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Abstract Complete positivity of ‘atomically extensible’ bounded linear operators between C∗-algebras
is characterized in terms of positivity of a bilinear form on certain finite-rank operators. In the case of an
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in terms of positivity of a quadratic form on a subset of the dual space of the algebra and in terms of a
certain inequality involving factorial states of finite type I.

As an application we characterize those C∗-algebras where every k-positive elementary operator on the
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1. Introduction

For two C∗-algebras A and B, a linear operator T : A → B is called positive if Tx � 0
whenever x ∈ A is positive. T is called k-positive if the operator T (k) is positive, where
T (k) acts on the k × k matrices Mk(A) with entries in A, has values in Mk(B) and
is given by T (k)(xij)i,j = (T (xij))i,j . The operator T is called completely positive if it
is k-positive for all k = 1, 2, 3, . . . . This terminology goes back to Stinespring [10]. A
general reference for the theory is [8], but we do not consider here the more general case
of operators on operator systems. A notable recent development of the theory (for the
case of normal operators on B(H)) is the concept of a metric operator space introduced
by Arveson in [4]. In Arveson’s setting, our approach leads to a space which is dual to
his metric operator space.

For a C∗-algebra A, an operator T : A → A is called an elementary operator if T

can be expressed in the form Tx =
∑�

j=1 ajxbj with aj and bj (1 � j � �) in A. (More
generally, one may allow aj and bj to be in the multiplier algebra M(A) of A (see [7]).)
Such representations of T may not be unique.

We denote by B(H) the bounded operators on a Hilbert space H, by K(H) the com-
pact operators, by Fk(H) the operators of rank at most k and by F(H) the finite-rank
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operators. In case H is infinite dimensional, the dimension of H is just ∞. We use 〈·, ·〉
for the inner product on H.

Using results of [6] and [11], a form of the following result for the case A = Mn(C)
was proved in [13].

Theorem 1.1. Let A be B(H) or K(H) for a Hilbert space H of dimension n � ∞. Let
T : A → A be an elementary operator of the form Tx =

∑�
j=1 ajxbj (where aj , bj ∈ B(H)

for each j). Suppose k � 1. Then T is k-positive if and only if the form QT : F(H) → C

given by

QT (x) =
�∑

j=1

tr(ajx
∗) tr(bjx)

satisfies QT (x) � 0 whenever x ∈ Fk(H).

To generalize this theorem to arbitrary C∗-algebras, we consider QT as defined on the
dual space A∗ and we introduce a notion of ‘rank k’ for elements of A∗.

Definition 1.2. For a C∗-algebra A and k � 1, an element φ ∈ A∗ of the dual space
of A is said to have rank at most k and singleton support if there exists an irreducible
∗-representation π : A → B(Hπ) and an element yφ ∈ Fk(Hπ) so that

φ(x) = tr(π(x)yφ)

for all x ∈ A. We denote the subset of A∗ made up of such elements by Fs
k(A) and we

write Fs(A) =
⋃∞

k=1 Fs
k(A).

Our main result is the following.

Theorem 1.3. Let A be a C∗-algebra and let T : A → A be an elementary operator
of the form Tx =

∑�
j=1 ajxbj (where aj , bj ∈ M(A) for each j). Suppose k � 1. Then T

is k-positive if and only if the form QT : Fs
k(A) → C, given by

QT (φ) =
�∑

j=1

φ∗(aj)φ(bj),

satisfies QT (φ) � 0 whenever φ ∈ Fs
k(A).

T is completely positive if and only if QT (φ) � 0 for all φ ∈ Fs(A).

The (reduced) atomic representation of A (see [9, 4.3.7]) is used in our discussion.
This atomic representation πa : A → B(Ha) is defined by choosing one irreducible rep-
resentation πt : A → B(Ht) in each equivalence class t ∈ Â (Â denotes the unitary
equivalence classes of irreducible representations of A). Then πa =

⊕
t∈Â πt is a faithful

representation of A on the Hilbert space Ha =
⊕

t∈Â Ht and πa(A) is weak∗-dense in
A =

⊕
t∈Â B(Ht) (equivalently, the double commutant of πa(A) is A). The predual of A

is the �1-direct sum of the trace class operators S1(Ht) on the spaces Ht. (The dual of
each S1(Ht) is B(Ht) via the trace duality.)

Our Definition 1.2 can be rephrased: an element φ of the dual A∗ is said to be of rank
at most k and singleton support if there exists t ∈ Â and y ∈ S1(Ht) of rank at most
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k so that φ(x) = tr(πt(x)y). Consequently, φ corresponds to a certain kind of normal
functional on A. We refer to t (or the representation πt) as the support of φ.

We can view the multiplier algebra M(A) as a subalgebra of A∗∗ or of the von Neumann
algebra closure A of πa(A) (see [9, Corollary 3.12.5]). In this way the expression for
QT (φ) given in the statement of the theorem makes sense for the situation where we
allow aj , bj ∈ M(A) and take φ ∈ Fs

k(A).
In [5] it is observed that if a state φ is a factorial state (that is if the von Neumann

algebra closure of the image πφ(A) of A in the corresponding representation is a factor)
and if the commutant πφ(A)′ is a factor of type Ik (1 � k < ∞), then φ is a convex
combination of k equivalent pure states φn (all give the same t ∈ Â).

