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Abstract

Background. Questions remain regarding whether genetic influences on early life psychopa-
thology overlap with cognition and show developmental variation.
Methods. Using data from 9,421 individuals aged 8–21 from the Philadelphia Neurodevelop-
mental Cohort, factors of psychopathology were generated using a bifactor model of item-level
data from a psychiatric interview. Five orthogonal factors were generated: anxious-misery
(mood and anxiety), externalizing (attention deficit hyperactivity and conduct disorder), fear
(phobias), psychosis-spectrum, and a general factor. Genetic analyses were conducted on a
subsample of 4,662 individuals of European American ancestry. A genetic relatedness matrix
was used to estimate heritability of these factors, and genetic correlations with executive
function, episodic memory, complex reasoning, social cognition, motor speed, and general
cognitive ability. Gene × Age analyses determined whether genetic influences on these factors
show developmental variation.
Results. Externalizing was heritable (h2 = 0.46, p = 1 × 10�6), but not anxious-misery (h2 = 0.09,
p = 0.183), fear (h2 = 0.04, p = 0.337), psychosis-spectrum (h2 = 0.00, p = 0.494), or general
psychopathology (h2 = 0.21, p = 0.040). Externalizing showed genetic overlap with face memory
(ρg=�0.412, p=0.004), verbal reasoning (ρg=�0.485, p=0.001), spatial reasoning (ρg=�0.426,
p = 0.010), motor speed (ρg = 0.659, p = 1x10�4), verbal knowledge (ρg =�0.314, p = 0.002), and
general cognitive ability (g)(ρg = �0.394, p = 0.002). Gene × Age analyses revealed decreasing
genetic variance (γg = �0.146, p = 0.004) and increasing environmental variance (γe = 0.059,
p = 0.009) on externalizing.
Conclusions. Cognitive impairment may be a useful endophenotype of externalizing psycho-
pathology and, therefore, help elucidate its pathophysiological underpinnings. Decreasing
genetic variance suggests that gene discovery efforts may be more fruitful in children than
adolescents or young adults.

Introduction

Psychiatric symptoms in early life are associated with poor cognition [1]. For example, psychotic
symptoms in childhood and adolescence are associated with cognitive impairment [2,3]. There is
also evidence for IQ deficits in childrenwith conduct problems [4], vocabulary deficits in children
with aggression [5], visuospatial deficits in children with hyperactivity [6], and social deficits in
adolescents with externalizing problems [7]. Small, generalized deficits have also been reported in
children with symptoms of anxiety and depression [8].

Early life psychopathology is also underpinned by genes with evidence of substantial genetic
effects on childhood and adolescent psychopathology [9,10], as well as specific psychotic [11,12],
externalizing [13–15], internalizing [16], and anxiety/depression symptoms [17–21]. Since
cognition in early life is also influenced by genes [22,23], recent studies have examined whether
there is a genetic component to cognitive correlates of early life psychopathology. Evidence from

European Psychiatry

www.cambridge.org/epa

Research Article

Cite this article: Mollon J, Knowles EEM,
Mathias SR, Rodrigue A, Moore TM, Calkins ME,
Gur RC, Peralta JM, Weiner DJ, Robinson EB,
Gur RE, Blangero J, Almasy L, Glahn DC (2021).
Genetic influences on externalizing
psychopathology overlap with cognitive
functioning and show developmental
variation. European Psychiatry, 64(1), e29, 1–9
https://doi.org/10.1192/j.eurpsy.2021.21

Received: 15 January 2021
Revised: 17 March 2021
Accepted: 18 March 2021

Keywords:
Cognition; development; externalizing;
Gene × Age; heritability; pleiotropy;
psychopathology

Author for correspondence:
*Josephine Mollon,
E-mail: josephine.mollon@childrens.harvard.
edu

