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ON CONFORMALLY FLAT SPACES WITH COMMUTING
CURVATURE AND RICCI TRANSFORMATIONS

R. L. BISHOP AND S. I. GOLDBERG

Let (M, g) be a C” Riemannian manifold and 4 be the field of symmetric
endomorphisms corresponding to the Ricci tensor S; that is,

S(X, V) = g(4X, T).

We consider a condition weaker than the requirement that A be parallel
(V 4 = 0), namely, that the ‘“‘second exterior covariant derivative’’ vanish
(Vx Vyd — Vy Vxd — Vix,1d = 0), which by the classical interchange
formula reduces to the property

(P) R(X,Y)oAd =4A0RX,7),

where R(X, Y) is the curvature transformation determined by the vector
fields X and Y.
The property (P) is equivalent to
(@) R(AX,X) = 0.
To see this we observe first that a skew symmetric and a symmetric endo-

morphism commute if and only if their product is skew symmetric. Thus we
have

(P)y & R(Z, W)A is skew symmetric
SgREZ, W)AX, X) =0
SgRUAX, XH)Z, W) =0
< (Q).

Let M be a connected conformally flat manifold of dimension #,n = 3.
Then the Ricci endomorphisms determine the curvature according to the
formula

. 1

where r = trace 4 and X A Y denotes the endomorphism
Z—g(V,2)X —g(X,2)Y.
In this paper the connected conformally spaces satisfying (P) are classified.
LeMMA 1. Let M be an n-dimensional conformally flat space satisfying (P).
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Then

@) a4 — =

w14 =l

where p is a C” function on M and I is the identity field.
Proof. Setting ¥V = AX in (1) and then applying (Q) gives
@) BX AN X =0,

where

B=4"——"—4.
n—1
Since (3) may be interpreted as an exterior product, we conclude that every X

is an eigenvector of B, so B = pI for some scalar field p.

LemMA 2. Under the conditions in Lemma 1, A has at most the two eigenvalues
r+ [+ 4n — l)p]%
2(n — 1) ’
Let M’ be the open subset of M on which r* + 4(n — 1) p #= 0. Then the eigen-

spaces of A form smooth complementary orthogonal distributions on each con-
nected component of M'.

The eigenvalues are the roots of

2
uwo—

r
el 0;
the rest is also routine.

Let us fix notation as follows: The eigenvalues of A are p; and p.. They are
defined and continuous on all of M and distinct on M’. The eigenspaces on M’
are D; and Dy, of dimensions £ and # — k. We shall use adapted orthonormal
frames and coframes {X,, X,} and {ws, ws,e¢,b=1,...,k and «,B =

k4 1,...,n; moreover, 7,7 = 1, ..., n. The corresponding connection and
curvature forms are wg, etc. and Qgs, etc.

LEMMA 3. Let K = (w1 — u2)/(m — 2). On D, the sectional curvature is K,
on Dy 1t is — K, and on mixed sections it vanishes; that 1is,

Qop = Kwa N wp,
Qag = —Kwa AN wg,
Qg = 0.

Proof. Noting that7/(n — 1) = u1 + ue, formula (1) becomes

R(X,¥) = —2 o (AX A Y+ X A AY — (u + w)X A ).

The rest follows by taking orthonormal eigenvectors for X and Y.
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Note that M’ is just the set on which K # 0.

THEOREM. Let M be an n-dimensional conmected conformally flat space

satisfying (P), n = 3. Then M is one of four types:

(@) M s flat (M’ empty).

In the remaining cases M = M'; that is, M us either flat everywhere or has no

flat points; moreover, k is constant.

(b) M has constant curvature (B = 0 or n).

(c) M is locally the Riemannian product of a k-dimensional space of constant
curvature K and an (n — k)-dimensional space of comstant curvature
—KQ=sk=n-—1).

(d) Thereis an open C* map t : M — Rt (positive reals) such that K = K/t
for some constant Ko. The map t is a Riemannian submersion having
fibres which are totally umbilical hypersurfaces of comstant (intrinsic)
curvature (1 + Ko)/t2 (B = 1lorn — 1).

Proof. Define the vector valued 1-form F = F* ® X, by

4 i

i _ @ 4 __
Fl= Al — gops o,

where A%, are the components of 4. (The summation convention is employed
here and in the sequel.) The X; and w® are any local vector field basis and the
dual basis of 1-forms, respectively. If w?; are the connection forms for this
basis we define the exterior covariant derivative DF of F as the vector-valued
2-form (DF)! ® X, where

(DF)t = dF' + o, A F.