It is then easy to see that the factorial states φ for which πφ(A)′ is a factor of type
Ij for some j � k are contained in Fs

k(A). This set of factorial states is denoted Fk(A)
in [5].

Recall that a C∗-algebra A is called k-subhomogeneous if each irreducible represen-
tation of A has dimension at most k. This means that the atomic representation maps
into a direct sum of matrix algebras of sizes k × k or less. On the other hand, A is called
antiliminal if for each non-zero x ∈ A there exists an irreducible representation πt of A

for which πt(x) is a non-compact operator.
With some small amount of work we can then recast Theorem 1.3 as follows.

Theorem 1.4. Let A be a C∗-algebra and let T : A → A be an elementary operator
of the form Tx =

∑�
j=1 ajxbj (where aj , bj ∈ M(A) for each j). Suppose k � 1. Then T

is k-positive if and only if
�∑

j=1

ψ(aja
∗)ψ(abj) � 0 (1.1)

whenever ψ ∈ Fk(A) and a ∈ A.

Using results of [5] we can deduce that all k-positive elementary operators on A are
completely positive if and only if A is either k-subhomogeneous or k-subhomogeneous by
antiliminal, thus extending the case k = 1 dealt with in [3].

2. The case of general T

We aim for a version of Theorem 1.3 applicable to arbitrary bounded linear operators
T : A → B between C∗-algebras A and B. (By the device of considering the operator
: A ⊕ B → A ⊕ B : a ⊕ b �→ 0 ⊕ T (a), it is often sufficient to deal with the case A = B.)
However, we have not succeeded in this generality and we introduce a restriction on T .

We denote the reduced atomic representation of B by πa =
⊕

s∈B̂ πs, with πs : B →
B(Hs). We also set B =

⊕
s∈B̂ B(Hs), in analogy with the notation A.

Definition 2.1. We call a bounded linear operator T : A → B between C∗-algebras
atomically extensible if there exists a weak∗-continuous Ta : A → B such that πa ◦ T =
Ta ◦ πa.
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In other words the following diagram commutes:

A
T−−−−→ B

πa

� �πa⊕
t∈Â B(Ht) = A Ta−−−−→ B =

⊕
s∈B̂ B(Hs)

If T is atomically extensible, then for each t ∈ Â and s ∈ B̂ we have a component
mapping Ta,ts : B(Ht) → B(Hs) of Ta.

Note that each Ta,ts is weak∗-continuous and so also is

T
(k)
a,ts : Mk(B(Ht)) = B(Hk

t ) → Mk(B(Hs)).

(Here Hk
t means the Hilbert space direct sum of k copies of Ht.) Note also the following.

Lemma 2.2. For an atomically extensible bounded linear operator T : A → B between
C∗-algebras, k � 1 and the above notation, T is k-positive if and only if Ta,ts is k-positive
for each t ∈ Â and s ∈ B̂.

Lemma 2.3. For Hilbert spaces H1 and H2 and a weak∗-continuous linear operator
T : B(H1) → B(H2), T is positive if and only if T maps each rank-one orthogonal
projection in B(H1) to a positive element of B(H2).

Proof. The only if part is clear. Assuming that rank-one projections are mapped to
positive elements, it follows easily that finite-rank positive elements in B(H1) (which can
all be expressed as positive linear combinations of rank-one projections) are mapped to
positive elements of B(H2).

Finally, if x ∈ B(H1) is an arbitrary positive element, then we consider the net (xP )P

in B(H1) indexed by the finite-rank self-adjoint projections P ∈ B(H1) with xP = PxP .
This net converges to x in the weak∗-topology on B(H1) and by weak∗-continuity of T ,
T (xP ) → T (x) in the weak∗-topology on B(H2). Since T (xP ) � 0 for each P it follows
that T (x) � 0. �

Notation. For ξ ∈ H1 and η ∈ H2 vectors in (possibly different) Hilbert spaces H1 and
H2, we denote by ξ∗ ⊗ η : H1 → H2 the rank-one operator given by (ξ∗ ⊗ η)(α) = 〈α, ξ〉η
(for α ∈ H1). Every linear operator W : H1 → H2 of rank k can be expressed in the form

W =
k∑

j=1

ξ∗
j ⊗ ηj , (2.1)

with ξj ∈ H1 and ηj ∈ H2 (1 � j � k). In this way we can establish an isomorphism
between the algebraic tensor product H̄1 ⊗ H2 and the space, denoted by F(H1, H2), of
finite-rank operators from H1 to H2. (Here H̄1 denotes the conjugate of H1.) We denote
by Fk(H1, H2) the subset of F(H1, H2) consisting of operators of rank at most k. Each
W ∈ Fk′(H1, H2) can be represented in the form (2.1) with linearly independent ξj ∈ H1,
linearly independent ηj ∈ H2 and k � k′.
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Proposition 2.4. Let H1 and H2 be Hilbert spaces and T : B(H1) → B(H2) a
weak∗-continuous linear operator. Then there is a well-defined form

QT : F(H1, H2) → C

given by

QT (W ) =
k∑

i,j=1

〈T (ξ∗
i ⊗ ξj)ηi, ηj〉

for W as in (2.1). This form satisfies QT (λW ) = |λ|2QT (W ) for λ ∈ C, W ∈ F(H1, H2).
Moreover, if k � 1, then T is k-positive if and only if QT (W ) � 0 for all W ∈

Fk(H1, H2).