© The Author(s), 2021. Published by Cambridge
University Press on behalf of the European
Psychiatric Association. This is an Open Access
article, distributed under the terms of the
Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and
reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1192/j.eurpsy.2021.21 Published online by Cambridge University Press

https://orcid.org/0000-0003-4557-1838
https://orcid.org/0000-0002-1384-0151
https://orcid.org/0000-0002-3744-6853
https://doi.org/10.1192/j.eurpsy.2021.21
mailto:josephine.mollon@childrens.harvard.edu
mailto:josephine.mollon@childrens.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1192/j.eurpsy.2021.21


twin and family studies shows genetic overlap between psychopa-
thology and cognitive ability [24], psychopathology and executive
functions [25], attention deficit hyperactivity disorder (ADHD)
and IQ [26], ADHD and executive functions [27,28], and inatten-
tion and attention regulation [29]. GWAS evidence shows genetic
overlap between ADHD and intelligence [30-32], academic under-
performance [31,33,34], and executive functions [35]. However, a
comprehensive examination of genetic underpinnings of cognitive
impairment in early life psychopathology, that is, comprising mul-
tiple dimensions of psychopathology and cognition, is lacking.

Gaps in knowledge also exist regarding whether genetic influ-
ences on early life psychopathology show developmental variation.
A recent review reported static and dynamic effects on internalizing
and externalizing symptoms between infancy and early adulthood
[13], with certain genetic effects remaining influential throughout
development, and novel genetic factors also emerging. However,
previous studies focused on developmental periods rather than
examining age continuously. Another way to test for developmental
variation in genetic influences is Gene × Age (G × A) interactions.
G × A interactions can be tested using a cross-sectional design that
models differences in psychopathology as a function of relatedness
and similarity in age between individuals [36–38]. Thus, G × A
analysis tests for fluctuations in action of genetic factors, as well as
variation in genetic factors at different ages [23].

We used data from the Philadelphia Neurodevelopmental Cohort
(PNC) [1], a large population-based sample aged 8–21, to derive
factors of psychopathology using a bifactor model of item-level data
from a psychiatric interview [39,40]. In bifactormodels, items load on
two factors simultaneously: (a) a general factor that accounts for
commonality of all items (here general psychopathology) and
(b) specific factors that account for unique influence of specific
domains over and above the general factor (specific dimensions of
psychopathology) [41,42]. Thus, bifactor models estimate the contri-
bution of items to the general factor after controlling for specific
factors, and vice versa [39]. Therefore, the utility of bifactor models
lies in their ability to parse out this shared variance between general
and specific factors, such that there is no contamination between
factors,meaning that the general factor cannot account for findings in
the specific factors, or vice versa. In otherwords, bifactormodels allow
examination of the unique contribution of the general and specific
factors to prediction of external factors, or of the unique contribution
of external factors (here genetic factors) to the general and specific
factors [43,44]. Importantly, bifactor models accommodate orthogo-
nal factor scores despite correlated latent factors [39,43]. We then
used a genetic relatedness matrix to establish whether these psycho-
pathology factors (a) were heritable, (b) showed genetic overlap with
cognition, and (b) showed G × A interactions. In line with previous
evidence, we hypothesized that psychopathology factors, would be
(a) heritable, (b) show negative genetic correlations with cognitive
functioning, and (c) be influenced by developmentally dynamic
genetic factors, that is, show G × A interactions.

Methods

Participants

PNC is a population-based sample from the greater Philadelphia
area, comprising 9,421 individuals aged 8–21. The study has been
described in detail [1]. Briefly, between 2006 and 2012, 50,293
adults were recruited by the Center for Applied Genomics at
Children’s Hospital of Philadelphia and provided access to Elec-
tronic Medical Records (EMRs). EMRs were screened for eligibility

for PNC participation, yielding 19,161 individuals, released to the
recruitment team in weekly waves between 2009 and 2011. Potential
probands (ages 18–21) or caregivers/legal guardians (ages 8–17)were
sent letters introducing the study, and then contacted by phone to
explain the study, verify eligibility, and schedule appointments.
Participants provided written consent for genomic studies upon
providing blood samples during the clinical visit. Inclusion criteria
were: (a) ability to provide signed informed consent (parental con-
sent for participants <18), (b) English language proficiency, and
(c) physical and cognitive ability to participate in cognitive testing.
Data are in dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000607.v3.p2).

Genetic analyses were limited to participants who identified as
white non-Hispanic (European American), leaving 4,662 subjects
with genetic, cognitive, and psychiatric data. Mean age was 13.8
(standard deviation [SD] = 3.6), 50.3% were male (n = 2,346).

