GENERALIZATIONS OF MONTEL-LINDELOF’S
THEOREM ON ASYMPTOTIC VALUES

MAKOTO OHTSUKA

Introduction

Montel [10] proved in 1912 the following theorem: Let w=7(z) be an
analytic function in the horizontal strip B: 0 <x < + o, 0 <y <1 (z2=x+41y)
which is continuous on 0 <x < + c, 0 =y <1 and omits at least two values.
If f(x) converges to a value wo as ¥ —» + o, then f(z) converges to w, as z
tends to o in 0 <x < + o, 0=£y<1~¢ for any ¢ such that 0 << 1.

Next the following fact was proved by Lindelof [9] in 1915: If a function
f(2), bounded and analytic in B, converges to a value wy as z tends to « along
acurve L in B, then f(z) converges to w, as z tends to < in any strictly nar-
rower substrip’: 0<x < 4+ o, e<y<1l—¢ (0<e<1/2).

In 1918, Gross [6] generalized this theorem. He called in [5] a mero-
morphic function w =f(z) defined in B exceptionally ramified (ausnahmsver-
zweigt) if there exist a finite number of points {w:} in the extended w-plane
and integers sur =2 with >)(1—1/m) > 2, such that, with at most a finite
number of exceptions, the roots of the equations f(z) = wr have multiplicities
divisible by ux. If the equation f(z) =w: has only a finite number of roots we
may set up= . Thus, for instance, if f(z) excludes at least three values, it
is exceptionally ramified. The result obtained by him is as follows: If f(z) is
meromorphic and exceptionally ramified in B and converges to wp as z tends to
o along a curve L in B, then f(z) converges to wo as 2 tends to o in any
strictly narrower substrip.

He did not explicitly include the case in which L coincides with the positive
x-axis, but it is easily seen that the same conclusion as in the above mentioned
Montel’s theorem can be obtained. Conversely, once the theorem is established

both in the case that L is identical with the positive x-axis and in the case that

Received December 28, 1955; revised April 5, 1956.
Iy We say that a substrip is strictly narrower than B if both its sides are in B.
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L coincides with the upper side of B, it can be proved for any L inside B. To
see this, we suppose that L is a curve in B which starts from a point 7y
(0 <y <1) and extends to z = o, and denote by D, and D. the domains between
L and the upper and lower sides respectively. We map D; conformally onto a
strip B; : 0<§< + o, 0<79<1 so that L and the upper side of B are trans-
formed into the positive ¢-axis and the upper side of B; respectively. Then the
inverse image of the line 0 < £ < + «, p=1—¢ for any e such that 0 <e<1/2
is included in the domain between the line y =1 -¢ and the line y =1. This
follows from the fact that the bounded harmonic function in D, equal to 0 on L
and to 1 on the upper side and with vanishing normal derivative on the rest
of the boundary, is smaller than the harmonic function y. Therefore, if the
theorem is true in B, the convergence is concluded in the part of B between
L and the line y=1—¢. The same reasoning applies to D, and we see that
the convergence holds for e <y <1 —e.

The theorem is, however, no longer always true for the class of ordinary
meromorphic functions of bounded type as an example shows (see [8], p. 44).
We might then raise the question as to whether the finiteness of the area of the
Riemann surface of an inverse function is enough for the conclusion. This is
answered affirmatively if we observe that, in this case, at least three values are
taken at most finite times so that Gross’s result can be applied.”

In our paper, we shall refine the Montel-Lindeléf’s theorem from other
several general points of view. In particular, we shall stress the question as to
what size of a set on the real axis is needed in order to conclude, from the
convergence of a function along the set, the convergence of the function as the
variable tends to o in any strictly narrower substrip. We shall not treat the
problem when a set along which a function tends to a limit is given inside B.
It seems rather difficult to give it a decisive answer.

Chapter I will be devoted to ({) parabolic transformations. An ({) parabolic
transformation is such as the number of sheets of the covering surface associated
with the inverse transformation is under a certain restriction above neighbor-
hoods of an element ¢, which is in a sense small. Such transformations were
defined and used in n° 6 of [15]. After mentioning some notions defined in [15]

and defining (Q) parabolic transformations of schlicht type, a generalization of

% T owe this remark to Professor Noshiro and Mr. Oikawa (Tokyo University).
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the Montel-Lindelsf’s theorem, will be stated in n” 1 for these transformations.
Four lemmas on extremal length and one more lemma will be given in n” 2-3.
We shall prove Theorem 1 in n° 4 and remark that the result can be applied to
the problem of conformal mappings. In n” 5, we shall consider transformations
which are not necessarily of schlicht type, and define () parabolic transfor-
mations. Theorem 2 gives an example of (V) parabolic transformation. The
condition in it is the same as imposed in n° 7 of [15] to obtain an extension of
a theorem of Beurling. We shall prove in n® 6 a generalization of the Montel-
Lindelof’s theorem for () parabolic transformations. Throughout this chapter,
the condition that a function tends to a limit along the real axis will be relaxed
to the condition that the function tends to a limit along a part of the axis, whose
size is characterized in terms of logarithmic capacity. The convergence will be
concluded even on the line y =1 outside a small set.

In Chapter II, we shall deal with the analytic functions taking values on
Riemann surfaces whose universal covering surfaces are of hyperbolic type, or,
more generally, the analytic functions which are exceptionally ramified in a
generalized sense. The precise definition of such functions will be given at the
beginning of n” 1. We shall introduce a new element to a Riemann surface
with the aid of a superharmonic function on it, and sets on the x-axis having
positive average linear measure near x = + . With these notions, a theorem
of the Montel-Lindelsf type will be stated for a Riemann surface with positive
boundary, generalizing a special case proved by Kuramochi [7] and by the
author [14]. Here, the limit will be the element just introduced, and the set
on the real axis, which ensures the convergence in any strictly narrower sub-
strip, will have positive average linear measure near x = + . The condition
on the linear measure of the set is less restrictive than the condition in Chapter
I on the logarithmic capacity of the set. One may compare this situation with
the refinements of Fatou’s theorem and Riesz’s theorem by Beurling under ad-
ditional conditions. In n° 2, some properties and examples of the above defined
element will be given, and, in n°® 3, the theorem stated in n° 1 will be proved.
Theorem 5 will show that the condition that we obtain in the theorem is in a
sense the best possible. In n® 4-5, Riemann surfaces with null boundary will
be the object of discussion. In this case, in order to conclude the convergence

in any strictly narrower substrip, we must take the whole axis as the set along
which the function tends to a limit. It will be proved in Theorem 7.
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To extend our results to pseudo-analytic functions we need some properties
of quasi-conformal mappings of one strip onto another. A similar discussion
was carried out by YQjobo [24; 25] for his class of quasi-conformal mappings,
but we are interested in the class of functions defined by Pfluger [16] and
Ahlfors [1], which is more general than Y{ijobo’s. We shall mention this ques-

tion at the end of our paper; his result follows from ours.

Chapter I. () Parabolic Transformations

1. First we shall define the extremal length of a family of systems of
curves and the dilatation of a transformation.

Let §* be a connected topological space, and # a subset of &, composed
of a countable number of Riemann surfaces. A set of at most countably many
curves on g will be called a system of curves. We shall say that a system of
curves separates two given mutually disjoint sets on §* with respect to an open
subset of &* if it intersects all curves, if any, which connect the two sets in the
open set A covariant quantity p, 0 £ p £ + o, defined on § will be called

admissible for a family of systems {c} in § if Scpds 21" for all ce{c}. Given

a real-valued function =(P), 0 € n(P) £ + o, on §, we set Mx{c}= ir;f SS%npzdt
for admissible p, where dr is the area of surface element, and set ix{c}
=1/M.{c}; the latter quantity will be called the extremal length of {c} with
weight n. In case n(P)=1, M{c} and A{c} will represent Mi{c} and i;{c}
respectively and i{c} will be called simply extremal length. The extremal dis-
tance of two sets X; and X. on a Riemann surface with respect to an open set
G is defined by the extremal length of the family of all curves which connect
points of X; with points of X, in G, and we shall denote it by us(Xi, Xo); if
there is no such curve we set the extremal distance equal to oo.

Let f(P) be a homeomorphism of § onto another countable set 7: of Rie-
mann surfaces, and PE § a point at which «#(f(P(x, ¥))) and »(f(P(x, y)))
are totally differentiable, where z = x + 7y is a local parameter at P and w=u + iv
is a local parameter at f(P); we shall say simply that f(P) is totally differ-
entiable at P. We set, at this point, Dyw = Dew(z) = 1r1_{r3 (w(z + 7€) —w(z2))/re®

3 Curves may terminate at boundary points of the open set. We shall omit this
remark hereafter.
4 For the precise definition of this lower integral, see n° 1-2 of [15].
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(0=0<27) and J(2) = uzvy — uyvy; the dilatation q(P) is defined as
ogi§,lD°m2/ |J(z)| at points P where f(P) is totally differentiable and J(z) = 0.
It is set equal to + o at other points of F.¥ The value of the dilatation does
not depend on the choice of local parameters.

We shall call f(P) absolutely continuous on a system of curves® if some
arc of the system is not rectifiable, or, otherwise, if, for a local parameter z at
any point P on the system and for a local parameter w at f(P), w(f(P(z)))
is absolutely continuous on the z-image of the system so far as the function is
well-defined. The inequality: A{c:} < Ai{c}( ) in n° 2 of [15]) is valid for a
family of systems {c} of curves in 7, on each of which f(P) is absolutely con-
tinuous and totally differentiable almost everywhere (a.e.),” and for the family
of their images {c:} in #:. This inequality will be used later.

Now let B be a filter with a countable base (D}, composed of open sets

ok 8)

in %% We let B define a new element € and introduce a topology into ™+ {Q}

5 We can show by an elementary calculation that the dilatation of f(P) and that of
its inverse function at corresponding points are equal. We remark also that we can
define dilatation similarly even if f(P) is not schlicht.

6) We did not define this notion clearly in [15] but there too the notion should be
understood in this sense.