Proof. We can check that QT is well defined by considering the multilinear map

RT : H̄1 × H2 × H1 × H̄2 → C

given by
RT (ξ1, η1, ξ2, η2) = 〈T (ξ∗

1 ⊗ ξ2)η1, η2〉,

which therefore gives rise to a bilinear form : (H̄1 ⊗ H2) × (H̄1 ⊗ H2) → C. Restricting
this to the ‘diagonal’ and taking into account the identification (2.1) between H̄1 ⊗ H2

and F(H1, H2) gives QT .
Applying Lemma 2.3 to

T (k) : Mk(B(H1)) = B(Hk
1 ) → Mk(B(H2)) = B(Hk

2 ),

we see that T is k-positive if and only if T (k)(ξ∗ ⊗ ξ) � 0 in B(Hk
2 ) whenever ξ ∈ Hk

1 . This
is in turn equivalent to 〈T (k)(ξ∗ ⊗ ξ)η, η〉 � 0 for all ξ ∈ Hk

1 and η ∈ Hk
2 . Considering

ξ =




ξ1

ξ2
...
ξk


 , η =




η1

η2
...

ηk


 (ξi ∈ H1, ηi ∈ H2, 1 � i � k),

we can write ξ∗ ⊗ ξ ∈ Mk(B(H1)) as follows:

ξ∗ ⊗ ξ = (ξ∗
j ⊗ ξi)k

i,j=1.

Our condition for k-positivity then becomes

k∑
i,j=1

〈T (ξ∗
j ⊗ ξi)ηj , ηi〉 � 0

and the result follows. �

https://doi.org/10.1017/S0013091500000687 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000687


290 R. M. Timoney

For two C∗-algebras A and B, together with choices made of representations
for their atomic representations, we define associated classes of finite-rank opera-
tors by Fk(A, B) =

⋃
t∈Â, s∈B̂Fk(Ht, Hs) (disjoint union apart from 0), F(A, B) =⋃∞

k=1Fk(A, B).
For an atomically extensible bounded linear operator T : A → B we define QT on

F(A, B) by
QT (W ) = QTa,ts(W ) for W ∈ F(Ht, Hs).

Theorem 2.5. For an atomically extensible bounded linear operator T : A → B

between C∗-algebras A and B, and k � 1, T is k-positive if and only if QT (W ) � 0 for
all W ∈ Fk(A, B).

Proof. The proof follows by Lemma 2.2 and Proposition 2.4. �

From this result we can immediately deduce (for atomically extensible operators only,
however) the well-known result that if either A or B is abelian, then every positive
linear operator T : A → B is completely positive. More generally, if either A or B is
k-subhomogeneous (k � 1), then every k-positive atomically extensible linear operator
T : A → B is completely positive.

Example 2.6. Elementary operators are atomically extensible.
As noted above (in § 1), we can view the multiplier algebra M(A) as a subalgebra of

A. In this way the formula for an elementary operator T (x) =
∑�

j=1 ajxbj on A can be
used to give Ta.

Example 2.7. For the case A = C(K), with K a compact Hausdorff space, and
τ : K → K continuous, the composition operator T : A → A given by (Tf)(x) = f(τ(x))
(for f ∈ C(K), x ∈ K) is atomically extensible (but not elementary if τ is not the
identity). In this case, A = �∞(K) is the space of all bounded functions on K (the dual
of �1(K)). Here Ta is given by the same formula as T .

Example 2.8. For the case A = C[0, 1], the operator T : A → A given by (Tf)(x) =∫ 1
0 f(t) dt is not atomically extensible. In this situation, for the element δt0 ∈ A =

�∞([0, 1]) given by δt0(t) = 0 if t �= t0 and δt0(t0) = 1, we can find a sequence of
elements of C[0, 1] which tend pointwise to δt0 and are bounded by 1. It follows that
this sequence tends to δt0 in the weak∗-topology of �∞([0, 1]). Also T tends to zero along
such a sequence. Hence any atomic extension Ta would have to have Ta(δt0) = 0 for all
t0 ∈ [0, 1]. As the linear span of the δt0 is weak∗-dense in �∞([0, 1]), it would follow that
Ta = 0.

Example 2.9. If A = c0 or A = K(H) or A is a c0 direct sum of various K(Hi), then
A is the double dual of A. So, if A and B are both of this type, then every T : A → B

is atomically extensible (with Ta the double transpose of T ).

Remark 2.10. It is straightforward to check that QT is real-valued if T sends hermi-
tian elements of A to hermitians in B, or, equivalently, if T (x∗) = (Tx)∗ for x ∈ A. In
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that case, taking W ∈ Fk(Hs, Ht) ⊂ Fk(A, B) expressed in the form (2.1), we have

QT (W ) =
k∑

i,j=1

〈ηj , T (ξ∗
i ⊗ ξj)ηi〉

=
k∑

i,j=1

〈ηj , T ((ξ∗
j ⊗ ξi)∗)ηi〉

=
k∑

i,j=1

〈ηj , (T (ξ∗
j ⊗ ξi))∗ηi〉

=
k∑

i,j=1

〈T (ξ∗
j ⊗ ξi)ηj , ηi〉

= QT (W ).