Cognitive assessment

Participants completed the Penn computerized neurocognitive bat-
tery [45,46], which consists of 14 tests that capture functioning in five
domains: (a) executive function (abstraction and mental flexibility,
attention, working memory), (b) episodic memory (verbal, facial,
spatial), (c) complex cognition (verbal reasoning, nonverbal reason-
ing, spatial processing), (d) social cognition (emotion identification,
emotion differentiation, age differentiation), and (e) speed (motor,
sensorimotor). Accuracy and reaction times are recorded for each
test. All tests showmoderate to very high reliability [47]. The battery
also included the reading subtest of the Wide Range Achievement
Test (WRAT), a measure of general verbal knowledge. As in our
prior work [23], we derived a general composite score (g) as the first
component of principal component analysis (PCA) of accuracy
scores. We also derived a general composite score for speed (gs) as
the first component of PCA of reaction times. To minimize the
impact of missing data, multivariate imputation by chained equation
(MICE) [48] was used to impute missing values using the mice
package in R [49]. Imputation was based on age, sex and available
cognitive data (participants missing <50% cognitive data) [23]. Sub-
sequent analyses were conducted on imputed data.

Psychopathology assessment

Psychiatric symptoms were ascertained using a computerized,
structured interview (GOASSESS) [1,39,50], a modified version
of the Kiddie-Schedule for Affective Disorders and Schizophrenia
[51]. GOASSESS was administered to caregivers/legal guardians
(ages 8–10), participants and caregivers/legal guardians (ages
11–17), and participants (ages 18–21). Bachelor- and Master-level
assessors underwent a 25-h training protocol comprising didactic
sessions, assigned readings, and supervised pairwise practice.
Assessors were certified through standardized procedures requiring
observation by a certified clinical observer who rated proficiency on
a 60-item checklist of interview procedures. Responses coded by the
assessor were required to correspond to responses coded by a
certified clinical observer. Assessors underwent repeat observation
until meeting passing criteria [1].

Factor analysis to create factors of psychopathology

We applied a confirmatory bifactor model [43] in Mplus [52]
to 112 items from the GOASSESS [1,39,40](Figure 1a) using
mean- and variance-adjusted weighted least squared estimator. Five
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orthogonal factors of psychopathology were generated for 9,421
individuals with GOASSESS data: (a) anxious-misery (mood and
anxiety), (b) externalizing (ADHD and conduct disorder), (c) fear
(phobias), (d) psychosis-spectrum, and (e) a general factor of overall
psychopathology. Since bifactor models estimate the contribution of
items to an overall dimension (general psychopathology) after con-
trolling for specific factors, and vice versa, all factors (both general and
specific) are orthogonal. Thus, bifactor models parse out the shared
variance between general and specific factors, such that there is no
contamination between factors. Therefore, bifactor models allow
examination of the unique contribution of external factors (here
genetic factors) to the general and specific factors [43,44]. Table S1
shows factor loadings, Table S2 shows correlations between factors
(and with cognition), Figure S1 shows test information plots.

Genotyping

Samples were genotyped on one of four Illumina arrays: Human-
Hap550, HumanHap610, OmniExpress, or Human1M. Genotyped
data were imputed at the Broad Institute [53] using IMPUTE2 and
reference haplotypes in Phase I of the 1000 genomes data (June
2011 release) that included ~37,138,905 variants from 1,094 indi-
viduals from Africa, Asia, Europe, and the United States. Imputed
genotype data were used in subsequent analyses.

Estimation of genetic relatedness matrix

Empirical relatedness quantifies the proportion of alleles that are
identical by descent between individuals. Empirical relatedness was
calculated for all pairs of individuals using genotype data [23]. Briefly,
50k common autosomal single nucleotide proteins (SNPs) in
approximate linkage equilibrium were selected from all available
SNP variants after linkage disequilibrium (LD) pruning (r2 > 0.1)
using PLINK [54]. Relatedness was estimated from these SNPs using
IBDLD [55](up to 50 SNPs within a 2-cm span). The matrix was
inspected to ensure correct properties (trace equal to number of

genotyped subjects, symmetry, positive semi-definiteness, range of
diagonal, and off-diagonal elements). Distribution of estimated relat-
edness values has been presented previously [23]. Empirical genetic
relatedness matrices are advantageous because quantitative genetic
analyses (described below) that are traditionally applied to family
data using genetic relatedness matrices calculated from pedigree
information can, in turn, be applied to cohorts of related and/or
unrelated individuals (such as the PNC) using empirical genetic
relatedness instead.