Y We mean by this that, for any arc of ¢ which corresponds to a rectifiable arc ¢,
in a parameter circle |z| <1, f(P) is totally differentiable at the point P(z(s)) for almost
every value of s, where z(s) is the representation of ¢; in terms of the arc-length (see
[18], p. 258). This property does not depend on the choice of local parameter.

We shall show that, in case ¢ is a simple rectifiable curve in a plane, this is equiva-
lent to saying that the exceptional set on ¢ has vanishing outer length in the sense of
Carathdodory. If we use the representation of ¢ in terms of the arc-length and if we
define an interval function and then an outer measure s*(A) for sets A in (0, s) as in
ne 1 of [15], where so denotes the total length of ¢, then s*(A) is equal to the outer
Lebesgue linear measure. Since it is shown (see p. 155 of [20]) that the s*(A)-value of
any set A in (0, so) is equal to the outer length of the corresponding set in the plane
in the sense of Carathéodory, our assertion follows.

The author made a misstatement at lines 20-24, p. 203 in [15]; it follows from proper-
ty i) only that g7'(P) is totally differentiable a.e. on c(u,) for almost every value u..
In order to correct this error, we require the function to be totally differentiable a.e.
on a system of curves instead of requiring it to be totally differentiable everywhere on
the system, at line 4, p. 193; line 22, p. 194; line 18, p. 196 in [15]. We notice that Lemma 1
and e) in ne 2 still hold and that the subsequent statements remain valid. At line 20, p. 203,
we define C/ to be the subfamily of C. such that, on each element c(u.)eCl, the restric-
tion of g 1(P) to & is totally differentiable a.e. and absolutely continuous. Then, from
properties i) and iii), it follows that C(M,L)EC:‘ for almost every . such that 0 <u.<1.

8 The intersection QDn needs not be empty. Therefore, it can happen, for instance,

that 8B is the filter of the neighborhoods of an inner point of Z*.
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by taking {D.+{{}} as a base of the neighborhoods of € and preserving the
original bases of the neighborhoods of the points of F*. A continuous transfor-
mation f(P) of a space §, composed of a countable number of Riemann surfaces,
into §F* will be called an (Q) parabolic transformation of schlicht type, if the
restriction of f(P) to {PE{ ; f(P) e} is schlicht and if we can find for
a base of B a decreasing sequence {D,} of open sets, with mutually disjoint
relative boundaries {c»}, such that, for every pair n and m (n <m), there
exists a family of systems {c¢™”} of curves in §, which separate ¢, and cm
with respect to %%, with the property that, on every c¢™™, f YP) is totally
differentiable a.e. and absolutely continuous and that Ai;,{c™™} -0 as m > «
while # is kept fixed, where g = g(P) represents the dilatation of f~'(P).

To formulate the first theorem, we introduce one more notion. A closed
set F on the positive x-axis is said to have positive average logarithmic capacity
near x = + o if there exist x> 0 and @ > 0 such that the logarithmic capacity
of the part Fu(x) of F in the interval (x —a, x+a) is greater than a finite
constant d > 0 for all ¥ > x,.

Now we state the following extension of the Montel-Lindel6f’s theorem for
() parabolic transformations of schlicht type.

~

TueoreMm 1. Let 3" be a connected topological space, % a subset of T,
composed of a countable number of Riemann surfaces, and L a new element
defined by means of a filter B on F*. Suppose that there exists a base {D,} of
B, composed of open sets, such that every reiative boundary cn of D) is nonempty
and consists of a countable number of mutually disjoint Jordan closed curves or
open arcs in T of which at most a finite number are compact in F, and intro-
duce a topology into FF+{Q) in the customary way. Let B be the strip
0<x< 4+, 0<y<1 in the z-plane, and F a closed set on the positive x-axis
having positive average logarithmic capacity near x = + . Let f(z) be an ()
parabolic transformation of schlicht type of B into ', which is a continuous
mapping of B+ F into T*+{L}). If f(x) >Q as FDx > + o, then we can
Jfind a set 2, relatively closed in B and approaching the boundary of B as z - o,
such that f(z) > Q as z— o outside of 2, with the property that the extremal
distance of F and £ with respect to any open set G C B tendsto + « as G as a

whole recedes to the point at infinity.

9 Each end of every open arc terminates at a point in § or tends to the boundary of F*.
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If, in addition, f(2) is continuous on the line y =1, then f(x +1i) converges
to & as x > + o« outside of a closed set whose part in an interval of definite
“length, whatever this length may be, has a logarithmic capacity tending to zero

as the interval recedes to .

2. In this section we shall give four lemmas concerning extremal length.
First we mention the following result by Brelot and Choquet ([3], p. 243)

which will be used in the proofs of lemmas:

Let § be a Riemann surface with positive boundary, K a compact set in
bounded by a finite number of closed analytic curves, u(P) the harmonic measure
of the boundary of 5 with respect to ¥ — K, and v(P) its locally defined conjugate.
Then almost every v-level curve starts from a point of K and tends to the boundary

of ¥, and u(P) increases monotonously from 0 to 1 on it.
We shall prove

LemMa 1. Let R be a rectangle 0<x<a, 0<y<m in the zplane,
z=x+1y, and F a closed set on the right side of R with positive logarithmic
capacity. Let u(z) be the bounded harmonic function in R, equal to 0 on the
left side I and to 1 on F except for a set of logarithmic capacity zero and with

)

vanishing normal derivative on the rest of the boundary.® Then for the extremal

distance pp(Il, F) between I and F, there holds

_ 717 B 7__l7 11)
ur(l, F) = Drul = S . )

1
where DLul is the Dirichlet integral of u(z) in R and v(z) is the conjugate of

u(z2).

Proof™ We surround F by a finite number of closed analytic curves and
denote by c¢; their parts inside B. We surround F again by a finite number of
closed analytic curves which lie inside the curves taken the first time, and denote

by c¢: their parts inside R. In this way we obtain an approximation {R.} of R

10 On R, u(z) equals the harmonic measure of F with respect to the double of R
minus 1.

1) The variation j.dv is taken in the positive sense always in this paper.

12) We may apply Theorem 2 of Strebel [21] to obtain this relation.
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such that ¢, is the part of the boundary of R, in R and converges to F as
7 -~ . Let u,(P) be the bounded harmonic function in R,, equal to 0 on I and
to 1 on ¢» and having vanishing normal derivative on the rest of the boundary,

and let v.(P) be its conjugate. We proved in Theorem 4 in [15] that us(I, F)
=1im 1/DLu»]. Since D[#n] ~ D[zl and D[un] = Sla’vn —»S dv as n - o,
4

n—->o

our lemma is obtained.

Secondly we give

LemMma 2. Let §§ be a Riemann surface, ¢, and ¢ two nonempty disjoint
closed sets which consist of countably many mutually disjoint Jordan closed curves
or open arcs in T, and 4 an open set with relative boundary c1+c:. We take
an exhaustion {B.} of § such that, for every n, the boundary I'n of Bn consists
of a finite number of closed analytic curves, let u,(P) be the bounded harmonic
Function in 4N By, equal to 0 on ¢; N\ (Bu+1T%) and to 1 on c2\(By+ ')
except for sets of logarithmic capacity zero and having vanishing normal deriva-

tive on 4N\ Ty, and let v,(P) be its conjugate. Then we have

1 1
2} "(C,Cz):-—~ = 5
Ha o mitt DAnR,l[un] jdl)
n

and this common value tends to ps(ci, ¢2) as n—> «, where ydvn is taken along

the wu.-level curve for an arbitrary value un such that 0 < u, < 1.

Proof. The fact seems simple but the proof ‘will be tediously long on ac-
count of the general character of ¢, and c,.

We form the double B, of B, along I's, and denote by &, and &, the respec-
tive doubles of ¢ N (B+T%) and ¢: N (Bn+1T%) and by 4, C B, the double of
4N By, along 4N T Then 4, is bounded by &.+¢&s. We may suppose that
tnx¢ and ¢hx¢ for all 2 1. The harmonic measure of &, with respect to
dn is equal to #(P) in 4N B, and will be denoted by the same notation u.(P).

For an arbitrarily fixed value uy, 0 < uy <1, we take a regular piece of the
un-level curve ¢y @ un(P) = u,, start from the points of this piece and trace va-
level curves in both directions until we meet multiple points or points on ¢, or
¢4, Since u,(P) varies monotonously on our route, it is not a closed curve. If
there is a route which terminates at a point of ¢,-+ ¢» and along which un(P)

tends to a positive value less than 1, then this point is an irregular boundary
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point of the open set 4, in Dirichlet problem. It is well known that such ir-
regular points form an F,-set of logarithmic capacity zero in Ba., and hence ap-
plying Theorem 2 of [14] we see that, on almost all routes, #.(P) increases
monotonously from O to 1. Since this is true for any regular piece of the wn-
level curve co, it follows that, on almost all wa-level curves passing co, un(P)

increases monotonously from 0 to 1.

Let now P, be any point of 4, around which #,(P) is not constant. In a
similar way we see that the set of w,level curves on which #,(P) increases
monotonously from 0 to 1 covers a neighborhood of P except for a set of
(u#n, vn)-measure zero. But each one of such v.-level curves cuts the level curve co.
Thus the set E, of all points, lying in 4» on the wa-level curves along which
un(P) varies from 0 to 1, covers the part of 4, in which #.(P) is not constant,
except for a set of (ux, vn)-measure zero. Therefore, by Fubini’s theorem, we

obtain
D;. Bn [un] = j‘j‘ﬂ A I«?ndu" dvn = 5(12}”,

the integral S dv, being taken along any ua-level curve ¢ : ua(P) = const. #a,
0<un<1in 4N By

For any admissible p for the family of all curves, which connect ¢; and c:
in 4N B,, with respect to .-+ iv,, we have by Schwarz's inequality that
1= S:(fdun . Sldun =§pzdu,,, where the integrals are taken along a v,-level curve
in 4N B, on owhich us( P) increases from 0 to 1. Since this relation is true for
almost all v,-level curves, it follows that Sdmdvn = Sszdundvn and hence
tamralcy, €2) £ Dann,Lun]™". To obtain the inverse inequality, we take an exhaus-
tion (B2} of 4. such that B% is bounded by a finite number of closed analytic
curves. For large p, these curves are separated into two disjoint families and
these families approach ¢, and ¢, respectively as p » . Let us define the
harmonic measure #2(P) of the latter family of curves with respect to B%. It
is immediate to see that stsmm(ci, ¢2) = Dane[a'®]™.  Since Dainnzlu?’]
~ Dinp,[un] as p— oo, the inequality spannc, ¢2) = Dinn,Lual™ follows.
Thus we have the required equality.”

