SOME CHARACTERIZATIONS OF <, AND 11

J.R. Retherford

(received July 4, 1966)

1. Introduction. The space e consists of the sequences
tending to zero with addition and scalar multiplication defined

coordinate-wise and with the sup norm. The space { ! consists
of the sequences b = (bi) under coordinate-wise arithmetic for
0
which [b] = = ,bil < tow .
i=1 ‘

Several answers to the question

* When is a Banach space X linearly homeomorphic to <,

1
or { ?

have appeared in the literature since Banach [4] showed that c ,
the space of convergent sequences with the sup norm, is linearly
homeomorphic to <,

Our purpose in this paper is to examine the question ¥
above from the point of view of similar bases. While this point
of view is certainly not new, our discussion has the advantage
of being unified by the use of a theorem due to Osgood, Kuratowski
and Banach. It seems, to the author, that this theorem has been
undeservedly neglected.

The material in this paper is drawn from a series of lectures
given at Texas Christian University in June, 1965. The paper was
written while the author held a Louisiana State University Faculty
Council Fellowship. )

2. Definitions and Notation. While all of our work could
be carried out over the complex field, we assume, for simplicity,
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that all of the spaces in question are over the field of real numbers,

By a Schauder basis for a Banach space X we mean a
sequence —(xi) of elements of X such that for each xe¢X there

is a unique sequence of scalars (ai) such that

(2.1) x=lim ="ax
n 1 11

If X has a Schauder basis and if fi(x) is defined by fi(x) =a,,
1

1
[4, p.107] each fi is a continuous linear functional on X .

where x = =% aix_ then fi(xj) = Bij , the Kronecker delta and
i

Suppose that (Xi) and (Yi) are Schauder bases for the Banach
spaces X and Y respectively. Then (x,) and (y.) are similar
i i —_—

provided that

0

(2.2) {(ai) f Ei ax, converges }
[ee]

= {(ai) | z, ay. converges}

It is obvious that if T is a linear homeomorphism from X onto
Y , (xi) a Schauder basis for X and T(Xi) =Y then (yi) is

a Schauder basis for Y and (xi) and (yi) are similar. The
converse of this fact is also true (see § 3 below) and is the founda-

tion for all our work.

The concept we need is that of an unconditional basis. A

00
series Zi y. in a Banach space X converges unconditionally
i

(to y) if for every permutation T of the positive integers,
0 o0

z =Yy . Aseries T ., in X 1is subseries convergent if
TRLAC I 17i subseries g

for each increasing sequence (ni) of positive integers the series
©

=
1 yn,
i

converges to some element of X . It is well-known (see,

e.g. [7,p.59]) that subseries convergence and unconditional
convergence are equivalent in Banach spaces and that each is

0
equivalent to the following: 21 a,y, converges where a, = +1

(arbitrarily).
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A Schauder basis (x.) for X is an unconditional basis if
i

each expansion (2.1) converges unconditionally to x .

Let Z denote the collection of all finite subsets of the
positive integers directed by inclusion.

2.3 THEOREM. Let (xi) be a Schauder basis for the

Banach space X .

The following are equivalent:

(a) The basis (xi) is unconditional;

(b) there is a K such thatfor o, ¢'eZ, 0 C ¢' and

arbitrary scalars (ai)iecr' we have
1= e <kl 2 ax | : ang
iec ieo
© (oo}
(c) = ,f,(x)lx, converges for each x= Z f (x)x. X
1 i i joq i
‘and there is an M > 0 such that
Il Z;ofi(x) x, <M | Zoi |fi(x) | x, I, M independent of x .

The equivalence of (a) and (b) is due to M. M. Grinblyum
[8] and the equivalence of (a) and (c) is found in the work of
B.E. Veic [13].

It is readily seen that the unit vector bases (ei) of .
and .@1 (i.e. e, consists of all zero's except the ith entry which
is 1) are unconditional and thus a space linearly homeomorphic
to either c, °or £ 1 must have an unconditional basis.

3. The Osgood-Kuratowski-Banach Theorem. With obvious
intentions we refer to the following as the OKB Theorem.

3.4 THEOREM. ¥ X and Y are Banach spaces and
(T ) a sequence of continuous linear operators from X to Y
n to

such that T(x) = IimnTn(x) exist for each xeX then T is a

continuous linear operator.

Proof. The proof is merely an application of
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[12, Thm. 4.4-E,p.204-205].

Let us observe how easily the isomorphism theorem we
need follows from the OKB theorem.