Statistical and quantitative genetic analyses

R [56]was used to generate descriptive statistics and graphics. Genetic
analyses were conducted in Sequential Oligogenetic Linkage Analysis
Routines (SOLAR) [57] on 4,662 participants who identified as white
non-Hispanic (European American), regardless of relatedness.While
analyses in SOLARperformed on family data are robust to population
stratification, the PNC sample comprises both related and unrelated
individuals. Therefore, we only included individuals of European
American ancestry (the most common ancestry group in the PNC
sample) in our analyses and excluded individuals of non-European
ancestry. Relatedly, since rare variants that may explain a substantial
proportion of phenotypic variance are not well captured by common
SNPs, using related individuals ismore powerful than using unrelated
individuals when estimating heritability, but the combination of
related and unrelated individuals, as in the PNC, is optimal. More-
over, related individuals (even distantly) are critical for detecting
G × A interactions (described below). When using only unrelated
individuals it is not possible to detect changes in genetic correlation
over time since related pairs serve as a pseudo-longitudinal design
where the same polygenotypes are observed at different ages.

Univariate and bivariate polygenic models

SOLAR implements linearmixed-effectsmodels, which decompose
the overall variance of a quantitative trait [58,59]. Traditionally,
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Figure 1. Schematic of (a) bifactor and (b) hierarchical models of 112 items from the GOASSESS structured interview.
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these analyses are performed on family data using matrices calcu-
lated from pedigree information, but can be applied to cohorts of
related and unrelated individuals using relatedness estimated from
genotype data [60]. Under a univariate polygenic model, the phe-
notypic variance (σ2p) of a trait is decomposed into genetic (σ2g) and
environmental (σ2e) components. Environmental variance incap-
sulates all variance that is not genetic, including error. Narrow-
sense heritability (h2) is the proportion of phenotypic variance
accounted for by additive genetic variance (h2 = σ2g/σ

2
p). To deter-

mine whether heritability (h2) was significantly greater than 0, like-
lihood of the polygenicmodel was compared to that of amodel with
h2 constrained to 0. Under a bivariate polygenic model, phenotypic
covariance between two traits is decomposed into genetic and
environmental components to determine the extent to which traits
are influenced by shared genetic effects. Since genetic correlations
between traits are only meaningful if traits are heritable, we esti-
mated heritability of all traits. Bivariate polygenic analyses were
then applied to significantly heritable pairs of traits to estimate
genetic (ρg), environmental (ρe), and phenotypic (ρp) correlations.
The genetic correlation (ρg) denotes the correlation between latent
additive genetic factors influencing both traits. The environmental
correlation (ρe) denotes the correlation between nongenetic factors
influencing both traits. To determine whether genetic (ρg) and
environmental (ρe) correlations were significantly different from
0, likelihood of the bivariate polygenic model was compared to that
of a model where the parameter of interest was constrained to 0.

Gene × Age interaction models

A polygenic model can be extended to examine Gene × Environ-
ment (G × E) interactions [36–38]. One consequence of G × E is
that additive genetic variance is greater under certain environments
than others. To test for this effect with a continuous environmental
variable (age), the polygenic model is modified to include a linear
function on the logarithm of σ2g.This linear function contains a free
parameter, γ, reflecting change in σ2g unit of the environmental
variable (age in years). A nonzero value of γ implies a heritable
response to the environment, and therefore, a G × E interaction.
This G × E interaction tests for fluctuations (with age) in action of
genetic factors and a significant G × E interaction suggests a change
in magnitude of effect of specific genetic factors (with age). A
second consequence of G × E is that the trait exhibits imperfect
pleiotropy with itself, that is, the genetic correlation between the
trait measured under one environment and the trait measured
under another environment is less than 1. This phenomenon can
be examined in cross-sectional studies where individuals are tested
under a single environment (timepoint), provided relatedness
between individuals is known [37]. To test for this effect, the
polygenic model is modified to include another free parameter, λ,
reflecting the rate of decay in genetic correlation (ρg) as difference in
the environmental variable increases. A nonzero value of λ implies
imperfect pleiotropy, and therefore, a G × E interaction. This G × E
interaction tests for variation in genetic factors influencing the trait
(at different ages) and a significant G × E interaction suggests a
change (with age) in the genetic factors themselves. G × E interac-
tion models were fitted to heritable traits, with age in years as the
continuous environmental variable that is, Gene ×Age interactions.
See Table S3 for more information.