3. The case A = B(H)

In this section, we prove Theorem 1.1 and we establish a connection with the metric
operator space of Arveson [4].

Lemma 3.1. Let A = B(H), T : A → A an elementary operator and QT as in
Theorem 1.1. For x ∈ Fk(H), we have

QT (x) = QT (x)

(for QT as in Proposition 2.4 with H1 = H2 = H).

Proof. Recall that each element x ∈ Fk(H) can be represented in the form x =∑k′

r=1ξ
∗
r ⊗ηr, with ξr, ηr ∈ H for 1 � r � k′ � k. Any such x has rank at most k′, and for

x of rank k′ we can choose ξ1, ξ2, . . . , ξk′ to be an orthonormal basis for the orthogonal
complement of the kernel of x and ηr = x(ξr).

To compute traces, it is convenient to assume that the ξr are orthonormal and to
compute via an orthonormal basis for H made up of ξ1, ξ2, . . . , ξk′ with additional vectors
added. Then

tr(x) =
k′∑

r=1

〈x(ξr), ξr〉,

tr(bjx) =
k′∑

r=1

〈bjx(ξr), ξr〉 =
k′∑

r=1

〈bjηr, ξr〉

and

tr(ajx
∗) = tr(a∗

jx) =
k′∑

r=1

〈a∗
jηr, ξr〉 =

k′∑
r=1

〈ajξr, ηr〉.
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Thus

QT (x) =
�∑

j=1

k′∑
s=1

〈ajξs, ηs〉
k′∑

r=1

〈bjηr, ξr〉 =
�∑

j=1

k′∑
r,s=1

〈ajξs, ηs〉〈bjηr, ξr〉.

But also

QT (x) =
k′∑

r,s=1

〈T (ξ∗
r ⊗ ξs)ηr, ηs〉

=
k′∑

r,s=1

�∑
j=1

〈aj〈bjηr, ξr〉ξs, ηs〉

=
k′∑

r,s=1

�∑
j=1

〈ajξs, ηs〉〈bjηr, ξr〉.

�

Proof of Theorem 1.1. The case A = K(H) can be reduced to the case A = B(H)
by a weak∗-continuity argument.

The result follows from Lemma 3.1 and Proposition 2.4. �

Remark 3.2. Natural questions are whether the form QT introduced in Theorem 1.1
depends on the representation of T as an elementary operator and whether F(H) is the
natural domain for QT .

The independence of QT from the representation of T follows from Lemma 3.1.
For the question of the natural domain of QT , we consider the more general case of

weak∗-continuous operators T and QT .

Proposition 3.3. For a weak∗-continuous bounded linear operator T : B(H) → B(H)
and W ∈ Fk(H), we have

|QT (W )| � ‖T (k)‖‖W‖2
1.

Proof. From the proof of Proposition 2.4 we can see that

|QT (W )| = |〈T (k)(ξ∗ ⊗ ξ)η, η〉| � ‖T (k)‖‖ξ∗ ⊗ ξ‖‖η‖2

if W is as in (2.1), ξ = (ξ1, . . . , ξk), η = (η1, . . . , ηk).
By polar decomposition we can rewrite W =

∑k′

j=1 λ2
j (ξ

′
j)

∗ ⊗ η′
j with 0 � k′ � k and

orthonormal ξ′
j , orthonormal η′

j and λj > 0. We can then assume ξj = λjξ
′
j and ηj = λjη

′
j

for 1 � j � k′. Now

‖ξ∗ ⊗ ξ‖ = ‖ξ‖2 =
∑

j

λ2
j , ‖η‖ =

√∑
j

λ2
j , ‖W‖1 =

∑
j

λ2
j .

�
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It follows that for completely bounded T (that is where supk ‖T (k)‖ < ∞), we can make
sense of QT (x) = QT (x) for any trace class x ∈ S1(H) and the values of the extension
of QT will all be limits of the values on F(H).

If T : B(H) → B(H) is completely positive (thus automatically completely bounded)
and weak∗-continuous, then QT � 0 and QT is related to a semi-inner product on F(H)
or S1(H). QT can be extended by continuity to the corresponding completion of (a
quotient of) F(H) (or S1(H)). We denote this completion by FT (H) and note that it
will be a Hilbert space with respect to the continuous extension of the seminorm

√
QT

on F(H). On F(H) the corresponding semi-inner product is

〈W, W ′〉T =
∑
i,j

〈T (ξ∗
i ⊗ ξ′

j)ηi, η
′
j〉

for W =
∑

i ξ∗
i ⊗ ηi, W ′ =

∑
j(ξ

′
j)

∗ ⊗ η′
j .

For T (x) =
∑�

j=1 ajxbj elementary and completely positive, each of the operators aj ,
bj (1 � j � �) defining T defines a subspace such as {x ∈ F(H) : tr(bjx) = 0} of
codimension one. Thus the kernel of QT = QT on F(H) will have finite codimension and
the completion FT (H) will in fact be a finite-dimensional quotient of F(H).