We shall prove that 1/Dsn~g,lt0] = tann.lc1, o) = paley, ¢2) as n— .
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The proof will be somewhat similar to that of Theorem 3 of [151." Since
{un(P)} are uniformly bounded we can choose a subsequence {u,,(P)} which
is uniformly convergent locally in 4. We shall show that the limiting function
uo( P) is continuous on 4+ c¢;+c: and equal to O on ¢; and to 1 on ¢.. Let P,
be any point of ¢; N By, and « a Jordan arc of ¢; containing P,. We draw a
small Jordan domain around P, disjoint from ¢» in B, such that it is divided
by « into two parts and at least one of them contains points of 4; if P; is an
end point of a component of ¢;, a domain slit along an arc of « is obtained.
We add to 4 such one part or a domain slit along an arc of « and denote the
enlarged open set thus obtained by 4. The function #,(P), similar to #.(P)
and defined in 4' N By, is not less than u#,(P). On account of the reflexion
principle we can choose a subsequence of {uy,(P)} which converges uniformly
in a neighborhood of Pi.. Hence the limiting function, which is not less than
u( P), vanishes continuously at P. Thus #(P) vanishes continuously at Pi.
This is true for any point of ¢;, and hence u)(P) is continuous and vanishes on
¢;. In the same way, we can prove that u,(P) takes the value 1 continuously
on ¢.

In view of an elementary property of extremal length, we see that
tanmlcy, €2) 1s decreasing as 7z — < and lim 1/Dsn g, [#s] = lim panz,ler, c2)

n—>» n—->©

= ey, ¢2). Next we shall prove that lim Di g, [#s] = Dalu,] and that pzalcs, c2)

= 1/Dalu].  In fact, since un,(P) - ;:(5}’) uniformly locally in 4, it is obvious
that Dslu] < Hm DinrLua,] = lim Dsar,Lun]. On the other hand, p=1 is
admissible for éurves which conne:cat0 ¢ and ¢ in 4 with respect to u, + vy, and
hence there holds us(ei, ¢2) = 1/Ds[up]. These three relations together yield
’ll_fl;lo s nrlc1, €2) = ualer, ¢2), which is the required relation.
‘ Thirdly we shall prove

LemMMA 3. Let R be a rectangle 0 < x < a<a;, 0<y<nr in the z-plane, I
its left side, and F a closed sei on the right side with logarithmic capacity greater

than k> 0. Then up(l, F) has a finite majorant depending only on a and k.

Proof. We map R by w = ¢° onto the upper half of an annulus 4 : 1< |w!

13) We give here a correction of [15]: The assumption that both ¢; and ¢ are closed -
sets and every point of ¢; and ¢, has a neighborhood such that the part of ¢, and ¢ in
it is a crossing arc of the neighborhood was left qut by mistake at line 18, p. 197 and
in the statement of Theorem 3 of [15].
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< e® It is easy to see that the image F., of F on the outer circle has a loga-
rithmic capacity greater than a positive constant depending only on &, if we take
into consideration the fact that the logarithmic capacity of any closed set is equal
to the corresponding transfinite diameter. The same is obviously true of the
union £y of Fy, and its reflexion on the lower semicircle. It is immediately seen
that z.(lw| =1, Fuw) is equal to the half of ux(I, F). The following proof of the
fact that m([w{ =1, Fp) is dominated by a constant depending only on @; and
k is analogous to that of Theorem 1 of [17].

Let U(w) =jlog 1/lw — wldp(w) be the equilibrium potential of £y in the
w-plane with equilibrium constant «, and take the sum U(w) = U(w) + U(e*%/w).
Then on |w|=1, U(w) =log1/{e®(1+e")?}. Let us consider the set S of all
level curves of the conjugate V(w) of {/(w) which are simple curves starting
from the origin and on which {J(w) increases monotonously from — o« to 27.
Since {/(w) is symmetric with respect to |w!| =¢% these level curves are located
inside this circle. The set of the V-values such that the corresponding V-level
curves belong to & has linear measure 27 on account of the above mentioned
result by Brelot-Choquet. For, if we take a value u, sufficiently large, the level
curve U(w)= —uo consists of two simple closed curves r and 7' around w =0
and w= « respectively, and the parts of the V-level curves in the domain
bounded by Fw+ 7+ 7' are identical with the orthogonal trajectories of the level
curves of the harmonic measure of £y, with respect to the domain. We shall
denote by (r;,} the parts of the curves of & between Fw and the U-level curve:
U(w) =log 1/{e“(1+¢“)*}. Itis easy to see that A{r.} =[2x + log {e“(1+€°)*}1/2x.
This value is smaller than a certain constant c¢(a, 2) which depends only on a;
and k On the other hand, we have u(lw|=1, Fu) £ 1{rs} in view of ele-
mentary properties of extremal length. Thus z.(|w|=1, Fu) <c(ai, k) and the
lemma is proved.

The last lemma in this section is

LemMA 4. Let G be a rectangle —ay < x < ay, 0 <y <1 in the z-plane, F,
a closed set in —a)/2 < x < ay/2 on the lower side with logarithmic capacity
ko> 0, and suppose that, given a positive ¢ <1, 2 is a continuum which con-
tains at least one point of the interval ¢« <y <1 -¢ on the imaginary axis and
one point on the boundary of G. Then the extremal length of any family of

systems {c} of curves in G separating F, from 2 with respect to G is greater
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than a positive finite number which depends only on a,, ky and e.

Proof. We may assume that ¢ < @/2. Let S be the domain between the
sides of two rectangles R, : —a/2<x<a/2, ¢e<y<1l-—¢ and Ry : —a/2
—e/2< x< a/2+¢/2, €/2<y<1—¢/2. Let u(z) be the function bounded
and harmonic in the rectangle R : —ao/2 <x < /2, 0<y<e equal to 1 on
F, except for a set of logarithmic capacity zero and to O on the upper side and
with vanishing normal derivative on the rest of the boundary. The total vari-
ation of its conjugate is equal to the Dirichlet integral D[«] and greater than
a positive number dy depending only on @ and k,, according to Lemmas 1 and
3. Almost every orthogonal trajectory of the u-level curve connects a point of
F, with a point of the upper side of R; and «(z) decreases montonously from
1 to 0 on it, on account of the above mentioned result by Brelot-Choquet. We
set o= i+ 0))*/D[u] in Ry and =0 in G— Ry with respect to z=x +y.
If a system ¢ of our family {c} cuts all these trajectories, then the integral
L p1ds = 1. Suppose that there exists a trajectory ¢ which does not meet this
system ¢. Let R(y) be the side of the rectangle in S, passing the point (0, »),
where ¢/2 < y <e¢, and keeping the same distance y —¢/2 from the side of Re.
We start from the lower end point of o, go along o, turn to the left at the point
intersecting R(y) and proceed along R(y) until we meet £. By the hypothesis,
R () necessarily meets 2. Since ¢ separates F, from £, it cuts our route. This
is true for all y in (e/2, €), that is, ¢ intersects all R(y), ¢/2 <y <e. There-
fore, the ordinary length of ¢ is = ¢/2. So if we set p:=2/e in G with respect

to z=x+17y and set p=p;+ 02, then j pds =1 for all ce{c}. Thus 1/i{c}
c

= “{,Pzdxd,v < 2“0(&‘—{— 03) dxdy = 2(1/Dlul + 8av/*) = 2(1/dy+ 8ay/e®) and the
lemma is proved.

3. We shall give one more lemma before we prove the theorem.

Lemma 5. Under the same conditions as in Theorem 1, for every n,
2,={zE B ; f(z) €EF" — D\} approaches the boundary of B as z- « and
the extremal distance of F and 2. with respect to any open set G C B tends to

mnfinity as G as a whole recedes to the point at infinity.

Proof. Let {D.} be a base which satisfies the conditions required in the

definition of () parabolic transformation of schlicht type. For every =, there
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exists »(n) such that D, C D%. By assumption, there is a family of systems
{¢""™ ™)} of curves in ¥, which separate c¢.», and ¢ (s2 > »(n)), with respect to
F*, such that Aye{c™™ ™} >0 as m—> . For every m > p(n) we can find

YO0, M separates ¢y and every

z(m) which satisfies D%om C Dy,. Each system ¢
cr with k= =(m), with respect to 3*. Therefore, for every m > #n, there eixsts
a family of systems of curves in 7% which separate ¢, and c., with respect to
&% on each of which f7'(P) is totally differentiable a.e. and absolutely con-
tinuous, and whose extremal length with weight 1/¢ tends to zero as #: — ©°.
We may now assume, without loss of generality, that {¢,} and {c»} are identical.

Suppose that there exists a sequence of points {2z}, 2, = xp +1vp, in 2, such
that e <y, < 1—¢ for a certain e >0 and x, > + < as p > . Let G, be the
rectangle xp—2a < x <x, +2a, 0 <y <1, where @ >0 is a number for which
the logarithmic capacity of Fu.(x) is greater than d > 0 for all x > x, > 0. Given
m > n, if we take p sufficiently large, then x, > x, and the image of F:a(xp)
lies in Dy +{¢}. We may suppose that the boundary of £, has no compact
component in Gp, because ¢, has at most a finite number of compact com-

2, m

ponents and f(z) is schlicht on {z& B ; f(z) € 3}. Denote by ¢, the inverse

n, m

image in G, of ¢ Each ¢ ™ intersects all curves in G, which connect F and

n,m

the component of 2, that contains z,. Hence, by Lemma 4, 1{cy'"*} = 4 > 0 where

n,m

Ao is a constant depending only upon @, d and «. On the other hand, if ¢
denotes the inverse image of ¢” in B, there holds A{c?"™} £ A, {c™™"} as
pointed out in n° 1 ( ¢) of [15]). These two inequlities are, however, not com-
patible, because A{ci ™} = 2{cpy ™} and Ay4{c™™} > 0 as m - <. Thus the first
part is proved.