3.2 THEGREM. I (x.}) and (y.} are similar bases for
- i° i
respectively then there is a linear
X onto Y suchthat T(x) =y, for
ecach i,
Proof. By hvpothesis we may represent an aribtrar
300, y nyp 3 S
. - ?OO - o 3 v«rl 4 R}
point xeX as x = z, f (x)x. . Define T (x}= 4;1 f.{x}y. and
i i n i i

T{x) =2, f({x)y., convergence being insured by the similarity
3 i

property. Itis clear that each T is continucus, T is one-one

n

and onto and that lim T (x)= T{x) for sach zeX . By the OKR
n n

theorem T is continuous. A symmetric argument shows that

-t ; ‘

T is also continuous,

Ty

or generalizations of the isomorphism theorem see [3]

W
6]
0.

o
NS

3.3 DEFINITION. A series Z % in a Banach space X

is w.u.c. (weakly unconditionally ccnvergent} if for each per-
mutation 4 of the positive integers znd each feX¥ |

PR o . ; .
lim f(Ei‘ yq,(A)) exists., (Observe that we do not reguire that
n i ————

the limit element exist.)

We now prove two well-known lemmas before preceeding
. . 1 . .
to the characterizations of ¢ and { . he proofs are included
o

to illustrate the scope of the OKB theorem.

3.4 LEMMA. If Zfa, is a series of reals such that
- i

o . ©
Z t.a, converges whenever (t)e ¢ then Z ]al < 4o .
1 11 i o —— 11

i
Proof. For (t)ec let t =|ta [/a, if a, #0,
E— i o i iitt i i

0 if a, = 0. The (t;) € c and so by hypothesis
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2] oo 1! .
= It,a_l =Z t a <+w. Thus we may define
1711 . 1 i1

1
T=c =4 by T(t) =(t.a,) where t=(t)ec . Also define
o i i o
T (t) by T ()=(t,a,...,ta, 0,0, ...)et" . Clearly each
n n 11 nn
T is continuous and lim T (t) = T(t) for each te ¢ . Thus
n nn o

by the OKB theorem T is continuous. Thus for

™ L (44,1,...4, 0,0, 0, ...) ¢ c_ we have
n terms ©
SR BV PN EIN B Y

whence Zw fa_l < + o0 .
1 i

3.5 LEMMA. (see [5, p.159]). The following conditions

. .00 . .
on a series Li x in a Banach space are equivalent:
1 n
. co .
(i) X =x 1is w.u.c. ;
1 n —

(i1) there is a constant C such that for every bounded
real sequence (b ) the inequality
n

n
sup “21 bixi I < C sup, [bi[ holds; and,

(i1} for every (ti)e <, the series Zzot*x, converges.
e ——— ii

* 1
Proof. (i) = (ii) : For each n define Tn 2 X e

by T (f) = (f(x.})), f(x,), ..., f(x ), 0, 0, ...) and define
n i 2 n

T() = (£(x,) , for each fe X . By (i) 3 |itx)] <+ % and so
T is well defined. Clearly each Tn is continuous and
limnTn(f) = T(f) for each fe X* . By the OKB theorem T is
continuous. Lei C = ”T” LIt (bi) is'a bounded sequence of

reals we have
n n
=5 bl = sup (le(z, bx)] il < 1)
< supi lbi’ ,

i.e. (ii) holds.
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(ii) = (iii) : This implication is obvious.

(iii) = (i) : This implication follows trivially from lemma
3.4.

4. Characterizations of S In view of theorem 3.2,in
order for a Banach space X to be linearly homeomorphic to
c, ©°F ! ! it is necessary and sufficient that X have a basis
similar to the unit vector basis (ei) of c or zi . Thus all of

the characterizations below place conditions on a Schauder basis
(Xi) for X which forces (Xi) to be equivalent to the unit vector

basis.

4.1 THEOREM (see [5, Lemma 3, p.160]) : I (Xn) is a

Schauder basis for X and if infn ”Xn” >0 and Zoio x is w.u.c.

then (Xn) is similar to the unit vector basis of <,

0

Proof. By lemma 3.5 (iii), 21 tixi converges for every
(t.)ec . Also, since inf |x || >0, if =7t x converges
i o n n 1 nn
then (t Jec . Thus (x ) and (e ) are similar.
n o n n

4.2 DEFINITION. A basis (xi) for a Banach space X is
n
i if i 0 d s <+ .
of type P if and only if 1nfn ”xn” > and sup_ ”Z 1 xn” 00

This leads to the second characterization of Co

4.3 THEOREM (see [11, p.358]) : If a Banach space X
has an unconditional basis (Xn) of type P then (xn) is similar

to the unit vector basis of co

n
Proof. Let K1 = sup_ I 2’1 xi” . By Theorem 2.3 (b)

there is a K such that ” z ’cixi ” <K ” z tiXi H for
ied iea!
arbitrary t, , iec' where o, c'eX, o <c'. Thus, if ncr is
1

chosen so that o C {1,2,3,...,n0} then

Iz x| <k | =

ieo

. xilngK1 . Thus
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(4.4) sup_ < | = x, ”<KK <+o.