We can relate FT (H) to the metric operator space of T defined by Arveson [4] (for
weak∗-continuous completely positive T : B(H) → B(H)). For a ∈ B(H) define Ωa :
B(H) → B(H) by Ωa(x) = axa∗. The metric operator space of T is (as a set) the set ET

of all a ∈ B(H) such that there is a positive λ so that λT − Ωa is completely positive.
Restricting to the case of separable H, an inner product is defined on ET as follows [4].

Via a minimal Stinespring representation of T , it is shown [4] that T can be expressed
as a finite or infinite sum Tx =

∑
r arxa∗

r where ar ∈ B(H) satisfy
∑

r ‖arξ‖2 < ∞ for
each ξ ∈ H and an �2 linear independence condition:

(α1, α2, . . . ) ∈ �2,
∑

r

αrar = 0 ⇒ α1 = α2 = · · · = 0. (3.1)

In this setting it is shown in [4] that a ∈ ET ⇐⇒ a =
∑

r αrar for some (αr)r ∈ �2. The
Hilbert space structure given to ET in [4] makes {ar : r � 1} an orthonormal basis:

‖a‖ET
=

√∑
r

|αr|2.

Proposition 3.4. If T : B(H) → B(H) is weak∗-continuous and completely positive,
then the dual of FT (H) may be identified with ET as a set via trace duality.

Every continuous linear functional α on FT (H) can be realized by a unique a ∈ ET via

α(x) = tr(a∗x) for x ∈ F(H),

and each a ∈ ET defines a continuous linear functional on FT (H) in this way.
In the case of separable H, the identification of the dual of (FT (H),

√
QT ) and

(ET , ‖ · ‖ET
) is isometric and conjugate linear.
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Proof. If a ∈ ET and λ > 0 is such that λT−Ωa is completely positive, then QλT−Ωa
=

λQT − QΩa
is non-negative on F(H) by Proposition 2.4 (with H1 = H2 = H). By

Lemma 3.1,
QΩa(x) = QΩa(x∗) = tr(ax∗) tr(a∗x) = | tr(a∗x)|2

for x ∈ F(H). Thus the non-negativity translates into

| tr(a∗x)| �
√

λ
√

QT (x). (3.2)

So the linear map x �→ tr(a∗x) on F(H) has a continuous extension to FT (H).
Conversely, given a continuous linear functional α on FT (H), we can apply it to rank-

one operators ξ∗ ⊗ η ∈ F1(H) ⊂ F(H) (or to their images in the quotient of F(H)
modulo the kernel of QT ). We have

|α(ξ∗ ⊗ η)| � ‖α‖
√

QT (ξ∗ ⊗ η)

= ‖α‖
√

〈T (ξ∗ ⊗ ξ)η, η〉
� ‖α‖

√
‖T‖‖ξ‖‖η‖

(using Proposition 3.3). It follows from the Riesz representation theorem applied to H

(with ξ held fixed) that there is a unique element a(ξ) ∈ H such that

α(ξ∗ ⊗ η) = 〈η, a(ξ)〉 (η ∈ H),

and it is straightforward to check that the resulting a : H → H is linear. Also ‖a‖ �
‖α‖

√
‖T‖ and so a ∈ B(H). Moreover,

α(ξ∗ ⊗ η) = 〈η, a(ξ)〉 = tr(a∗(ξ∗ ⊗ η)).

Hence α(x) = tr(a∗x) for all x ∈ F(H) by linearity. The inequality

|α(x)| � ‖α‖
√

QT (x) (x ∈ F(H))

can be used to show that a ∈ ET by reversing the steps at the beginning of the proof. By
continuity, α must be the continuous extension of x �→ tr(a∗x) from F(H) to FT (H).

It is easy to see that only one a can have identical values of 〈η, a(ξ)〉 for ξ, η ∈ H and
so there is a unique a for each α.

Turning now to the isometry part, we suppose that H is separable and consider T

represented as Tx =
∑

r arxa∗
r with the various restrictions on the choice of the ar intro-

duced before the statement of the proposition.
For finite rank W =

∑
i ξ∗

i ⊗ ηi, we have

QT (W ) =
∑
i,j

〈T (ξ∗
i ⊗ ξj)ηi, ηj〉

=
∑
i,j

∑
r

〈ar(ξ∗
i ⊗ ξj)a∗

rηi, ηj〉

=
∑

r

QΩar
(W )

=
∑

r

| tr(a∗
rW )|2.
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For a =
∑

r αrar ∈ ET , it follows from the Cauchy–Schwarz inequality that

| tr(a∗W )| =
∣∣∣∣∑

r

ᾱr tr(a∗
rW )

∣∣∣∣
�

√∑
r

|αr|2
√∑

r

| tr(a∗
rW )|2

= ‖a‖ET

√
QT (W ).

Thus the norm of a in the dual of FT (H) is at most ‖a‖ET
.

For the reverse inequality we rely on the �2 linear independence condition (3.1), which
we rephrase to say that if (α1, α2, . . . ) ∈ �2 is non-zero, then there exist vectors ξ, η ∈ H

with ∑
r

ᾱr〈η, arξ〉 =
∑

r

ᾱr tr(a∗
r(ξ

∗ ⊗ η)) �= 0.

