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ON A UNIQUENESS THEOREM

V. I. GAVRILOV*

1. Let D be the open unit disk and I" be the unit circle in the
complex plane, and denote by 2 the extended complex plane or the Rie-
mann sphere.

Suppose that £ I'. By k({,¢) we denote the chord at ¢ that makes

the angle ¢, ——72’— <p< % , with the radius #(£,0) and by 4(E, ¢,, ¢,) the

angle at ¢ between the chords k(¢, ¢,) and k(g @,).

If z, and 2z, are points in D, the non-Euclidean distance between z,
and z; will be denoted by ¢(z;,2,). For any z,€ D and any ¢ >0 we de-
note by D(zy¢): {z € D; olz,2,) < ¢}.

Let f(z) be meromorphic in D and p(f(z)) be its spherical derivative,

For any set S in D we put

M (f,S) = sup (@ — |2]?) o(f(2))].

A sequence of points {z,}, z,€D, n=1,2 -+, is said to be a P-
sequence for f(z) if for each . >0 and for each subsequence {z,,}, the
function f(z) assumes every value on £, with at most two exceptions, infi-
nitely often in the union of the disks D(z,,,¢), v =1, 2, «++ (see 61).

A necessary and sufficient condition for a sequence {z,} to be a P-
sequence for f(z) is the existance of a sequence {e,}, ¢, >0, n =12, -,
lim ¢, = 0, such that

n—>00
M (£, U Dlew sa)) = . <1)
[71.
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For a function f(z) meromorphic in D, a point { < I', a chord A(¢,9)
at ¢, an angle 4(¢, ¢, ¢,) at {, and a sequence of points {z,}, z,€D, n=1,
2, +++, with a point of accummulation at ¢, the cluster sets (see [8]) of
f(z) at & on k(& 9), A&, ¢y ¢:), {2} will be denoted respectively, by C(f,¢,
k&, 9), C(f,& A&, 01, 92) and C(f,&,{z.}); C(f,&, D) will stand for the global
cluster set of f(z) at &.

A point { e I' is said to be a Fatou point of f(z) if the set UC(f,¢,4
(&, @1, ¢2)) consists of a single value @ € 2, where the union is taken over
all angles 4(¢, ¢, 02) at §.  The value a is called the angular limit of f(2)
at . If the intersection of cluster sets C(f,&, 4({, ¢, ¢,) over all angles
A&, ¢y, 2) at & coincides with 2, the point ¢ is called a Plessner point of
f(z). The point { e I' is a Meier point of f(z) if for each chord (¢, )
at ¢ we have C(f, & n(&, ¢) = C(f, & D) C Q.

2. Collingwood [3] proved the following generalisation of Lusin-Priva-
lov’s theorem.
THEOREM A. Let f(z) be meromorphic in D. If for a fixed o, —%

< ¢, <L, there exists a set M of the second category on an arc v I such that

2
CUf, & (G, 0,) = 2 at every &€ M .and if, further, there exists a value a € Q and

a set N metrically dense on 7 such that a € C(f,§ h(&, @) on at least one h(g,9)
at every £ € N, then f(z) =a.

The success in this theorem is achieved because of the “regular distri-
bution”, of the family of chords &(f,¢,) at the points { € M. This fact,
that at all points ¢ M the chords 4(f,¢,) makes a fixed angle with
the radii, leads to the conclusion of existance of a point §, €7 at which
C(f,t» D)+ 2. It in turn means that Fatou’s theorem holds on a subarc
7, of 7. The second condition of theorem A implies the existance of a set
N,, mes N, >0, such that at every ¢ € N, the function f(z) has the angular
limit a.

A considerably wide extention of Collingwood’s theorem has been ob-
tained by E.P. Dolzhenko [5] who considered families of Jordan arcs {L.}
instead of the family of chords {A({,,)}. The characteristic of ‘“regular
distribution” of a family {L} is given in [5] in terms of the new notion of
“uniform continuity”, so that the family of chords {4(f, ¢,)} in theorem A
is a particular case of a uniform continuous family.

Moreover, Dolzhenko [5] has constructed an example which shows that
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his theorem is the best in the sense that from its conditions the term
“uniform” cannot be omited. We cite Dolzhenko’s example in part and
in a form suitable for us.

Tueorem B.  There exists a function fo(z) # 0, holomorphic in D, that pos-
sesses at every point £ & I the following properties (1) C(f, ¢, k(& ¢.) = {0} on a

some chord h(g,9.), (i) every chord h(¢,¢), —% < o< izr—, contains a sequence

of points {z,}, lim 2, =¢, such that liin 0(zny 2Zne) =0 and C(f,&, {z,}) = {0}.

It follows r‘f;:)Om theorem B th”atm the conclusion of theorem A is not
valid if the condition C(f, ¢, h(¢, ¢,) #+ 2 is replaced by the condition
C(f,8,{z.}) #+ 2 even if the sequences {z,} are ‘“thick” enough; for instance
if lim o(2,, 2541 = 0.

