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Hausdorff Prime Matrices

B. E. Rhoades

Abstract. In this paper we give the form of every multiplicative Hausdorff prime matrix, thus answer-

ing a long-standing open question.

Define G = {z : Rez > 0}, H(G) the set of analytic functions defined on G, and

f ∈ H(G).

In 1917 Hurwitz and Silverman ([8]) raised the question of which matrices com-

mute with C , the Cesàro matrix of order one. They found the answer to that question

to be the set of all Hausdorff matrices. In 1921 Hausdorff [5] investigated these ma-

trices, which now bear his name, in connection with the solution of the moment

problem over [0, 1].

A Hausdorff matrix is a lower triangular matrix with entries hnk =
(

n
k

)

∆
n−kµk,

where {µn} is any real or complex sequence, and ∆ is the forward difference operator

defined by ∆µk = µk − µk+1,∆
n+1µk = ∆(∆nµk).

A matrix is conservative if and only if it is a selfmap of c, the space of convergent

sequences. Hausdorff proved that a Hausdorff matrix is conservative if and only if
∫ 1

0
|dχ(t)| < ∞, where χ ∈ BV [0, 1], and the integral is a Riemann–Stieltjes one.

Moreover, the integral is the norm of the matrix.

Every Hausdorff matrix has row sums µ0. If it is conservative, then every column

limit is zero, except possibly the first one, and that column limit exists. Let H denote

the set of multiplicative Hausdorff matrices. (A conservative matrix is said to be mul-

tiplicative if every column limit is zero.) With each Hµ ∈ H there exists a uniquely

defined mass function χ(t) and a corresponding moment function µ(z) =
∫ 1

0
tzdχ(t)

that is analytic for Rez > 0 and continuous over Rez ≥ 0. Conversely, each moment

function or mass function determines a unique Hausdorff matrix. Let V and M de-

note, respectively, the algebras of mass functions and moment functions associated

with members of H. Then the three algebras H, M, and V can be made isomorphic

and isometric. (See, e.g., [6, p. 615].)

Hurwitz and Silverman ([8]) showed that each Hausdorff matrix H has the de-

composition H = δµδ, where µ is the diagonal matrix with diagonal entries µn, and

δ is a lower triangular matrix with entries δnk = (−1)k
(

n
k

)

.
Using this decomposition it is easy to establish the well-known result that H forms

an integral domain. Thus the concepts of divisibility, factor, multiple, unit, associate,

and prime can be defined on H, and these concepts carry over to M and V as well.

The convergence domain of a matrix A, written cA, is the set of sequences {xn}
that A maps into a convergent sequence. A Hausdorff matrix Hµ is called a unit if
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cHµ
= c, and Hµ is called a prime if cHµ

6= c, but every Hλ for which cHµ
# cHλ

implies that cHλ
= c.

Theorem 1 Let H be a Hausdorff matrix in H. Then H is prime if and only if

(1) cH = c ⊕ x

for some unbounded sequence x.

Proof If (1) is satisfied, then it is obvious from the definition of a prime that H is

prime.

Suppose now that H is prime. If H sums a bounded divergent sequence x, then,

from [2, Corollary 2.5.8], H must also sum an unbounded divergent sequence, and

therefore has too large a convergence domain to be prime. If H sums more than one

unbounded divergent sequence, then again H cannot be prime. Consequently, H

sums one unbounded and divergent sequence x, and the convergence domain of H is

of the form (1).

In 1933 Hille and Tamarkin ([7]) proved that every Hausdorff matrix with mo-

ment function

f (z) =
z − a

z + 1
, Re a > 0

is prime and raised the question of whether each prime is of this form. We answer

their seventy-five year old open question by means of the following theorem.

Theorem 2 Let H f be a multiplicative Hausdorff matrix. Then H f is prime if and

only if

f (z) =

( z − a

z + 1

)

g(z), Re(a) > 0,

where g is a unit.

Proof The sufficiency is obvious from [7], since multiplication of Hausdorff matri-

ces is commutative.

Suppose that H f is prime. Since H f is multiplicative, f has the representation

f (z) =

∫ 1

0

tzdχ(t),

where χ(t) ∈ BV [0, 1], χ(0+) = χ(0) = 0, and χ(t) = [χ(t + 0) + χ(t − 0)]/2 for

each 0 < t < 1.

It then follows that f ∈ H(G), and f is continuous and bounded on G in C.

Let σ(Hµ) denote the spectrum of Hµ. Sharma [9] has shown that σ(H f ) ⊃ f (G).

Either 0 ∈ σ(H f ) or 0 /∈ σ(H f ). If 0 /∈ σ(H f ), then H f is invertible, hence a unit,

and hence not prime.

Grahame Bennett has shown that µn → 0 implies that Hµ is not prime. Therefore,

we need consider only those Hausdorff matrices for which µn 9 0 and 0 ∈ σ(H f ).

Since µn 9 0, 0 ∈ f (G) implies that either there exists a z0 ∈ G with f (z0) = 0, or

there exists a sequence {wn} ⊂ f (G) with lim wn = 0. But, in the latter case, for each

https://doi.org/10.4153/CMB-2011-052-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-052-2


Hausdorff Prime Matrices 3

n there exists a zn ∈ G such that wn = f (zn). Also {zn} is bounded, since µn 9 0.

Since f is continuous on G, 0 = limn f (zn) = f (lim zn), and lim zn ∈ G, since it is

closed. Thus µn 9 0 and 0 ∈ σ(H f ) imply that there exists a z0 ∈ G with f (z0) = 0.

There are two possibilities; either Rez = 0 or Rez > 0.

Case IA Rez = 0 and f (z) 6= 0 for z ∈ G.

Since G is simply connected, by [3, Theorem 2.2(h), p. 202], there exists a g ∈
H(G) such that f (z) = [g(z)]2. Since f is bounded and continuous in G, so is g.

From [4], cH f
⊇ cHg

.

We now need to show that cHg
6= c. From [1], g(z0) = 0, since z0 ∈ G implies that

Hq sums the sequence

sn =
Γ(n + 1)

Γ(n + 1 − z0)

to zero.

If z0 6= 0, then {sn} is a bounded divergent sequence, and cHg
6= c. If z0 = 0, then

µ0 = g(0) = 0 and Hg is conull. It is well known that every conull matrix sums a

bounded divergent sequence. Therefore, in all cases, cHg
6= c and f is not prime.

Case IB Suppose that f also has a zero in G. Call it z1. Then we may write

f (z) = (z − z1)kg1(z), where g1 ∈ H(G), g(z1) 6= 0.

Moreover, since f is also bounded in G, it must be the case that g1(z) = O(|z|k) in G.

Therefore we may write

f (z) =

( z − z1

z + 1

) k

g(z), where g(z) = (z + 1)kg1(z),

and where k is finite and k ≥ 1. Therefore, cH f
⊇ cHg

6= c since g(z0) = 0, from

Case IA, and f is not prime.

Case II Rez > 0.

As in Case IA we may write

f (z) =

( z − z0

z + 1

) k

,

where g ∈ H(G) and g is bounded and continuous in G.

Clearly H f cannot be prime if k > 1, since then cH f
⊇ cHk

, where k(z) =
z−z0

z+1
.

Using the same argument, if g has any zeros in G, then, since cH f
⊇ cHg

, f cannot be

prime.

But, if g does not vanish in G, it is a unit. Therefore H f prime implies that f has

the desired representation.
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