H%A,E(p) ® L) = 0.
Proof. 0— E(p) > L®»® —->0—-0.
0> E@QRL—>0% L0,
Hence we get
0 — HYA, E(p) ® L) — H (A, 0)® — HY(A, L) —
The map H(A, 0)® — H(L) which sends (1,0, 0) — ¢,, (0,1, 0) > ¢,, (0,0, 1)

~ ¢, is injective. Hence HY(A, E(p) ® L) = 0. Applying Serre duality,
we get the lemma. q.e.d.

LEMMA (5.2.11) E(p) is simple.

Proof. Tensoring E(p) with the exact sequence (**), we get the
exact sequence,

0 — E(p) ® E(p) — (E(p) ® L)® — E(p) - 0 .
The exact sequence of cohomology is:
H'(E(p)) — HYEnd (E(p)) — H E(p) ® L)®*

HY(E(p)) ~ H¥0,) is one dimensional and H*E(p) ® L) = 0 by Lemma
(5.2.10). Hence dim H*End (E(p))) < 1. By Serre duality, the lemma
is proven.

LEMMA (5.2.12) The vector bundles E(p) and E(o') are isomorphic
if and only if the vector space generated by ¢, ¢, s @S equal to the
vector space generated by ¢}, o5, @5 tn HY(A, L).

Proof. Assume that the vector space generated by ¢, ¢, ¢; = the
vector space generated by ¢f, i, 5. We have

Soi D1
o | =Bl o, | with Be GLG, k) .
§D§ D3

B defines an automorphism of L® which we denote by B. We note that
the following diagram is commutative:
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l—0

0— 00— L® —» FE({) —>0
[

0 (0] L®: > E(¢') —> 0
11— ¢

This proves the if part of the lemma.
Now we prove only if part. Suppose that E(p) and E(¢’) are iso-
morphic. Tensoring L with the exact sequense (**), we get the diagram:

0—>L—0%— ERL—0

llo‘

0 L o® EW@W)®L—0

where ¢ is an isomorphism. It is sufficient to show that ¢ can be lifted
to an automorphism of O%. Noting that H%L) = H'(L) =0, we get
the commutative diagram:

0.4 ® H'(0 ¥ ——— 0., ® H'(E(p) ® L)
\\ ‘ o
0,4 ® HYO gor——= , —0,® H(E() ® L)
0 > E(‘PK ® L\* )
0% E()® L

which induces an automorphism of O® making the diagram commutative.
This completes the proof. g.e.d.

Since (E(p)) has a representation H'(A,E) of degree 1, ¥(E(p) is
commutative by Lemma (5.1.1). We calculate ¥(E(p)) and its representa-
tion for a very special case. Let C,, C, be elliptic curves. Let A =
C, X C,. Let L; be an ample line bundle of degree divisible by 3 on C;,
i=1,2. Let L be the tensor product p*L, ® p}L, where p, denotes the
projection from C; X C, onto the i-th factor. Let K, be a maximal level
subgroup of %(L,). Then there exists an element +, ¢ H(C,, L, and an
element a of %(L,) of order 3 such that 4, is invariant under the opera-
tion of K, and +, v, = ay, and ; = a’, do not have a common zero.
We do the same thing with L, on C, and we get 1, ¥ = b, i = b,
beg(L) b*=1. We put ¢ = ¥, 0= Vb 05 = ¥vs¥s @ = (@1, @2 99)-
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Since the operations K, x K, and ab, a?h? leave the vector space generat-
ed by ¢, ¢, ¢ invariant, by Lemma (5.2.12) we have |[H(E(p))| > 3 X %L,
x h%L,) where K, is the maximal level subgroup chosen above. On the
other hand y(E) = 3 x AL, X h'(L,. Since %(E) is commutative, |H(EF)|
divides y(E) by descent theory. Hence |H(E)| =3 X k(L) X h(L,). It
follows that

HE) =Z/3Z® K, O K,
9B = k* ® HE) .

Consider the exact sequence of representations of %(E(p)):

0 H0) H(L)® —— H(FE(p)) —> HY(O) —> 0

trivial regular trivial
representation representation representation
of ZBZH K, D K, of degree 2

It follows that

H'(E(p)) = regular representation of Z/3Z® Ko K, ® trivial
representation of Z/3Z® K, ® K, of degree 1.

E(p) is L-stable.

ADDED IN PROOF

Since in Proposition (5.2) [14], the assumption that E is indecom-
posable is forgotten, our argument in p. 111 is incomplete. We have
to treat the case where E is a decomposable H-semi-stable bundle over
A with N(E) > 0. In this case E is isomorphic to L, ® L, where L; is
a line bundle algebraically equivalent to one another for ¢ = 1,2. Then
it follows easily that L, is ample. Hence F is positive in the sense of
Nakano.
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