All models included age, age2, sex, and their interactions as
covariates. To adjust for multiple testing, false discovery rate
(FDR) was set at 5% [61]. Rank-based inverse normal transforma-
tions were applied to all traits to ensure normality.

Sensitivity analyses

In addition to the bifactor model described above, we applied a
confirmatory hierarchical model (Figure 1b) in Mplus [52] to
generate four correlated factors of psychopathology and a general
factor.We generated the same factors as the bifactormodel: specific
factors of (a) anxious-misery, (b) externalizing, (c) fear, and
(d) psychosis-spectrum, and (e) a general factor. In bifactormodels,
general and specific factors are orthogonal, whereas in hierarchical
models, the general factor is defined by the specific factors and thus
general and specific factors are explicitly correlated. Univariate,
bivariate, and G × A analyses, as described above, were repeated on
these factors to examine the contaminating effect, that is shared
variance of general and specific factors. Table S4 shows factor
loadings, Table S5 shows correlations between factors (and with
cognition), Figure S2 shows test information plots.

Results

Externalizing psychopathology is heritable

Significant heritability estimateswere observed for general (h2 = 0.21,
p = 0.040) and externalizing psychopathology (h2 = 0.46,
p = 2 × 10�6), but only externalizing survived FDR correction
(Figure 2 and Table 1). As reported previously [23], most accuracy
(h2 range = 0.21–0.72) and reaction time (h2 range = 0.23–0.38)
measures were also heritable. Subsequent bivariate and G × A ana-
lyses were run on significantly heritable traits (after FDR correction).

Overlapping genetic factors on externalizing and cognition
suggest pleiotropic effects

Externalizing showed significant negative phenotypic correlations
with most accuracy measures (range ρp = �0.042 to �0.127) and
some reaction timemeasures (range ρp =�0.036 to�0.66; Table 1)
after FDR correction, such that greater psychopathology was asso-
ciated with poorer accuracy and slower reaction times. Significant
negative genetic correlations were observed after FDR correction
between externalizing and accuracy measures of face memory
(ρg = �0.412, p = 0.004), verbal reasoning (ρg = �0.485,
p = 0.001), spatial processing (ρg = �0.426, p = 0.010), general
verbal knowledge (ρg =�0.314, p = 0.002), g (ρg =�0.44, p = 0.002),
and sensorimotor speed (ρg =�0.659, p = 1 × 10�4) suggesting that
genetic factors underlying externalizing overlap with lower accu-
racy and slower reaction times.

Genetic variance on externalizing decreases with age

Significant decrease in genetic variance was observed on external-
izing (γg = �0.146, p = 0.004; Figure 3), suggesting that specific
genetic factors influence externalizing psychopathology between
childhood and early adulthood, but also that themagnitude of effect
of these genetic factors decreases with age. Significant increase in
environmental variance was also observed (γe = 0.059, p = 0.009).
Decay in genetic correlation did not reach statistical significance
(λ = 0.027, p = 0.423), such that we did not find evidence for change
in genetic factors, that is, novel genetic influences. Data presented
in Figure 3 were generated using Formula 5 in Table S3.

Results of genetic analyses are robust to factor analytic approach

Univariate, bivariate, and G × A analyses conducted on psychopa-
thology factors derived from the hierarchical model generated
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similar results. Externalizing (h2 = 0.58, p = 1x10�7) remained
heritable, but general psychopathology (h2 = 0.37, p = 0.001)
anxious-misery (h2 = 0.35, p = 0.002) and fear (h2 = 0.25,
p = 0.011) were also significantly heritable, although fear did not
survive FDR correction (Table S6 and Figure S3). General psycho-
pathology and anxious-misery showed significant phenotypic cor-
relations with cognition (Table S6), but only externalizing showed
significant genetic correlations with verbal reasoning (ρg = �0.43,
p = 0.001), general verbal knowledge (ρg =�0.25, p = 0.005), and g
(ρg = �0.37, p = 3x10�6), after FDR correction. Again, significant
decrease in genetic variance (γg =�0.112, p = 0.029) and increase in
environmental variance (γe = 0.089, p = 0.008) were observed for
externalizing (Figure S4) Change in genetic variance on general
psychopathology (γg = 0.017, p = 0.279) and anxious-misery
(γg = 0.023, p = 0.269) was not significant. Data presented in
Figure S4 were generated using Formula 5 in Table S3.