Rephrasing again, and using the Hahn–Banach Theorem, it says that the linear span of
all the sequences (tr(a∗

r(ξ
∗ ⊗ η)))r is dense in �2. This linear span consists of

{(tr(a∗
rW ))r : W ∈ F(H)}.

Using this we can see that given a =
∑

r αrar ∈ ET , we can pick W ∈ F(H) with
QT (W ) =

∑
r | tr(a∗

rW )|2 = 1 and

tr(a∗W ) =
∑

r

ᾱr tr(a∗
rW )

arbitrarily close to
√∑

r |αr|2 = ‖a‖ET
. Thus we establish the desired reverse inequality.

�

Remark 3.5. In view of the argument above leading to (3.2) and the above isometry,
we can see that for a ∈ ET , the smallest λ > 0 such that λT − Ωa is completely positive
is λ = ‖a‖2

ET
. (This is also shown in [4, p. 560].)

Our proof shows that the dual norm of (FT (H),
√

QT ) is the norm on ET given by
‖a‖2

ET
= inf{λ � 0 : λT − Ωa is completely positive}, and establishes that this gives a

Hilbertian norm on ET even without a separability restriction on H (assumed in [4]).

4. The case of general A

We now prove our main theorem and consider our definition (Definition 1.2) of elements
of the dual A∗ of rank at most k and singleton support in order to relate it to familiar
concepts of extreme points of the unit ball of A∗, pure states and factorial states on A.

Proof of Theorem 1.3. Now let T : A → A be an elementary operator of the form

Tx =
�∑

j=1

ajxbj (aj , bj ∈ M(A)).
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If T is a k-positive elementary operator on A and πt is an irreducible representation
of A, then the elementary operator Tπt

x �→
�∑

j=1

πt(aj)xπt(bj) : B(Ht) → B(Ht)

must be k-positive. Conversely, if all of these operators are k-positive, then T must be
k-positive (which can be seen by considering the normal extension Ta of T to A).

Hence the result follows immediately from Theorem 1.1 and the definitions of QT and
Fs

k(A). �

Example 4.1. Each pure state φ on A is an element of Fs
1 (A). So is every multiple

of a pure state.
This follows because the irreducible representation πφ : A → B(Hφ) is cyclic and the

rank-one projection onto the cyclic vector is easily seen to give rise to φ via the trace
duality.

Example 4.2. Every extreme point of the unit ball of A∗ is in Fs
1 (A).

In [2, Proposition 1.1] it is explained in detail (using [1, Proposition 2.1]) that every
such extreme point can be represented as φ(x) = 〈π(x)ξ, η〉 for an irreducible represen-
tation π : A → B(H) and unit vectors ξ, η ∈ H. In other words, φ(x) = tr(π(x)(η∗ ⊗ ξ))
and so φ ∈ Fs

1 (A).

Example 4.3. For A = K(H) the only irreducible representation of A (up to equiv-
alence) is the inclusion A ⊂ B(H) and so Fs

k(A) can be identified with the elements of
Fk(H) via the trace duality.

Example 4.4. For A = B(H) one irreducible representation of A is the identity and
we can identify Fk(H) with a subset of Fs

k(A).

Lemma 4.5. Let A be a C∗-algebra. For k � 1, φ ∈ Fs
k(A) if and only if φ ∈ A∗ and

the absolute value |φ| is a non-negative multiple of some ψ ∈ Fk(A).

Proof. The polar decomposition (as in [12]) for a normal state φ on a von-Neumann
algebra M states that |φ| satisfies φ = v|φ| for a partial isometry v ∈ M (or φ(x) =
|φ|(xv) for x ∈ M). We have that v∗v is the support of |φ|. For φ ∈ A∗, we consider |φ|
relative to the normal extension of φ to A∗∗.

Take φ ∈ Fs
k(A) and we leave aside the trivial case φ = 0. Write φ(x) = tr(πt(x)y),

where y ∈ Fk(Ht). Via polar decomposition, we can express y = v|y| for some partial
isometry v of Ht (and both |y| and v have the same rank as y). Then it is easy to
see from a diagonalization of |y| that x �→ tr(πt(x)|y|) is a multiple λψ of a state ψ ∈
Fk(A), with λ � 0 the sum of the eigenvalues of |y|. λ is then the trace class norm of
y (= ‖φ‖, as can be seen by considering the norm of the extension of φ to A∗∗) and
ψ(x) = tr(πt(x)(|y|/λ)). Also φ(x) = λψ(xv) for x ∈ A and this extends to x ∈ A∗∗.
From the Cauchy–Schwarz inequality for ψ it follows that |φ(x)|2 � λ2ψ(x∗x) and then
it follows from [12, Proposition III.4.6] that |φ| = λψ.
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Conversely, we know Fk(A) ⊂ Fs
k(A) and so any ψ ∈ Fk(A) can be expressed as