Next let G C B be an open set which is not disjoint from £2,. Let B be
the smallest strip, containing G, of the form x < x< + c, 0<y<1. Since
nn(F, 2n) £ 16(F, 25), it is enough to show that p;(F, 2,) > + o as x; > + oo,
We take x, so large that the part of F on the boundary of B, is mapped into
D, +{2} (m>n). We denote by d, the inverse image in By of Du+cm. It
is obvious that s, (F, 2,) = u;,(0m, 22). We approximate B, by an increasing
sequence of rectangles {R,} with boundaries {/}} such that the closure of R,
is included in Rp:i. Let #,(z) be the harmonic function in Rp— 2, — dm, equal
to the harmonic measure of the double of . N (Ry+T,) with respect to the
double of Ry — 2, — dm, which is a part of the double of R, formed along /7.
If v,(2) denotes the conjugate of #,(z), then almost all v,-level curves connect
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22 to 0m, as we have seen in the proof of Lemma 2. Therefore, the inverse

n,m

image c%™ in B, of every ¢ intersects all these v,-level curves. Consequently,

if we set p=1/D[up]l= 1/L . dvp, with respect to up+ vy In Rp — 2n— dm
and to 0 in By — R, then p is“z;(;:‘rl)iésible for {¢}»™}, and hence A{c3 ™} = DLu,].
Then we apply Lemma 2 and obtain lim 1/D[up] = t13,-a,-5,,(0m, 2n) = tt8,(8m, 2n).
If we combine these relations with the already obtained inequality ss,(dm, £x)
£ up(F, 2,), then it follows that 1/i{c%™} £ un(F, 2,). Since 2A{c3™}
£ Aiyg{c™™} and Aip{c™™} >0 as m— o, we see that up(F, £,) > + o« as

X1~ + .

4. Proof of Theorem 1. We take 0 < x; < x:< ... so that, B, being the
strip xp, < x < + 0, 0 < y <1, the y-coordinate of the points of B, N 2, satisfies
0<y<1/n or 1-1/n<y<1 and so that uz/(F, 2,) > 2", and we determine
0<x1<x < ... so that xx—x,>2". We set 2. N{(x, 3) 5 0 =% £ Xne1,
0<y<1)=4£y and Q{Q;' = 8. Then £ approaches the boundary of B as z »
and f(z) > Q as .Q—:—:-z» o,

In order to prove that uc(F, 2) > + © as G — x, it is sufficient to show
that s, (F, ) tends to + = as n - o, where By is the strip: x, <x'< + o,
0<»<1. Foreach k= n, we divide the family {7z} of all curves in B, which
connect points of £ and points of FN[x), + ), into two subfamilies: one
part {ri) consists of the curves situated entirely in B except for their end
points and the other part {r4} consists of the rest of the curves. Then A{r%}
2 F, Q1) > 2% and 1{s¥} = % — xr > 2. We shall use the following general
property of extremal length: M (ngl{cn}) = %M {cn}; this follows from the re-

lation szdf = ESSp?,dr, where p, is admissible for {c.} and p=supp, at

n=1

every point, because then p is admissible for U {c»}. Thus we have 1/uz (F, 2)
n=1

= é‘l/“rk) = é}l/x(ri} + gl/l{ﬁ!} = 2’2‘1/2"’ =1/2""% This relation shows
that up(F, 2) > + o as n—> o,

To prove the last relation under the assumption that f(z) is continuous in
0<x< 4+, 0<y=1, first we shall show that the extremal distance of the
closed set 6, ={x+17; f(x+4) €3 — D} and the line y =1/2 with respect to
any rectangle R, which has two sides on the lines y=1/2 and y=1, tends to

+ 0 as R—- o, Given m > n, we take R sufficiently near to z = o that the
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image of the lower side of R is contained in D,. Let u(z) be the bounded
harmonic function in R which is equal to 0 on the lower side and to 1 on 4,
except for a set of logarithmic capacity zero and whose normal derivative
vanishes on the rest of the boundary. As we have shown several times, the

extremal length of the inverse images {ci”™} in R of {¢™™} is not less than

Dplu] which is equal to 1/uz(é,, v = 1/2) by Lemma 1. Since A{cz”
£ lya{e™™y - 0 as m — =, it is concluded that ux(d., y=1/2) tends to + wo
as R — <. Then the same reasoning as above shows that we can find a closed
set § on the line y =1 outside of which f(z) -~ @ and which has xz(3, y=1/2)
tending to + «© as G - «. Hence by Lemma 3 the logarithmic capacity of the
part of 6 in [x, x + @] tends to 0 as ¥ > + = for any @ > 0. Thus the proof

is completed.

Remark 1. If f(z) is continuous on the x-axis, it is concluded that f(x) > ¢
as x > + o outside of a set whose part in [x, x + @] has a logarithmic capacity
tending to 0 as ¥ » + <« for any finite @ > 0, just for the same reason as on
the line ¥y =1. Thus in this case, the convergence of f(x) to { along compara-
tively small set, which may be of linear measure zero, ensures the convergence
of f(x) to € as x > + = along a fairly large set.

Remark 2. Let D be the unit square 0< £ <1, 0<9<1 ({=¢&+14p), slit
along sp:&=1/n, 0<y<1-1/n (n=2,3,...). We map D conformally in
a one-to-one manner onto B such that z = o corresponds to the point ¢ =+¢ and
that the upper side of D is transformed to the positive real axis. We may take
the ¢-plane for §* =, concentric circular domains converging to ¢ =i for {D,}
and the whole positive x-axis for F. Then we can apply Theorem 1 and see
that the function ¢ =f(z) mapping B onto D tends to the value { =7 as z —» <
on the line y =1 outside a certain small set. This shows that the image of the
parts of the slits {s,} outside any neighborhood of ¢ =1 is quite small near
z= o on the line y =1.

Let us consider another example. Let D* be the unit square 0 < & <1,
0<yp<1,slitalong s,:&=1/n,0<9<1-1/mnand sy: &={1/n+1/(n+1)}/2,
1/n<9<1(n=23,...). This is a simply-connected domain. The left side
is a boundary element in the sense of Carathéodory and no point on it is ac-
cessible. We map D" conformally in a one-to-one manner onto B such that

2z = oo corresponds to the left side. Applying Theorem 1, we see that the image
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of the upper side of D* has not positive average logarithmic capacity near
x= + . This shows that the image of the slits {s,} is not so small near
x= + < on the real axis.

Remark 3. Even if the domain has a more complicated form than a strip,
or even if the set F on the x-axis along which f(x) does not satisfy the con-
dition required to its size in the theorem, the reasoning in the above proof
allows, in some cases, to conclude the convergence of j(2z) to € as z - « along

a certain part of the domain near F.

Remark 4. The reasoning may be utilized also in the case that a set along
which f(z) tends to a limit lies inside B. For instance, let F be a closed set
on the line ¥ =1/2 which has positive average logarithmic capacity near z = .
Under the same condition as in the theorem, if f(z) - € along F then f(z) > Q
as z » «© in any strictly narrower substrip of B and hence along the line v =1/2

with no exception.

5. We shall consider, in the rest of this chapter, continuous transformations
which have not necessarily schlicht character. An (€) parabolic transformation
of a space {y, composed of a countable number of Riemann surfaces, into a

Riemann surface I is defined as follows, as in n° 6 of [15]:

[

Let f(P) be a continuous transformation of § inte J which is locally
pseudo-analytic in the sense of Pfluger-Ahlfors outside a closed set £ C & with
image E in R of linear measure zero. Let £ be an element which is defined
by means of a filter with a countable base which consists of open sets in X.
We suppose that we can find a decreasing sequence {D.} of open sets, which
form a base of the filter, in such a manner that each relative boundary ¢, is
composed of a countable number of mutually disjoint Jordan closed curves or
open arcs,” that {¢.} are disjoint from each other and from E and that, for
every pair # and m (n < m) there exists a harmonic function #nm(P) in

Dy — Dy — ¢m, with lim ¢y m(P) =0 and lim #» m(P) = 1 for which

Im

1
(1) S Anm
0 jdyn,m

as m - oo while »n is kept fixed, where ¢(P) denotes the dilatation of f(P),"

1) See footnote 6).
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Un,m(P) 1is the conjugate of #.m(P) and jqdﬂn,m means the integral

j‘q(P)dQ,,,m( f(P)) taken along the inverse image of the level curve #u, m(P)
= const. Unm, 0 < #nm»<1 which has no point in common with E. Then f(P)
will be called an (L) parabolic transformation of 5 into X.

To give an example of such transformation, we consider the special case
where € may be identified with an inner point P of R. Let w =t be a local
parameter such that w =0 corresponds to 2. We set D, equal to the image
on R of |wl<1/n and ¢, to that of |w| =1/#. The following fact was proved
in n° 7 of [15].

THEOREM 2. Let f(P) be a continuous transformation of a space 35, com-
posed of a countable set of Riemann surfaces, into a Riemann surface R, which
is locally pseudo-analytic in the sense of Pfluger-Ahlfors outside a closed set E
with image in N of linear measure zero. Let the filter of the neighborhoods of
an inner point P of R define an element &. Let o =16 be a local parameter
such that =0 corresponds to P, denote by 33, the part, lying over |w| < o, of
the covering Riemann surface which is homeomorphic to B — E, and denote by
S(p) the area of 3, : jp
q. If we can find

oSqtdsodt) measured with density equal to the dilatation

1>01>p:%02>{);é c..—>0
such that
2 (o, =)

s sy~

for every integer u >0, then f(P) is an (L) parabolic transformation.