Discussion

Using a large, population-based cohort of individuals aged 8–21, we
showed that externalizing psychopathology in the first two decades
of life is under considerable genetic influence. Externalizing showed
genetic overlap with lower performance on face memory, verbal
reasoning, spatial processing, motor speed, verbal knowledge, and
general cognitive ability. We did not find evidence for novel genetic
factors on externalizing throughout this developmental period,
rather we found a decrease in genetic variance, and increase in
environmental variance. These findings have several implications
for our understanding of early life psychopathology.

First, to the best of our knowledge, this is the first study to use a
large, population-based cohort and genetic relatedness matrix to
estimate heritability of data-driven factors of psychopathology
(both orthogonal and correlated) throughout childhood and early
adulthood. Our finding of heritable general psychopathology,
anxious-misery, externalizing, and fear are in line with previous

evidence [11–15]. We did not find evidence for genetic influences
on the psychosis-spectrum factor, in contrast to prior evidence
[11,12]. However, SNP heritability estimates of psychotic symp-
toms are more modest, with a report of nonsignificant and zero
estimates for paranoia and hallucinations, respectively [62]. More-
over, while there has been progress in delineatingmolecular genetic
underpinnings of adult schizophrenia [63], the same cannot be said
of childhood psychotic symptoms [64]. Notably, subjects were less
likely to endorse items that loaded on the psychosis-spectrum
factor (average 11% endorsing), than on externalizing (21%),
anxious-misery (15%), and fear (16%). Similarly, clinical diagnostic
rates of attention deficit, oppositional defiant, and conduct disor-
ders in PNC are 16, 33, and 7%, respectively [40], while rate of
threshold psychotic symptoms is 4% [65]. Psychotic symptoms also
emerge later during development than symptoms relating to exter-
nalizing, anxious-misery, and fear [66,67].

In contrast, we found externalizing psychopathology to be
significantly and moderately heritable, with genetic factors
explaining 46–58% of the variance. Equally substantial genetic
influences on externalizing between ages 8 and 26 have been
reported in twin and adoption studies [13–15]. A very similar
SNP heritability of 0.44 has also been reported for externalizing
[68], but another study found SNP heritability estimates of zero
for a range of externalizing problems [69]. Differences between
SNP and pedigree heritability estimates are likely due to rare
variants not well captured by common SNPs, with SNP heritabil-
ity representing the lower bound. Thus, using related individuals
is more powerful than using unrelated individuals when estimat-
ing heritability, and the combination of all possible relationships,
as in our sample, results in something of a hybrid between SNP
and pedigree estimates. However, shared environment may con-
tribute to heritability inflation when using related individuals.
Nevertheless, rare variants account for a significant proportion
of total heritability [70], and our heritability estimates are gener-
ally in line with previous studies.
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Importantly, we found significant heritability estimates for gen-
eral psychopathology and anxious-misery factors generated from a
hierarchical, but not bifactor, model. This finding highlights the
utility of bifactor models, in which all factors (both general and
specific) are orthogonal [40,71], thereby allowing us to examine the
unique contribution of genetic factors to general psychopathology
and specific factors of anxious-misery, externalizing, fear, and
psychosis-spectrum [43,44]. This finding, as well as the finding of

stronger genetic influences on externalizing than general psycho-
pathology, is also in line with previous evidence of genetic signal on
specific cognitive factors emerging only when variance associated
with general cognitive ability is parsed out, that is when applying a
bifactor model [71]. In hierarchical models, on the other hand,
variance associated with the general factor may account for signif-
icant findings in the specific factors, and vice versa. Thus, our
findings suggest that genetic effects underlying early-life anxiety

Table 1. Heritability estimates for all traits, genetic, and phenotypic correlations between externalizing and cognition.