"Tn a recent paper [1] Bagemihl has constructed a holomorphic function
fol2) 20 in D which possesses the property (i) in theorem B and, in addi-
tion, each point { € I" is a Plessner point of Folz). It is not known whe-
ther it is possible to choose functions f,(z) and folz) so that they tend to oo
arbitrarily slow.

3. In this paper we prove a theorem similar to Collingwood’s, which
shows that uniqueness may be achieved not only by the condition of ‘re-
gular distribution” of a family of chords but also by a definite restriction
on the growth of a function.

We need the following-

LemMa, Let f(z) be meromorphic in D and suppose L€ I'. If there exists a
chord h(&, ¢) which contains a sequence of points {z,}, lim z, =&, with the properties
(1) lim (2, 2pe) = 0, (1) C(f, &, {2,)) = 2 and in ay;z—mangle A&, 0, 0,) such that
gol< go< @, we have M(S, A&, ., ¢5)) < + oo, then the point ¢ is not a Plessner
point of f(z

Proof. Suppose that contrary to hypothesis the point ¢ is a Plessner
point of f(z). It follows that for any a € £ there exists a sequence of
points {z{°}, lim 2% =¢ on which lim f(#?”)=a, and a corresponding se-
quence of poi;;t? {z,} on k(o) such that hm o(2,2,) = 0. In particular it
holds for a value a¢ C(f,& {2.}). By the condition (i) of lemma, the
sequence {z,} contains a subsequence {z,,} for which hm a(znu,zy) 0. Hence
we have two sequences {z,,} and {z*} such that hm 0(2,,,2%) =0 and
lim f(2{”) = a while {f(z,,)} does not converge to a. By theorem 1 in [6],

y—00
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the sequence {z,} is a P-sequence for f(z). This implies (1) which contra-
diCtS wt(f’ A(§9 Soly SDZ)) < + .

TueoreM 1. Let f(z) be meromorphic in D. If at every point ¢ of a set

M of the second category on an arc v < I' there exists a chord h(C,.) such that it

contains a sequence of points {z,}, lim 2z, =&, for which (i) lim 0(2n,2n+y) =0 (ii)
7n-—00 n—00

C(f, &, {2a)) 7= R and (iii) in an angle AL, 92, ¢?), ——g— <pl<o. <9< % , we
have (S, A&, 9%, 92)) < + oo, and if, further, there exists a value a & Q and a set

N metrically dense on 7 such that a < C(f,&, k(C, @) on at least one (L, ) at every
e N, then f(z)=a.

Proof. According to Lemma, the set M does not contain Plessner points
of f(z). It follows from Meier’s theorem (see, for instance, [4], pp. 153-5)
that M must contain at least one Meier point of f(z), so that the arc 7
contains a subarc 7, almost all points of which are Fatou points of f(2).
Hence, the set N contains a subset N,, mes N,>0, which consists of Fatou
points of f(z), and the corresponding angular limits of f(z) are equal to a.
Now theorem 1 follows from Lusin-Privalov’s theorem.

As an immediate consequence of Plessner’s theorem and of our lemma
we obtain

THEOREM 2.  Let f(2) be meromorphic tn D. If at every point § of a set
M on I', mes M>0, the conditions (i), (ii) and (iii) of theorem 1 are valid and
if, in addition, there exists a value a< Q such that a< C(f,& (&, @) on at least
one h(&, @) at every € M, then f(2)=a.

4. In addition to theorems 1 and 2 we prove

THEOREM 3.  Let p(r) be a positive, strictly increasing function on 0<r<1,
£z~1)111 p(r) =+ co.  There exists a function F(z) meromorphic in D with the proper-
ties: (i) for almost all radiz h(£,0) we have C(F,&,h(£,0) = {0}; (ii) every chord
h(E, ¢) contains a sequence of points {z,}, limz, =&, such that lim o(2,,%m+1) =0
and C(F,t,{z,}) = {0}; (iii) the inequalié‘:ﬁ?l— 12]2) « p(F(2)) 2?17lz[) holds at
all z€ D with |z]| > 7y 0<r,<l1.

Proof. We start with the infinite product

o) = 1 [1- (1—"—£>] (@)

nj
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the boundary behaviour of which has been studied by Bagemihl, Erdés and
Seidel [2].
For any sequence of natural numbers {»} satisfying the condition

Ilcgn nizk = 00, #;> la (3)
o -1

the product (2) converges absolutely and uniformly on every disk |z] < p,

0 < p <1, and represents, therefore, a holomorphic function in D. If every

zero Z; of ¢(z) on the circumference [z]| =1 — ;1— is surrounded by a circle

i

7; of radius j%’t , there exists an j,>0 such that the interiors I'; of 7, do
5

not have common points for all j=j,. So that the part of D remaining
after removing of I';, j=j, is a domain 4.