6. We shall establish a thecrem of the Montel-Lindelof type for ({) para-

bolic transformations.

THueOREM 3. Let R be a Riemann surface, and & an element defined by
means of a filter B on R. Let B be the strip 0<x< o, 0<y<1, and F a
closed set on the positive x-axis which has positive average logarithmic capacity
near x= + . Let f(2) be an (L) parabolic transformation of B into R, which

is a continuous lransformation of B+ F into N +{L}, and suppose that we can

15 The corresponding statement in Theorem 6 of [15] should be corrected in this way.
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find a base {Dy} of B, composed of open sets, with relative boundaries {cyn} which
are disjoint from each other and from E and each of which is composed of a
countable number of mutually disjoint Jordan closed curves or open arcs® and
has only a finite number of compact components. If f(x)>L as FS x> + oo,

then we have the same conclusions as in Theorem 1.

Proof. We form a kind of covering surface §* over R, as in n° 6 of [15],
in such a way that a subspace F of F*, composed of a countable number of
Riemann surfaces, on one hand corresponds to B—E in a one-to-one manner
and, on the other hand, is ordinary Riemann covering surfaces of R — E. Let
{Dn} be the open sets taken in the definition of (£) parabolic transformation.
Let D, be the part of §* which is projected into D, ¢» be the relative boundary
of D,, and the filter having {D,} as its base define an element 8. Asis shown
in [15], condition (1) implies that, for each 7n, Aye{c™™}—> 0 as m - o while =

™ is a system of curves in §* projected into a level curve

n,

is kept fixed, where ¢
Un,m(P) = tUnm, 0< Un,m <1, disjoint from E.

Contrary to the conclusion, we assume that there exists #, such that the
inverse image of : — D7, contains a sequence of points {z,} tending to « in a
strictly narrower substrip of B. We can find »(7,) such that Dy, C Dy, If
we take m > »(m,) sufficiently large, then the integral in (1) with »(n,) and m
is positive. Let my be any number such that Dy, C Dm. If it is shown that
there are at most a finite number of compact components of the inverse images
of ¢, containing at least one of {z,} in each inside, then we can apply the
reasoning in Lemma 5 to §* and € and a contradiction will be led. Other con-
clusions can be obtained in the same way as in Theorem 1.

We suppose that there exists a closed curve ¢ in B whose image is con-
tained in ¢y, and which contains Zp in its inside. We connect z, with a point
of ¢ by a curve [ inside ¢, and consider its image f(I/) in . There is a part
L of 7(1) which lies in a component D§ of Dy, ~ D, — ¢, and connects a point
P, of ch, with a point of ¢j,. Denote by z' the inverse image of P, on I
The connected component, passing 2/, of the inverse image of c), is a complete
image and compact inside ¢, and hence the component of g},., which contains
P}, is compact. Since we can connect any point of D;— E and a point of L
by a curve in Dy which does not meet E, the part in D; of almost every level

curve of %, m(P) has a complete inverse image inside c.
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Suppose now that there are an infinite number of closed curves {¢'} in B
each of which contains at least one of {z,} in its inside and whose images are
contained in ¢),. For each ¢’ there exists at least one component like Dy of
Q:xo“‘Q;nD—‘Q:nD. Since ¢y, has only a finite number of closed components, we
can find a component D§ of Dn, — Dm, — £m, like Ds and an infinite subsequence
{¢} such that the part in D¢ of almost every level curve of #.(ny,m(P) has a
complete inverse image inside each ¢%. Then the integral (qdymumn > {dym,a),m
= 4 o along almost every #,,, m-level curve, and hencé the integral‘ in (1) is
zero. This contradicts our assumption and the theorem is proved.

The same remarks as Remarks 1, 3 and 4 in n” 4 may be given to Theorem 3.

Let w =7(z) be an ordinary meromorphic function in B which is continuous
at a closed set F on the x-axis having positive average logarithmic capacity near
x= + o and which tends to a value along F. If the covering Riemann surface
of the inverse function of f(z) satisfies the condition on S(p) required in Theorem
2, then the conclusions in Theorem 3 are valid for f/(z). However, it is an open
question whether the finiteness of the Dirichlet integral of f(z), instead of the

condition on S(p), is sufficient to have the same conclusions or not.

Chapter II. Exceptionally Ramified Transformations

1. The condition for a transformation to be ({) parabolic has a character
that restricts the number of sheets of the covering surface associated with the
inverse transformation. In Chapter II, we shall deal with transformations with
the property that the universal covering surfaces of their ranges of values are
of hyperbolic type, or, more generally, with exceptionally ramified transfor-
mations ; bounded analytic functions are examples. We shall be concerned only
with analytic transformations in the sequel except at the end.

First we shall give the definition for analytic transformations to be excep-
tionally ramified in the gemeralized sense® Let f(z) be an analytic transfor-
mation of a plane domain into a Riemann surface 8. When I is planar, we
may suppose that f(z) is a meromorphic function assuming values in the ex-
tended w-plane. We shall then call f(z) exceptionally ramified, with Gross [5],

if f(z) satisfies the condition stated in the introduction. When X is of genus
16) It may be more adequate to define exceptionally ramified covering surfaces instead
of defining exceptionally ramified functions. But here we follow the Gross’s definition in

[51.
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1, we regard f(z) as a transformation into a torus. If there exists at least one
point P, of the torus such that every point, situated above B, of the Riemann
surface of the inverse function of f(z) is a branch point of multiplicity divisible
by an integer uy =2 possibly with a finite number of exceptions, then we shall
call f(z) exceptionally ramified. If at most finitely many points cover F,, we
set u#= + ~. When the genus of M is greater than one, f(z) will be called so
unconditionally. It is to be remarked that, if i has a positive boundary, f(z)
is always exceptionally ramified.

We now map B into a Riemann surface i by an exceptionally ramified
analytic transformation f(z). If f(z) is continuous on B*:0<x< 4 o,
0 £y <1 and f(x) tends to an inner point P of i as x - + oo, then it is easily
seen that f(z) tends to P as z- o in any narrower strip 0 <x < + oo,
0=y <1-—e The difficulty lies in the case that f(x) tends to the boundary of
N as x> + . We proved in Lemma 4 of [14] an extension of the Montel-
Lindel6f’s theorem in the case when f(z) tends to a boundary component P of
harmonic measure zero and when there exists a closed curve r surrounding P
such that the part of the boundary of t which is separated by r from _F: is of
positive harmonic measure.”” A proof of a special case, which essentially covers
the full case, was given already in [7], using the idea in pp. 65-66 of [12], and
the proof was simpler than that of [14].

To extend these results, we shall introduce notions corresponding to an
element € (or ) and a set of positive average logarithmic capacity near ¥ = + o,
which were frequently used in Chapter I.

Let B be a filter on & with a countable base which consists of open sets.
We associate a new element £ with 8, and introduce a topology into R + (g}
in the usual way (cf. n® 1 of Chapter I). The intersection of the sets of 8 will
be called the trace of & on R and that of the closures, taken relatively to I,
of the sets of B the closed trace of £ on R. They will be denoted by () and

7(¥) respectively. These may be empty. Suppose that there exists a function

11 In the statement of Lemma 4 of [14], it is required that there exists a set of posi-
tive logarithmic capacity which f(z) does not assume near z= co or that there exists a
closed curve y of the character just stated. But in the first case, we exclude from % a
closed set of positive logarithmic capacity, not assumed by f(z) near z= oo, in a domain
corresponding to a parameter circle, and thus the first case reduces to the second case,
because the image of the circumference of the parameter circle may be considered to
be a simple closed curve in ® and taken for y in the second case.
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v(FP) on N which satisfies:

i) v(P) is superharmonic possibly except at a certain point P, e 7(&),

1) v(P) is bounded from below everywhere or outside every neighborhood
of B, if this is exceptional,

iii) #(P) » + o when and only when P - 2.
Then we shall say that € is complete and of harmonic measure zero, and call
v(P) a function associated with €. It is easy to see that «(L) ={Pe R ; v(P)
= + oo }. We shall give further properties and examples of such £ in the next
section.

We shall say that a closed set F on the positive x-axis has positive average
linear measure near x = + < if there exist finite numbers % > 0 and @ > 0 such
that the part F.(x) of F in the interval (x — @, x+ @) has linear measure greater
than a certain positive number for all x> x,.

We shall give theorems, distinguishing two cases; the case where Riemann
surfaces have a positive boundary and the case where they have a null boundary.
The reason why these two cases are distinguished will be explained by Theorem

7. In the first place, we shall be concerned with the first case.

TueoreM 4. Let & be a complete element of harmonic measure zevo added
to a Riemann surface R with positive boundary, and F a closed set having posi-
tive average linear measure near x = + © on the x-axis. Lel f(2) be a continuous
transformation of B+ F into N +{L}) which is analytic in B. If f(x) tends to

substrip.

Qas F3x-> + o, then j(z) tends to & as z—> o in any strictly narrower

2. In this section we shall discuss on complete elements of harmonic
measure zero in more details and give examples.

The following lemma will be used in the proof of Theorem 4.

Lemma 6. Let & be an element which is complete and of harmonic measure
zero. Then, for any point PyeE 7(¢), we can find an associated function super-
harmonic outside F,. In case N has a positive boundary, there exists a positive

associated function superharmonic everywhere on N.

Proof. First we consider the case in which ) has a null boundary. Let
v(P) be an associated function superharmonic outside a point P & 7(£). We

take a domain outside 7(¥) corresponding to a parameter circle |w| <2 such
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that o =0 corresponds to .P% and that »(P) is positive outside the domain cor-
responding to |w| < 1. We replace »(P) by the solution of the Dirichlet problem
in a ring domain 1 < |w| < 3/2 for boundary value O on |[w|=1 and v(P(w)) on
lw|=3/2, and add the function corresponding to aloglw! in [w| <1, where
a is a positive number. If « is sufficiently large, the resulting function »*(P)
is superharmonic except at Py and an associated function of 2 Now let
Py x Py be any point not belonging to 7(8). There exists a function E(P),
which is bounded and harmonic outside neighborhoods of P; and P, and has
positive and negative logarithmic singularities at _Ps° and P, respectively. The
sum v*(P) + ah(P) is an associated function of £, superharmonic outside 5.