Category Trait h2 p SE

Externalizing

ρg p SE ρp p SE

Accuracy Abstraction 0.12 0.143 0.107 – – – – – –

Attention 0.34 5 × 10�5 0.087 0.066 0.689 0.166 �0.071 1 × 10�6 0.015

Working memory 0.27 0.006 0.106 �0.387 0.067 0.229 �0.069 2 × 10�6 0.015

Face memory 0.56 1 × 10�6 0.100 �0.412 0.004 0.165 �0.049 0.001 0.015

Spatial memory 0.36 0.001 0.102 �0.134 0.434 0.175 �0.044 0.003 0.015

Verbal memory 0.41 4 × 10�4 0.108 �0.180 0.274 0.171 �0.028 0.059 0.015

Verbal reasoning 0.44 3 × 10�6 0.087 �0.485 0.001 0.159 �0.111 4 × 10�14 0.015

Nonverbal reasoning 0.47 1 × 10�5 0.096 �0.338 0.019 0.149 �0.065 1 × 10�5 0.015

Spatial reasoning 0.35 2 × 10�4 0.089 �0.426 0.010 0.175 �0.093 2 × 10�10 0.015

Age differentiation 0.10 0.184 0.112 – – – – – –

Emotion differentiation 0.21 0.024 0.105 �0.208 0.371 0.237 �0.042 0.004 0.015

Emotion identification 0.30 0.002 0.098 0.052 0.778 0.188 �0.023 0.120 0.015

WRAT 0.67 2 × 10�21 0.061 �0.314 0.002 0.109 �0.127 5 × 10�18 0.015

Composite score (g) 0.72 2 × 10�14 0.072 �0.394 2 × 10�4 0.118 �0.109 1 × 10�13 0.015

Reaction time Abstraction 0.13 0.120 0.107 – – – – – –

Attention 0.38 0.002 0.124 0.123 0.492 0.183 0.003 0.831 0.015

Working memory 0.08 0.263 0.119 – – – – – –

Face memory 0.29 0.003 0.100 0.038 0.848 0.202 �0.048 0.001 0.015

Spatial memory 0.30 0.004 0.106 0.115 0.570 0.208 �0.066 6 × 10�6 0.015

Verbal memory 0.32 5 × 10�4 0.098 0.292 0.137 0.219 �0.009 0.541 0.015

Verbal reasoning 0.14 0.094 0.098 – – – – – –

Nonverbal reasoning 0.08 0.184 0.089 – – – – – –

Spatial reasoning 0.23 0.029 0.116 �0.034 0.880 0.222 �0.066 6 × 10�6 0.015

Age differentiation 0.28 0.004 0.101 0.185 0.338 0.201 �0.055 2 × 10�4 0.015

Emotion differentiation 0.30 0.004 0.106 0.184 0.337 0.198 �0.005 0.752 0.015

Emotion identification 0.24 0.011 0.104 0.459 0.032 0.247 0.036 0.013 0.015

Sensorimotor speed 0.37 1 × 10�4 0.093 �0.155 0.361 0.183 0.019 0.205 0.015

Motor speed 0.34 0.001 0.095 �0.659 1 × 10�4 0.222 �0.041 0.005 0.015

Speed composite score (gs) 0.38 5 × 10�4 0.105 �0.194 0.259 0.201 0.026 0.080 0.015

Psychopathology General psychopathology 0.21 0.040 0.118 – – – – – –

Anxious—misery 0.09 0.183 0.105 – – – – – –

externalizing 0.46 2 × 10�6 0.091 – – – – – –

Fear 0.04 0.337 0.094 – – – – – –

Psychosis 0.00 0.494 0.000 – – – – – –

Bolded estimates significant after correction for multiple testing (FDR = 0.05).
Abbreviations: AWRAT, Wide Range Achievement Test; SE, standard error.
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and depression may underlie more general psychopathology. Esti-
mates of genetic influence on childhood anxiety [17,18], depression
[19,20], and phobias [72,73] are heterogeneous, ranging from small
to large (h2 = 0.15–0.77) for anxiety and depression [17,19], and for
phobias (h2 = 0.23–0.72) [72,73].