ψ(x) = tr(πt(x)y) for some y ∈ Fk(Ht), some t ∈ Â. If v ∈ A∗∗ is the partial isometry
with v∗v the support of ψ and φ(x) = |φ|(xv) = λψ(xv) for x ∈ A∗∗ (some λ > 0),
then we claim that v must be in πt(A)′′ ≡ B(Ht). To check the claim, consider the
central projection z ∈ A∗∗ such that πt(A)′′ = zA∗∗. Then w = zv is a partial isometry
with the same properties as v (w∗w = zv∗v = v∗v, λψ(xw) = λψ(xv)) and by the
uniqueness of polar decompositions, w = v. It follows that λψ(xv) = λ tr(πt(x)π′′

t (v)y)
and π′′

t (v)y ∈ Fk(Ht). Thus x �→ λψ(xv) is in Fs
k(A). �

Proof of Theorem 1.4. If T is k-positive, then

x �→ T (a∗xa) =
�∑

j=1

(aja
∗)x(abj)

must also be k-positive for each a ∈ A. Since Fk(A) ⊂ Fs
k(A), applying Theorem 1.3 to

this new k-positive elementary operator gives the desired inequality.
Conversely, assume the inequality for all ψ ∈ Fk(A) and a ∈ A. Now take φ ∈ Fs

k(A),
which can be represented as

φ(x) = tr
(

πt(x)
k′∑

j=1

η∗
j ⊗ ξj

)
=

k′∑
j=1

〈πt(x)ξj , ηj〉

with t ∈ Â, k′ � k, ξj , ηj ∈ Ht (1 � j � k′). We can further assume that the ξj are
orthonormal. By the transitivity theorem, there exists ã ∈ A with ηj = πt(ã)ξj for
1 � j � k′ and then

φ(x) =
k′∑

j=1

〈πt(ã∗x)ξj , ξj〉 = ψ(k′ã∗x) = ψ(ax)

if we take ψ ∈ Fk(A) to be given by ψ(x) = (1/k′)
∑k′

j=1〈πt(x)ξj , ξj〉 and a = k′ã∗.
Observe then that

φ∗(x) = φ(x∗) = ψ(ax∗) = ψ(xa∗).

Thus, from (1.1) we can apply Theorem 1.3 to show that T is k-positive.
(Our original argument for the converse used Lemma 4.5. This more direct argument

was pointed out to the author by Archbold, whom we thank for permission to include
it.) �

Corollary 4.6. For a C∗-algebra A and k � 1, the following conditions are equivalent.

(i) A is either k-subhomogeneous or an antiliminal extension of a k-subhomogeneous
C∗-algebra.

(ii) Fk(A) is weak∗-dense in Fk+1(A).

(iii) Fk(A) is weak∗-dense in Fm(A) for each m � k.
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(iv) For each m � k, Fm(A) is contained in the weak∗-closure of the intersection of the
unit ball of A∗ with Fs

k(A).

(v) For each m � k, Fm(A) is contained in the weak∗-closure of Fs
k(A).

(vi) Every k-positive elementary operator on A is completely positive.

(vii) Fk+1(A) is contained in the weak∗-closure of Fs
k(A).

(viii) Every k-positive elementary operator on A of the form Tx =
∑�

j=1 ajxbj (aj , bj ∈ A

for 1 � j � �) is (k + 1)-positive.

Proof. The equivalence of (i)–(iii) is shown in [5]. Condition (i) means that the
(unique) maximal postliminal ideal J ⊂ A is a k-subhomogeneous C∗-algebra. The impli-
cations (iii) ⇒ (iv) ⇒ (v) are obvious.

(v) ⇒ (vi). Suppose T (x) =
∑�

j=1 ajxbj is a k-positive elementary operator on a C∗-
algebra where (v) holds. Then using Theorem 1.4, it is sufficient to show that (1.1) holds
whenever ψ ∈ Fm(A), m > k and a ∈ A. Fixing such a ψ and a, we can find a net (φα)α

in Fs
k(A) which converges weak∗ to ψ, so that φα(ax) → ψ(ax) for each x ∈ M(A). (Note

that ax ∈ A.) Now, φαa ∈ Fs
k(A), where (φαa)(x) = φα(ax) and

(φαa)∗(x) = (φαa)(x∗) = φα(ax∗) → ψ(ax∗) = ψ(xa∗)

for x ∈ A. Since φαa ∈ Fs
k(A) we can apply Theorem 1.3 to get QT (φαa) � 0 or

�∑
j=1

(φαa)∗(aj)(φαa)(bj) � 0.

Taking a limit, we get (1.1).
(vi) ⇒ (v). Assume ψ ∈ Fm(A) (m > k) is not in the weak∗-closure of Fs

k(A). Then
there exist a1, a2, . . . , a� ∈ A such that

max
1�j��

|ψ(aj) − φ(aj)| > 1

for each φ ∈ Fs
k(A). Define γ(φ) ∈ C

� by γ(φ) = (φ(a1), φ(a2), . . . , φ(a�)) and similarly
define γ(ψ). Then it follows that {γ(φ) : φ ∈ Fs

k(A)} is a ‘cone’ in C
� (closed under mul-

tiplication by complex scalars) and, moreover, the (Euclidean) distance from γ(ψ) to this
cone is at least 1. It follows that there is an upper bound c =