If ! has a positive boundary and if an associated function »(P) is not
superharmonic at _Pg, then we define »*(P) in the same way as above and add
to v"(P) a times the Green’s function with pole at Py and also a certain large
positive constant. Thus we have a positive associated function of &£, super-
harmonic everywhere on .

One way of obtaining & is as follows: Given a function »(P), superharmonic
on I possibly outside an isolated negative logarithmic singularity at a point P
and bounded from below everywhere or outside a certain neighborhood of A
if this is a singular point, we obtain an § which is complete and of harmonic
measure zero if we define a base of a filter by {P; v(P)>n) (n=1,2,...).
We shall say that »(P) determines L.

We shall give more directly several examples of complete element of har-
monic measure zero. Let E be a Gs-set of logarithmic capacity zero on R.
If N has a null boundary, we add the assumption that there is an outer point
Byof £E on N. In case N has a positive boundary, we take the Green’s func-
tion of N as kernel of potential. In case XN has a null boundary, we remove a
small neighborhood of P, and take the Green’s function of the remaining surface
as kernel. Then there exists a potential U(P) such that E={P; U(P)= + =}
as is remarked in [4]. In the case that ! has a null boundary, we prolong
U(P) to a superharmonic function on @ except at a negative logarithmic singu-
larity located at F. The potential U(P) or this prolonged U(P) determines a
complete element of harmonic measure zero whose trace coincides with E.

Next let : be a domain with positive boundary and relatively compact in

a Riemann surface Ro, and F a closed set on the boundary 2% of ® with har-
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monic measure zero with respect to 3. We shall show that there exists a finite-
valued positive superharmonic function »(P) in R such that »(P) - + « when
and only- when P - F.

We take a sequence {G.} of open sets decreasing to F in $, whose
boundaries {G5} are regular and disjoint from each other and pass no irregular
boundary points of % Since F is of harmonic measure zero, there exists a
positive superharmonic function v,(P) 1 in R tending to 1 as P-F. We
replace this function in R — Gus+1 — Q’,’, .1 by the solution of the Dirichlet problem
for boundary value equal to v,(P) on RN G4, and to 0 everywhere on no
— Gu+1, and denote the resulting function defined in i by wn(P). Since G has
a positive distance from Gb.. (with respect to a certain metric on Ro) and all
points of RN G are regular points, vh(P) vanishes continuously at the points
of RN GY. So we take an open set 4n D RPN G% in R bounded by a finite
number of closed analytic curves such that v4(P) <1/#° in 4.N K. The differ-
ence Kn= (RN G5 — 4o being compact in i, we can find a positive superhar-

monic function »*(P) £1 in R such that limv}(P) =1 and »;(P) <1/#* on
P>F

K,. Preserving the boundary value, we harmonize inf (vn(P), v5(P)) in

R — G» — G5 and denote the superharmonic function thus obtained in R by v.(P).

This function has the property that 0 < v.(P) £1 everywhere, limuv,(P) =1
Por

and v.(P) < 1/7* outside G,. The sum #(P) = S va(P) is again positive super-
n=1
N-1

harmonic and tends to + © as P F, and v(P) = SJv.(P) + 1/n* = (N-1)
n=N

ao
+n}§11/n2< + o in B—-Gy. Thus v(P)—> + o if and only if P-F.

Another example is given when a filter defines a closed set F: of boundary
components of harmonic measure zero of a Riemann surface 8. Then there
exists a base consisting of open sets {Gx}, having no point of accumulation in
N and bounded by closed analytic curves {G3} disjoint from each other, and
the harmonic measure w,(P) of G% with respect to G, — G, — G% tends to zero
as n > oo,

We shall show the existence of a function associated with this £r. First
we set n;=1 and shall define {m:} by induction. We choose #: such that
on(P) <1/E* on Gi—G,,_,. We prolong w.(P) into G, by 1 so that it is
superharmonic everywhere in G, and denote the function thus obtained again

by ws(P). The sum v(P) = D) wn(P) is positive superharmonic in G, and
k=1
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lim »(P) = + o if and only if P tends to F;. We draw a finite number of
closed analytic curves ¢; near G° in G, such that ¢; and G? enclose a finite
number of annuli. We solve the Dirichlet problem in these annuli with boundary
value equal to 0 on G? and to vs(P) on ¢;. The function defined in & — G, — G?
by setting equal to a Green’s function with pole at some point P in each com-
ponent DY will be denoted by g( ). Then the function v,(P) defined by — ag(P)
in N — Gy, and by »,(P) in G; which is replaced by the above solution in the
annuli is superharmonic on R except at Pn, if a is taken sufficiently large.
Let An(P) (m>1) be harmonic on I outside a negative logarithmic singularity
at . and a positive one at P, of the form log 1/7 and bounded outside neighbor-

hoods of these points. The sum Vi(P)+ a > hm(P) gives a required associated

m>1

function.
3. To prove Theorem 4 we give one more lemma.

LemMma 7. Let v(z) be a positive superharmonic function, defined in B and
lower semicontinuous on B+ F (the value + o is admitted), where F is a closed
set having positive average linear measure near x= + > on the real axis. If
v(x) » + © along F, then v(z) > + © as z > ®© in any strictly narrower substrip
0<x< +0,0<e<y<1~e. If, in particular, F coincides with the positive

real axis, then v(z) > + © as 2> © M 0<x< + o, 0=y<1—e.

Proof. There exist 2%, >0, a> 0 and d> 0 such that m(Fs(x)) > d for all
x> %. Let R(x), x> x, be the rectangle with vertices x—a, x+a, x+a+1,
x—a+14 and denote by w,(z) the harmonic measure of Fy(x) with respect to
R(x). Since m(Fa(x)) > d >0, there holds wx(x+iy) > w, > 0 uniformly for
x> % and y, e<y <1-—¢; this is seen by mapping R(x) onto a disc. If x is
sufficiently large, then v(x) > n on Fa(x). Thus v(x+iy) > nw, for this x and
ye& (e, 1 —¢). This shows that v(z) = + © as z—» ®© in ¢e<y<1l—e The
latter part of the lemma is obvious.

Now we give

Proof of Theorem 4. By Lemma 6 there exists a positive associated function
v(P) superharmonic on R. The composed function v(f(z)) is positive super-
harmonic in B and lower semicontinuous on B+ F. Since v(f(z)) > + <« along
F, v(f(z)) > + © as z- o in any strictly narrower substrip by Lemma 7.

Therefore, f(z) tends to € as z— < in any strictly narrower substrip in view
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of property iii) of v(P).
We shall show that the condition on #' in the theorem can not be replaced

by any -weaker condition.

TueorEM 5. Let F be any closed set on the positive x-axis which has not
positive average linear measure near x = + . Then there exists a nonconstant
bounded analytic function f(z) in B which is continuous at F such that f(2) - 0
along F but (f(z)| > sup|f(2)| along a sequence of points tending to © on the
line y=1/2. "

Proof. First we determine some numbers with respect to B': - o <x
< 4+ o, 0<y<1. Let wr, >0, be the maximum value, on the left half x =0
of B', of the harmonic measure of the interval [#, + %) on the real axis with
respect to B'. As 7 - + o, obviously w, > 0. We shall denote by b, the
infimum of 7 such that w, <1/2" (n =1,2,...).

By hypothesis, for any ¥ >0, @ > 0 and ¢ > 0, there exists a closed interval
I situated in (x, + ) and of length > @ such that m(FNI) <e We take a
closed interval I, of center x>0 and of length 2a such that a; > b and
m(FNI)<1/2, and a closed interval L of center x and of length 2a: such
that a» > b, m{(FN L) <1/2° and L lies in (x,+ a1+ b, + ), and we continue
this process. We cover each FM I, by an open set G, which consists of a finite
number of intervals such that G, N\ Gnsi=¢ and m(G,) < 1/2"7%

We shall show that, given % > 0 and & > 0, there exists a number d(x, d) > 0
such that if the linear measure of any set A consisting of a finite number of
open intervals in ( — xy, %) is less than d(x,, §) then the harmonic measure of
the set at z=/2 with respect to B' is less than 6. We map B’ conformally
onto the upper half plane by ¢ =¢™. Then the linear measure m(f(A)) of the
image of A is given by nLe""‘dx and hence = ze™m(A). We know that,
among sets of the same linear measure m(f(A)) each of which consists of a
finite number of open intervals on the £-axis, the interval (—m(f(4))/2,
m(f(A))/2) has the largest harmonic measure at ¢ = with respect to the upper
half plane. Since the harmonic measure at ¢ =i of f(A) is equal to the harmonic
measure at z =i/2 of A, the latter becomes arbitrarily small if m(A) is suf-
ficiently small.

Now we determine n; < 7, < ... so that, for each p, m(Gn,) > d(bp, 1/27).
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As we have just seen, the harmonic measure hy at zs, = %n, + /2 of Gu, N (%, — bp,
%n, + bp) with respect to B’ is less than 1/2°. Let J, be the interval interposed
between I, and In,,, and put G = ,Q,(G””n J»). Obviously FCG. We define
a nonnegative function ¢(x) on the x-axis to be equal to 0 outside G and to a
constant ¢; on each interval Kj; of G such that ¢(x) £p -1 in 0 <x < x,, and
¢(x) > + o as x> + < along G. Let «;(z) be the harmonic measure of Kj;
with respect to B, and set u(z) = g‘_l,c;uﬂz). We shall show that this is con-

vergent. First notice that @, > bn, > b, and that

0(x) & ST 3 Gy N Gt = by Zny - Bp)
=
+X(x; [xnup"i'bp, xnp_',l'—'bp-}-]]) 3

where 7 represents the characteristic function of sets. If we denote by Uy(z)

the harmonic measure of [%s, +bs, + o) with respect to B', then there holds

u(an) <pUp(an) +Dhp+ (p+ 1)Up(z,,p) + Up+1(2ny) + Up+2(Zn,,) + ...
<Pl2p+ P2+ (p+1)/2° +1/2P 4 1/22 2 ... =3p/22 4+ 2/2°2 5> 0 as p > .