It is easily checked that DF is independent of the choice of basis. Using the
first structural equation viz., do® = —w?; A @/, and the coefficients T, of
w';(w?; = Ti;0*), we obtain

i i ]. .
(DF)' = <XkAtj + ALTE; + A" Te — 2 —1) Bthkr>wk A o’

= (va ij — é(n—l———lj Bij V,J)w" A wj,

where 8%; is the Kronecker delta. As a tensor, this has the components

) s 1 )
(ﬂ - 2)C’jk = valj - VJA r m (611 Vkr - 6ik Vﬂ’),
where Ct;; is Weyl's 3-index tensor. For a conformally flat space it is known
that C?j; = 0. We use this by calculating DF in terms of an orthonormal basis
adapted to the distributions D;. In particular we can lower all superscripts.
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r

Fo =440 — S —1)

Wq

= pw, — F(u1 + p2)w,
= Luy,
where L = (n — 2)K /2, and

r

Fy = Agiws — S —1)

We

= powa — 3 (1 + po)wa

—Lwa,

from which

4) dF, = dL N w, + Ldw, + wep A Loy — weg A Lwg
=dL A w; — Log; A i + L{ws A @p — was A wg)
=dL A wWg — 2Lwag AN wg
=0,

—dL A wq + 2Lway N\ wp
= 0.

Il

(5) dF.,

When & = %, K is constant and M’ = M follows immediately from Schur’s
theorem (or (4)).

Otherwise, by Cartan’s lemma, (4) says that for each @, dL and the w,s are
dependent at most on w, and the w, and (5) says that the same forms are
dependent at most on w, and the w,. Thus if 2 £ 2 = # — 2 we can make
two choices of « for each @ and vice-versa, showing that dL = 0 and w, = 0.
Consequently, L and K = 2L/(n — 2) are constant and D; and D, are
parallel (in particular, completely integrable).

When k& = 1 we still have by (5) that dL and w,; are dependent at most on
wq and w;. Making two choices of a, we get dL. = Hw; for some C” function H.
Then, (4) reduces to wig A wg = 0, so the wis cannot depend on w;. Hence
wie = Cow, (@ not summed) for some scalar field C,. But then by (5) again

—Hwi A wo + 2L(— Cowa) A wy = 0;
that is, C = C, = H/2L is the same for all . The geometrical interpretation
of the relation wi, = Cw, is that D, (the distribution annihilated by w;) is

completely integrable and has totally umbilical leaves. In fact, dw; =
—wie A we = 0, so locally w; has a primitive «; that is, du = w;.
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A differential equation for C may be obtained from the fact that the curva-
ture of the section X; A X, vanishes:

Qe = dwie + w1 A Wge
=dC A we + Cdwy + wig N\ wpe
=dC A wa — Cwas A w;i + Cop A wpa

ac
<d—_u- — C2> w1 A\ Wa.

ac
du

Therefore,
- C'=0.

Solving this, we obtain either C = 0 or

1 1
C=- - -7

U — Uo

where u, is a constant and hence ¢ is another primitive for w;. The signs of C
and w; can be changed, if necessary, so as to make ¢ > 0.

If C =0, then it must be so on connected sets. Hence H = dL/du =
2LC = 0 and L, and hence K, are constant. Moreover, C = 0 says D, and D,
are parallel so we are back in case (c).

. If C 50, then we solve H = 2L(C for L, obtaining L = L,/t?, and hence
K = K/t for constants Lo and K,. Thus, t = (Ko/K)? is a primitive for
w; in each component of M’. We don’t know yet whether there is only one
component, so K, might have several values. As a map ¢: M' - R+, ¢ is
clearly a Riemannian submersion whose fibres are the leaves of D,. As such
it is distance-non-increasing. Now suppose that M’ = M. Let v be a curve
entirely in M’ except for the last point y(1) € M — M’. The length of ¢y is
at most that of v and is therefore bounded. Hence ¢y (1) = lim,,;-ty(s) exists
and is not o. It cannot be 0 either, for then there would be a sequence of
plane sections converging to a section at v (1) and having curvatures diverging
to lim,0Ko/t2. A similar difficulty is presented at any other finite limit for
ty(1), since we would then have curvatures converging to nonzero values
contradicting the fact that M — M’ is flat. Hence, M = M’'.

To complete the proof we calculate the intrinsic curvature of the leaves of
D;. The connection forms wag, restricted to a leaf, become the connection forms
of the leaf. Thus, denoting the curvature forms of a leaf by ®,4, the second
structural equation for a leaf is

dwag = T Way /\ wWyg + @ag
—Wai /\ Wi + Qaﬂ
—way N\ Wy + (C2 + K)wa N wg.
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Evidently the curvature forms of the leaf are

¢aﬂ = (CZ + K)wa AN wg,
so the curvature of the leaves of Dy is (1 + K,)/t2.

Remark. If M is complete, then the case (d) cannot occur, since the base
of a complete Riemannian submersion must be complete.
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