The following properties of g(z) are proved in [2]: (i) for any sequence
of {n;} satistying (3), the modulus |[g(z)| tends to o, as [z] =1, uniformly
in 4(2], p.137); (ii) g(z) possesses the radial limits at almost all points
t= et e (2], p.139); (i) if

itk 1—
n;

ole) =10 |1— (Ll\)"’]
then I}im |g(z)| = oo, where z, are zeros of g(z) on |z|= 1—%, k=1,2, -«
—>00 k
([2], p. 142); (iv) for any p(r) satisfying the conditions of theorem 3 one can
find a sequence of odd numbers {n,} with #,=k n,, k=1, 2, -+ +, such
that M(r,g9) = lrrllilX [9(2)] < pulr) for all r>r, 0<r,<1, ([2], p. 141).

Consider the derivative

nvznv—l

97(2) = —g (1 T )n, 9.(2)
ny

we have, by the property (iii), that

%32 (1 — |23 0e(g(2h) = co.

We want to show that for any x(») in the conditions of theorem 3 one
can choose a sequence of odd numbers #, satisfying

k—~1
(jg n)t<my , n>1, (4)

such that for the corresponding function g¢(z) defined by (2)
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(1 — [2]?) o(g(2)) < p(lz]) (5)

holds for all z€ D, |z| >r, 0<r,<1.
For this end, let £ be chosen in such a way that

1

1— L <pg<1—-1
N

Ri+1

(6)
It is obvious that
1 —12]?) 0(g(2) =1 — |2]9)]9'(2)| =
°° n, Izl -l ;
=@1— |2 <1_ - >an. 1[14—(—_) 1=
n;
n, lzl ny -1

(_ > . (7)

The inequality (7) will lead to (5) if we prove that forall z € D, [z| >7,,
and any sequence {n,} satisfying (4) the estimate

a0l — 12y M, g

v=1

$z) =201 — [2]) 3 ” )1 <c @

is valid with a universal constant C < + oo,

Using (4) and (6) and the obvious inequalities >1,

v=1,2 +++;loga<—(1—2) for 0<2<1; and ze~® <1 for x>0, we have

k-1 =%}
Plo) <8l —2)( XD n, +me+c, 2 mlz|™w) <
y=1 v=£k+1
<16 (1 — |2]) e + 8¢c,(1 — [2]) Z‘.+1 ny,e—wl-lz) <
v==£k
<16+ 8ey(l — [2])mpne=en =15 4 8¢, 31 mye-mO-lsh <
Y=K+2

<16 + 8¢; + 8¢, 2] Le—(mv/me1) < ¢, + 8¢, 2 n e=Vm < C,
Hp”

v=k+2

1

1— 1
"y

The disks I'; in the definition of the domain 4 may be regarded as
non-Euclidean disks of radii 0 (1/52) (cf., [7], p. 396). Thus, the parts of a

where ¢, = <+ o and £ is sufficiently large, that proves (8).
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chord %(, &) that lie in 4 have the non-Euclidean distances tending to zero
as z approaches the boundary along 4(¢, ).
Taking into account this fact and also the relation o(f(2)) = p(1/f(z))

which’ is valid for a function f(z) meromorphic in D, we obtain the conclu-
sion of theorem 3 for the function F(z) = 1/9(2).

REFERENCES

[ 1] F.Bagemihl. Chordal limits of holomorphic functions at Plessner points. J. Sci. Hiroshima
Univ. Ser. A, Div. 1, 30, 2 (1966), 109-115.

[2] F. Bagemihl, P. Erdés, W. Seidel. Sur quelques propriétés frontiéres des fonctions
holomorphes definies par certains produits dans le cercle-unité. Ann. Ecole Norm. Sup.
(3) 70 (1953), 135-147.

[ 3] E.F. Collingwood. On the linear and angular cluster sets of functions meromorphic in
the unit circle. Acta Math., 91, 3-4 (1954), 165-185.

[4] E.F. Collingwood, A.]J. Lohwater. The theory of cluster sets. Cambridge, University Press,
1966.

[5] E.P. Dolzhenko. On boundary uniqueness theorems and the behaviour of analytic
functions near the boundary. (In Russian) Dokl. Akad. Nauk. SSSR, 129 (1959), 23-26.

[6] V.I. Gavrilov. On the distribution of values of non-normal meromorphic functions in
the unit disk. (In Russian) Mat. Sb. 109 (n.s. 67) (1965), pp. 408-427.

[ 7] V.I. Gavrilov. Meromorphic functions in the unit disk with the prescribed growth of the
spherical derivative (In Russian) Mat. Sb. 113 (n.s. 71) (1966), p.p. 386-404.

[ 8] K. Noshiro. Cluster sets. Berlin, Springer-Verlag, 1960.

Moscow University, USSR
Indian Institute of Technology, Bombay

https://doi.org/10.1017/50027763000013076 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013076