By a similar evaluation we see that the convergence of the series is uniform on
any bounded set in B’+G. Therefore, #(z) is harmonic in B’ and takes the
value c¢; continuously at Kj.

We take any branch »(z) of the conjugate of #(z) and set f(z) =e
Then [f(2)| £1 and [f(24,)| > 1 as p > . By the reflexion principle, /(z) is

continuous at G and |f(x)| =e™**. Since FC G, and ¢(x) > + © as x> + o,

-u(2) ~iv{2)

f(2) is continuous at F and f(x) >0 as F x> + o,

4. In the rest of the paper, we shall deal with the second case in which

R has a null boundary. First we state

THEOREM 6. Let & be a complete element of harmonic measure zero added
to a Riemann surface R with null boundary, and f(z) a continuous transfor-
mation of 0 < x< + o, 0 £y <1 into R +{L} which is analytic and exceptionally
ramified in B. If f(x) tends to & as x> + ©, then f(2) tends to & as z—> ©

in any narrower substrip 0 <x< + 0, 0=sy<l—e.

In order to prove this theorem, we need two lemmas. In this section, we

shall discuss the first lemma concerning the .type problem. In the case that

N has genus =2, it is known that the Schottky covering surface of planar
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character of I has a positive boundary, or is known something more (see [19],
[22], [23]). It seems that the following lemma has not been proved in the case

where R is of infinite genus.

Lemma 8. Let R be a Riemann surface of genus = 2. If we draw two dis-
Jjoint amalytic loops ¢i and ¢, on N which do not separate N, and if we join
different replicas of R, having cuts at ¢, and ¢, along opposite shores of the
replicas of ¢, and ¢, indefinitely, then the Riemann surface R thus obtained

has a positive bonndary.’®

Proof. Obviously we may suppose that I has a null boundary. Let ¢, be
a replica of ¢;. It separates ‘flf“’) into two parts. We shall show that the har-
monic measure of ¢, with respect to any one R{®’ of them is not a constant.

We denote by 9 the replica of )t which has ¢, on its boundary and is
contained in N{™’, and by co1, o2 and cos the other shores of Sy corresponding to
¢y and ¢;. The three replicas adjoining to ¢ through cu, ¢ and ¢ will be
denoted by Mo, Ro: and Nos respectively. We proceed in this manner and obtain
the partial surface ;. We define the harmonic measure wo(2P) of co + coz -+ Co3
with respect to fi,. Next on N, we define the harmonic measure wou(P) of the
three shores cou, coe and cous which are not identified with co, and define we(P)
and we( P) similarly on J» and R respectively. We continue this process.

Denote the conjugates of wy(P) and wy;j(P) by Gy P) and @oj( P) respectively,
and set L dno = by, j‘_ diny = by; and j-r, dig =by; (=1, 2, 3), where C(',j is the
boundary oof Toj identiﬁo:ed with ¢;;. We Ujconsider on No; the level curves anj(P)
= const., starting from e¢f;. They terminate at multiple points or tend to the
ideal boundary of Ny or reach cyjr (4, k=1, 2, 3). Take arbitrary points P € ¢
and P> € ¢, denote the corresponding points on ci; by P¢ and determine the
branch of a;(P) so that ao(Phj)=0. By the function {bu/(bobi;)}{we(P)
+ioj(P)} the level curves are mapped onto a rectangle Ry : 0 < & < boj/ (boboj),
0 < 9 < boj/by with slits in the ¢ = £ +¢p-plane. These slits are parallel to the ¢-
axis and have projection on the 7-axis of linear measure zero on account of
Theorem 2 of [14].

We determine a branch @¢''(P) of a(P) so that it vanishes at the point

181 We can prove, what is more, that there exists a nonconstant harmonic function
with finite Dirichlet integral but no nonconstant analytic function with finite Dirichlet
integral on ®™ if we follow the lines of the discussion at the end of n° 3 in [22].
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Pyj on co; which corresponds to P, or P, and continue the function b5 {w.(P)
—1+4@’(P)} analytically along co; in the direction such that the image of co;
coincides with the left side of Ry;. We choose «, 0 < « < 1, sufficiently small
that, on R and Ny; (7 =1, 2, 3), the level curves wo(P)=a and wy(P)=a en-
close neat annuli together with ¢, and c); respectively. The point on cf;, cor-
responding to P& ¢y will be denoted by P'. We connect, by a straight line,
every image iny'(P)/bo with {bo;/(bobs;)}{a + iwoj( P')} in the partial rectangle
Roj(a) : 0 < &< boj/(boboj), 0<7n<boj/by. Thus Roj(a) is transformed onto
itself. If we leave the rest of R,; unchanged, then a continuous automorphism
To; of the slit Ry; is obtained. It is continuously differentiable except on the
segment wo; = abo;/(bobe;) and has bounded dilatation.

Let us now map the first replica R, by the aid of b5 {ws(P) + i@,(P)} onto
a rectangle Ry : 0< & <1/by, 0 <% <1 with slits parallel to the ¢-axis so that
¢o corresponds to the left side. This slit rectangle consists of the images of the
regular @slevel curves on o, and the projection of the slits on the »-axis has
linear measure zero on account of Theorem 2 of [14]. The right side contains
the images of {co;} (7 =1, 2, 3) which are composed of a countable number of
open intervals {I.} that have the total measure 1. We may now assume that
the points Pyj, previously defined on c¢,j, are the end points of some of {I.}.
We divide by the horizontal lines the 7;-images of Ryj, into thin slit rectangles
with the same widths whose left sides are congruent to {I,}. We translate
these rectangles and join them to R, by identifying. the corresponding intervals.
In such a manner, a continuous transformation of o+ Roi + Noz + Res, slit along
some curves, onto a collection of rectangles of width 1/bo+ boi/(bobe) or 1/by
+ boa/ (Bobia) OF 1/by+ bos/ (Bobhs), with some slits parallel to the £-axis, is obtained.
We continue this process and obtain a topological mapping T(P) of R{™, slit
along some curves, onto a domain G of the form 0 < ¢ < h(y) € + w0, 0 <5< 1,
where, for almost all », the image of 0 < £ < h(y) tends to the boundary of Ri{™
while passing through ®,, one of Ry;, and so on. In addition, T(P) is continu-
ously differentiable except at a countable number of segments parallel to the
y-axis, which correspond to the sides of the rectangles Ry, Ry, ... or to the
level curves wo(P) = a, wj{P) =a, ..., and the dilatation q(P) of T(P) at the
points, where T'(P) is continuously differentiable, is uniformly bounded : q(P).
= ¢y < + o, because we have only 4 types of o, Roj, . . .

We shall show that k(y) is uniformly bounded. Because there are only 4
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types of Ty, Ry;, . . ., the total variations of wy(P), we(P), ... have at most 4
different values. We denote by & the smallest number of them. Next the
maximum of the 12 ratios bo;/by and bor/bs; (7, k=1, 2, 3) is denoted by 3,
where byt = | diy. Obviously 0< < 1. The width of Ry is = 1/b and the

v Cogk
widths of Ry are = /b, the widths of the next ones are £ 8°/b, and so on.

Therefore h(y) £ M1 +F+8+ ... )={b(1-8)}"1< 4 .

N (<)

Suppose that N;”’ has ideal boundary of harmonic measure zero. We shali

denote by ¢, ¢'®, ... the new free edges appearing as we add new replicas

to Mo, to MNos+ Noz + Rea, and so on. The harmoenic measure o™ (P) (n = 1) of

¢ with respect to the domain between ¢, and ¢'™ tends to 0 as n - . The

T-image in G of the level curve of «'”

(P) intersects the segment 0 < & < Ji(y)
for almost all % such that 0 <y <. 1. Therefore, its length is » 1. On using

Schwarz’'s inequality, we have

1= (j [d:|)Z < j\} Lds [ da™ Sqd&)“l)
- w (™ = nnat., N - i (lJ)Utl q

Since ¢(P) = gy < + o, the left side = (qoj‘(oda}“”)_lo However, this tends to
+ o as # -~  and a contradiction arises.

To obtain a contradiction in another way, we may apply Theorem 5 of [15]
after having known that T(P) is everywhere quasi-conformal in the sense of
Pfluger-Ahlfors in virtue of Theorem 2’ of [11].

Remark. Since any covering surface of a Riemann surface of hyperbolic
type is of hyperbolic type, the Riemann surface obtained by joining indefinitely
the replicas of I, which are cut along p (2 £p £ + ) disjoint closed curves
that do not separate Jt, has a positive boundary. The idea of the proof of our

lemma will be used to discuss the type problem in general in another paper.

5. The second lemma for the proof of Theorem 6 is:

LEMMA 9. Let v(P) be a superharmonic function on a Riemann surface ).
If there is a curve 1, which may oscillate, such that v(P) > + < along | and

L has at least one point Py of accumulation in N, then I must lerminale at £
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and v(P) = + o,

Proof. We take a parameter circle |w| <1 such that =0 corresponds to
Fy, and set v(P(w)) = V(w). If V(0) were finite, there would exist a sequence
of circles |w| = en such that e, > 0 as n > © and V(w) - V(0) along them (see
[2]). This is impossible, because V(w) -~ + « along the image of / in |w| <1
and [/ comes arbitrarily close to F,. Therefore V(0)= + . If [ oscillated,
there would be a continuum in |w| <1 at which V(w)= + . This contradicts
the fact that the set of points where a superharmonic function assumes -+
is of logarithmic capacity zero. Thus [ terminates at £, and v(F;) = + oo.

Now we give

Proof of Theorem 6. Let N be the covering surface of ) which is defined
by means of f(z) and conformally equivalent to B. We shall say that a cover-
ing surface W* is inserted between N and R, if N is a covering surface of N*
and N™ is that of !. Suppose that a covering surface N™ of positive boundary
with a complete element ¢* of harmonic measure zero is inserted between N
and i such that the image of the positive x-axis converges to ¢* and that "
is projected into £. By the last expression it is meant that every sequence of
points on R* converging to ¢* is projected to a sequence on R converging to
¥. Then by Theorem 4 we obtain the conclusion of Theorem 6.