Second, we found negative genetic correlations between exter-
nalizing and face memory, verbal reasoning, spatial processing,
sensorimotor speed, verbal knowledge, and general cognitive ability
(g). These findings are in line with previous evidence of genetic
overlap between ADHD and general and executive cognitive func-
tions [27–32,35], but expand knowledge by showing that genetic
overlap extends to externalizing psychopathology more generally,
as well as to memory, complex reasoning, and speed functions.
Similarly, in the same sample, genetic overlap was reported between
inattention and memory, social cognition, executive function, and
complex reasoning [74]. Genetic overlap between externalizing and
cognitive functioning may be due to the same genetic factors
influencing both traits. A recent genome-wide meta-analyses iden-
tified shared risk loci for ADHD and intelligence [31]. Rare genetic
variants have also been identified for cognition [75,76] and ADHD
[77], with overlapping genes implicated in ADHD studies of com-
mon and rare variants [78]. However, while there is evidence of
common and rare variants disrupting similar biological pathways
in ADHD [79], the neurobiological mechanisms underlying shared
genetic influences on ADHD and intelligence remain unclear
[31]. Future studies that utilize animal models are needed to
elucidate the causal and biological pathways underlying these shared
genetic influences. Alternatively, cognitive impairments may lead to
externalizing, and/or vice versa. Importantly, different cognitive
measures show different psychometric properties and associations
with specific functions require replication. Future longitudinal stud-
ies incorporating behavioral, neuroimaging, and genetic data can
further disentangle these associations. Nevertheless, our findings
suggest that cognitive impairment may be a useful endophenotype
[80,81] of externalizing psychopathology. Interestingly, the WRAT,

a measure of verbal knowledge showed the strongest phenotypic
correlation with externalizing, but the weakest (statistically signifi-
cant) genetic correlation. This finding highlights the importance of
elucidating genetic underpinnings of phenotypic associations to
delineate biological etiology.

Finally, we found static and dynamic genetic influences on
externalizing psychopathology between childhood and early adult-
hood, in line with previous evidence [13–15,82]. While we did not
find evidence for novel genetic influences, we found a decrease in
genetic variance, and increase in environmental variance. Our
findings are in line with those of Huizink [15], who found a
decrease in genetic influences on externalizing from 43 to 29%
between age 12 and 26, as well as an increase in environmental
influences from 39 to 52% between these ages. Similarly, Wichers
[14] found a decrease in genetic effects from 78 to 73% and an
increase in environmental effects from 20 to 26% between age 8 and
20, but also reported novel genetic influences throughout adoles-
cence [14]. Huizink, on the other hand, reported novel environ-
mental, but not genetic, influences [15]. Several phenomena may
underlie these G×A interactions. Genesmay become less expressed
due to maturational processes involving hormonal and physical
development [13]. Increasing environmental influences likely
reflect growing peer influences and substance use [83]. Of note,
environmental variance in this study incapsulates all variance that
is not genetic. However, measurement error is unlikely to account
for our findings since reliability of our factors is high (Figures S1
and S2). Moreover, method of symptom reporting differed by age,
and genetic effects may differ by reporting method. For example,
Scourfield et al. [84] found heritability estimates of 54 and 35% for
parent- and self-reported conduct problems, respectively. Never-
theless, G ×A interaction analyses adjusting additionally for report-
ing method generated similar findings, with significant decrease in
genetic variance (γg =�0.151, p= 0.002; γg=�0.112, p = 0.026), and
increase in environmental variance (γe = 0.058, p = 0.006; γe = 0.092,
p = 0.007) on externalizing factors derived from bifactor and
hierarchical models, respectively. Future studies that are able to
combine longitudinal, self- and parent-report symptom data will
help elucidate these age-associated effects further. Conversely, we
previously reported increasing genetic and environmental variance
on general cognitive ability in this sample [23]. Thus, while a
proportion of genetic factors underlying externalizing and cogni-
tion overlap, other, nonoverlapping genetic influences may show
diverging developmental trajectories. Advanced quantitative
genetic methods may shed light on trajectories of shared genetic
influences.

This study has limitations. First, our analyses were restricted to
European American individuals and future studies should include
other populations. Second, our data were cross-sectional and
longitudinal studies with repeated assessments of identical mea-
sures and individuals are needed to fully establish age-related
changes in genetic factors. Third, lower heritability estimates for
general psychopathology and anxious-misery meant less power to
detect genetic correlations with cognition and G × A interactions.
Finally, although we used a large sample, and comprehensive
assessments of cognition and psychopathology, our findings
require replication.
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