√
‖γ(ψ)‖2 − 1/‖γ(ψ)‖ < 1

on the cosine of the angle in C
� between γ(ψ) and this cone. Hence

|〈γ(ψ), γ(φ)〉| � c‖γ(ψ)‖‖γ(φ)‖

for each φ ∈ Fs
k(A). Let (λ1, λ2, . . . , λ�) = γ(ψ)/(c‖γ(ψ)‖) and consider the elementary

operator T : A → A with

Tx =
�∑

j=1

a∗
jxaj −

( �∑
j=1

λjaj

)∗
x

( �∑
j=1

λjaj

)
.
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It follows by Theorem 1.3, that T is k-positive because

QT (φ) =
�∑

j=1

|φ(aj)|2 −
∣∣∣∣

�∑
j=1

φ(aj)λj

∣∣∣∣
2

= ‖γ(φ)‖2 − |〈γ(φ), γ(ψ)〉|2
c2‖γ(ψ)‖2 � 0,

but T is not m-positive because QT (ψ) < 0.
(vii) ⇐⇒ (viii) can be proved by the same argument (since the case aj , bj ∈ M(A) is

not needed for (vi) ⇒ (v)) and clearly (vi) implies (viii).
To prove that (viii) implies (i) and complete the proof, observe that condition (viii)

implies that the same is true of each (closed two-sided) ideal J ⊂ A. Each k-positive
elementary T : J → J of the form given in (viii) (aj , bj ∈ J for each j) gives rise to a
k-positive elementary T1 on A via T1x =

∑�
j=1 ajxbj (see [3, Lemma 2(i)]). Hence T1 is

(k + 1)-positive and it follows that T is (k + 1)-positive.
Taking J to be the maximal postliminal ideal of A, our goal is to show that J is

k-subhomogeneous. For this we rely on the following lemma.

Lemma 4.7. Suppose A is a continuous trace C∗-algebra which satisfies condition
(viii) of Corollary 4.6. Then A is k-subhomogeneous.

Proof. We have proved that (viii) ⇒ (vii) in Corollary 4.6 and so we can conclude
that Fk+1(A) is contained in the closure of Fs

k(A) in the present case.
If A is not k-subhomogeneous, there exists t ∈ Â so that the associated representation

πt : A → B(Ht) has Ht of dimension at least k + 1. Choose k + 1 non-zero orthogonal
ξj ∈ Ht, normalized so that

∑k+1
j=1 ‖ξj‖2 = 1, and put y =

∑k+1
j=1 ξ∗

j ⊗ ξj . Then we can
define ψ ∈ Fk+1(A) \ Fk(A) by ψ(a) = tr(πt(a)y).

Since A must obey Fell’s condition, there is a p ∈ A such that πs(p) is a rank-one
projection for all s in some neighbourhood of t in Â. Using the Dauns–Hoffman theorem,
we can find q ∈ A so that πs(q) = θ∗

s ⊗ θs is a positive element of B(Hs) of rank at most
one for all s ∈ Â and πt(q) = πt(p). By the transitivity theorem, there exist aj ∈ A

(1 � j � k + 1) so that πt(aj)θt = ξj . Note that

ξ∗
i ⊗ ξj = (πt(ai)θt)∗ ⊗ (πt(aj)θt)

= πt(aj)(θ∗
t ⊗ θt)πt(a∗

i )

= πt(aj)πt(q)πt(a∗
i ) = πt(ajqa

∗
i ).

By a short computation, we can compute yij = ψ(ajqa
∗
i ) and get yij = δij . In particular

the (k + 1) × (k + 1) matrix with entries yij has determinant 1.
Setting ηs,j = πs(aj)θs ∈ Hs, we get

η∗
s,i ⊗ ηs,j = πs(ajqa

∗
i ).

If φ1 ∈ Fs
1 (A), then the (k + 1) × (k + 1) matrix with entries φ1(ajqa

∗
i ) has rank at most

one. To verify this, suppose the support of φ1 is s and then φ1 can be represented as
φ1(a) = tr(πs(a)(θ∗ ⊗ µ)) for θ, µ ∈ Hs. Then we can compute

φ1(ajqa
∗
i ) = tr((η∗

s,i ⊗ ηs,j)(θ∗ ⊗ µ)) = 〈ηs,j , θ〉〈µ, ηs,i〉.
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It follows that if φ ∈ Fs
k(A), then the matrix with entries φ(ajqa

∗
i ) has rank at most k and

determinant zero. As this is true for all φ ∈ Fs
k(A) and the determinant det(φ(ajqa

∗
i ))

k+1
i,j=1

is a continuous function of φ, the closure of Fs
k(A) cannot include ψ.

This contradiction shows that A must be k-subhomogeneous. �

We now complete the proof of Corollary 4.6. Recall that J denotes the maximal
postliminal ideal of A. The set kĴ of those t ∈ Ĵ such that the associated representa-
tion πt has rank at most k is closed in Ĵ (see [9, 4.4.10, 6.1.5]). There is an essential
continuous trace ideal Ic ⊂ J [9, 6.2.11] and Îc can be identified with a dense subset of
Ĵ . As observed already, Ic inherits condition (viii) from J . By the lemma, Îc ⊂ kĴ . Hence
kĴ = Ĵ . �

As noted in § 1, the case k = 1 is dealt with in [3] where an if and only if result is
established between (i) and (vi).
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