We shall show that we can actually find such ™ under the conditions of
the theorem. First we consider the case that } is planar. We may suppose
that R is a part of the extended w-plane, that w= < is an inner point of N
and that an associated function »(w) of ¢ has its negative logarithmic singu-
larity at w = . Since N is a domain outside a bounded closed set of logarith-
mic capacity zero and v(w) is bounded from below near it, v(w) can be extended
so that it is superharmonic everywhere in the finite w-plane. By Lemma 9 it
follows that f(x) tends to a finite value w, as x> + o and that the conver-
gence of a sequence of points of Tt to w, implies the convergence to £.

By our hypothesis, there exist points {wp} and associated integers {,u},
s =2, such that D3(1 —1/u) > 2 and every point of N situated above wy has
multiplicity divisiblg by u possibly with a finite number of exceptions, or, if
ur = + o, there exist at most a finite number of points of N above wp. 1f
necessary, taking a substrip of the same heighﬁ 1 of B, we may suppose that

there is no exceptional point at all above any we. It is known that the regularly
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ramified simply-connected covering surface %t of the extended w-plane, which
has branch points with multiplicity ux: above wy (if ur = + oo, branch points are
" logarithmic), is of hyperbolic type. If I is not identical with the extended w-
plane, then we take the part of Jt which lies above . Then i or this part
may be regarded as a surface J¥ to be inserted between I and R. If w, does
not coincide with w; for which s = + °°, then the image of the positive x-axis
terminates at an inner point B, of %. If we choose a sequence of domains {D,}
around P, converging to it and take {D, N N*} as a base of a filter to define
an element £* then 2 is a complete element of harmonic measure zero because
the Green’s function on i with pole at P, is an associated function if it is
considered on %*. Thus all the requirements for R* are satisfied. If w, coin-
cides with a w; for which ux= + o, then the image of the positive x-axis
terminates at a logarithmic branch point of . In this case, we map )i con-
formally onto the upper half ¢-plane (£ = £ +47) such that the logarithmic branch
point corresponds to ¢ = o, Under‘ this mapping, any upper half plane » > 7, > 0
corresponds to a neighborhood of the logarithmic branch point. Hence if we
consider 7(P) as a function on %* then the complete element 2* of harmonic

measure zero determined by this function is projected into £. Thus the theorem

is proved in this case.

We are next concerned with the case in which I is conformally equivalent
to a domain of a torus N,. We may suppose that R is this domain itself. Any
associated function is prolongable to a function V(/2) superharmonic everywhere
on MR, except at one point F'. In virtue of Lemma 9, f(z) tends to a point
Ly F' of Ny along the positive real axis and the convergence of a sequence
of points of M to P, implies the convergence to €. By the hypothesis, there
exists a point A such that every point of i situated above £ has multiplicity
divisible by ) =2 with at most a finite number of exceptions, or there are at
most finitely many points of R above . The part above 3 of the regularly
ramified simply-connected covering surface of Iy with branch points of multi-
plicity u or with logarithmic branch points above _P; will play the role of Jt*.

In case the genus of I is greater than 1 but finite, ;! may be regarded as
a part of a closed Riemann surface #,. The part above It of the universal

covering surface of )y may be taken for N*.

Finally we consider the case that ) is of infinite genus. We see, by Lemma
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9, that f(x) tends to an inner point or to a boundary component of it as x— + .
The former case can be treated easily by taking the universal covering surface
of i as R®*. In the latter case we choose two disjoint loops which do not
separate i and form a Riemann surface ?* in such a way as we did in Lemma
8. This has a positive boundary by Lemma 8. We insert '’ between t and
I in any way and take it for ®*. The image of the positive x-axis then lies in
a replica of ! and converges to a boundary component P& of R =R*. If we
transform an associated function of € to the function »o(P*) in the replica, then
this is superharmonic everywhere in it except at one point. We draw a closed
analytic curve ¢* in the replica such that it separates P¢ from the images of
the loop cuts of R, and draw another closed analytic curve ¢ near ¢* so that
they enclose a neat annulus and c¢* is separated by ¢ from P¥. By adding a
constant, if necessary, we may suppose that v,(P*) is positive on this annulus.
We replace it by the solution of the Dirichlet problem with boundary value
2(P*) on ¢f and 0 on ¢* and denote the function thus obtained again by v,(P*).
This is superharmonic on ¢i. Since R*=R"" has a positive boundary, the
harmonic measure #(P*) of ¢* with respect to the domain D* not containing
cif is not a constant. If « is taken sufficiently large, the function equal to
a(u(P*) —1) in D* and to »,(P*) in R* — D* is superharmonic on N* and defines
a complete element * of harmonic measure zero to add to %*. The image of
the positive x-axis by f(z) converges to ¢* and ¢* is obviously projected into

Q. Thus the proof of our theorem is completed.

Remark. The beginning part of the proof suggests the possibility to extend

further the theorem.

6. The final theorem will show that the condition in Theorem 6 that
f(x)>% as x> + o can not be replaced by the condition that f(x) » £ as
x> + o along a part F of the x-axis however large F may be metrically (with

regard to linear measure). Actually we shall prove

Tueorem 7. Let R be any Riemann surface with null boundary, and P, any
point or boundary component of R. Then there exists an analytic mapping of
B inte N such that it is continuous at the positive x-axis outside a closéd set of
linear measure zero and tends to P, as x — + % outside of the set, but has no

definite limit as z - « along any curve in B.
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Proof. If the universal covering surface of Jt —{ B} is not conformally
equivalent to a disc, then we exclude one or two points from 3 so that this
condition is fulfilled and denote still by i the remaining surface.

First we consider the case that / is an inner point of R, and fix a para-
meter circle | W| <1 of F. We map the universal covering surface of 3t — {7}
onto U; : |¢/ <1 and denote by & the corresponding Fuchsian or Fuchsoid
group. Let U, C U; be any connected component of the image of the outside of
the part of R that corresponds to |W|=1/n (n=2). We take them so that
U,CU,C ... . The part y» in U; of the boundary of U, corresponds to the
circle |W|=1/n and consists of a countable number of curves starting from
and terminating at the parabolic fixed points, which are defined with respect to
® and correspond to F. Since R has a null boundary, the harmonic measure
of rn with respect to U, is the constant 1. In other words, |{| =1 is of har-
monic measure zero with respect to U,. If we exclude the inside of the part
ra(A) of r, having end points on a closed arc A on |¢|=1 and denote the
remaining domain in U; by UY", then the harmonic measure of A with respect
to UL is zero. To prove this, it is sufficient to show that every closed subarc
A' of A is of harmonic measure zero with respect to UY’. Suppose, to the
contrary, that the harmonic measure »(¢) of A’ with respect to UY" were posi-
tive. We denote by m the supremum of w(¢) on r,. Then 0<m <1. The
function w(¢) —m would be <1 and positive somewhere in U,, and would not
exceed 0 as ¢ approaches r,. This contradicts the vanishing of the harmonic
measure of |¢| =1 with respect to Un.

Now let & = ¢ be a hyperbolic fixed point on |¢|=1 with respect to @.
We take a sequence of points {¢“"}, ;<0< ... <0n— 6, on || =1 which
are not parabolic fixed points. We denote the arc between ¢ and ¢** by An
and consider 7»(A.) for #n 2. The domain bounded by {r»(A4.)} and [¢|=1
in U; will be denoted by U,. As we have seen, the harmonic measure of the
arc eig’—e?°° with respect to U, is zero. We then map U, onto B so that the
point at infinity corresponds to ¢ = ¢ and z =0 corresponds to €. Under this
mapping, the image of the arc e@" is a closed set of linear measure zero on
the positive x-axis. If we consider the composition of the inverse of this mapping
and the mapping U; - &, then it is obvious that it is the function required in

the theorem.
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Next we consider the case that 7, is a boundary component of . Let {cx}
be a sequence of closed curves in % shrinking to & such that the outside of ¢;
is at least of triply-connected, and take ¢» in stead of the image on & of
|W!=1/n in the first case. A component arc of the boundary 7, in U; of Un
may terminate at hyperbolic fixed points but the harmonic measure of r. is
again 1 with respect to U,. Let ¢,=¢" be a hyperbolic fixed point which is
on the boundary of U;. We shall show that an arc of y; may terminate at &
but an infinite number of arcs of y; cluster to ¢, at least from one side. First
we notice that U; is the image of the universal covering surface Gi of the
domain G; outside ¢; on . We map U; onto |Z]| <1 in a one-to-one conformal
manner, and denote by &, the Fuchsian or Fuchsoid group corresponding to the
mapping of Gi onto |Z|< 1. The image Z, of ¢ is a hyperbolic fixed point
with respect to &;. Therefore, at least from one side, an infinite number of
images of arcs of 7; cluster to Z,. Thus an infinite number of arcs of 7, cluster
to ¢, at least from one side, say, in the counter-clockwise. We take 6; <8, <
... <0~ 6 such that the points ¢ are on the boundary of U;, and denote
by A, the arc &¢* as before. The rest of the proof will be the same as in
the first case and the proof will be completed.

Thus it is really necessary to distinguish the case where J# has a null
boundary from the case where & has a positive boundary.

We shall close this paper with a remark to the case of pseudo-analytic
functions (with bounded dilatation) in Pfluger-Ahlfors’s sense. We refer to Mori
[11] for this class of functions (cf. [26], too). If we take into account the fact
that a quasi-conformal mapping with bounded dilatation in Pfluger-Ahlfors’s
sense of a strip B onto another strip B' can be extende’d so that it is topological
between the closures of B and B’ and that the image of a strictly narrower
substrip of B is contained in some strictly narrower substrip of B’ (see [11]),
then it follows that Theorems 4 and 6, in case F is identical with the whole

positive x-axis, are valid also for pseudo-analytic functions in the present sense.
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