iead

Let (b, ) be a bounded sequence and for each positive integer n

(n)

choose f € X such that

”f(n) | =1 and | 2111 bixi | = f(n)

(n)

n
(Z‘,'1 bixi) .
Letting ¢ (n) = {i<n|f " (x)>0} and ¢ (n)={i<n |f(“)(xi)50}
we obtain

nz bx < = b, M )— = LAE;
ieo (n) T iecr_(n)

(n) %)
1

< s b 1A = =0+l oz o= D

1<i<n ieo'+(n) iec (n)

< 2KK, supnlbnl .

Thus by Lemma 3.5 (ii) , Eioxi is w.u.c. and so by Theorem 4.1

(x.) is similar to (e)) .
i i

The next characterization of ¢ was given, without proof,
0

by José Abdelhay [1].

4.5 THEOREM. Suppose (x.) is a basis for a Banach
i

space with the following properties:

”xi” =1, i=1,2,

(ii) there is a constant C> 0 such that || Z)I;xi | <c,
n=1,2,

(iii) if (fi) is the associated sequence of coefficient

functionals and lfi(x)l > Ifi(y)l for each i then [[x|| > [y[ ;

and,

(iv) for each yeX there is an xeX such that
fi(x) = max [0, fi(y)], i=1,2,...

Then (x.) is similar to the unit vector basis of ¢
i o
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Proof. Let x = ZZOfi(X) x, € X . By applying (iv) to both

x and -x we see that Z [f [ x. converges. By (iii) we have
1

ESCES P E IR

and thus by Theorem 2.3 (¢) {x ) is an unconditional basis for
n
X . By (i) and (ii) we see that (x ) is of type P . The result
n

foliows from Theorem 4.2.

In all the above characterizations we have assumed that (x )

i

is a basis for X . We now give a characterization of (¢ } using
o

seemingly weaker hypotheses.

4.6 DEFINITION. Let (x f ) be a biorthcgonal system
) %k
in a Banach space X (i.e. (xi)CX , (fi) cxX o, fi(xj' = 61:}.) .
The system (x.,f.) is of type Y if

(i) X = {XT the closed linear span of (x.);
i

{ii) there is an M > 0 such that thl <™
for each i and

(iii} there is a constant v> 0 such that sup ]fn(s)l > v
for each seS= {xeX]| [[x]] =1}

S. Yamazaki [44] showed that if X admits a biorthogonal system
of type Y then X must be non-reflexive. The following theorem
shows that much more is true.

4.7 THEOREM. I X admits a biorthogonal system
(x.,f) of type Y then (x.) is a basis for X similar to the unit
i ;) =t mesis oo

vector basis of ¢
I}

Proof. For each xeX let m xm = sup I fn(x)[ . From

(i1) and (iii), [ x| <M [x] and [|x|]| = v l=]] . Thus X is
linearly homeomorphic with the space of all sequences
{fi(x)} , x eX , with the ¢, mnorm. The set of all finite linear

combinations of members of (x ) corresponds to the dense sub-
n

set of c, consisting of the finitely non-zero sequences. This
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implies X is linearly homeomorphic with ¢ and that (x ) is
o n

similar to (en) .

5. Characterizations of { ! . We give three characterizations
1 -
of £ .
5.1 THEOREM (see [6, p.165]) . I (xn) is an uncon-

ditional basis for a Banach space X and if sup ”xnn < + o and

if there is an fe X such that infn l f(xn) l > 0 then (xn) i

similar to the unit vector basis of ¢ 1 .

Proof. If (a,)e 121 then, since sup_|[x || < z%ax,
I i n''mn 111

eo]
converges. On the other hand if 21 a.x, converges it converges
i

unconditionally and thus for any ge X, E;o lg(a_x,)[ < + oo,
L ii
Thus for the f in the hypotheses we have Z;o [ai[ ff(x,)l < + o
i

and since inin | f(xn) | > 0 we infer that Z;o {ail < + . Thus

(x ) and (e ) are similar.
n n

5.2 DEFINITION. A basis (Xi) for a Banach space X is
of type P* if and only if sup I Xn” < + o0 and sup ”ET fi | < + o,
where (fi) is the associated sequence of coefficient functionals.,

Let us recall two facts from the theory of linear topological
spaces.

(i) Let E be a linear topological space and B a convex
circled compact subset of E . Let F be a family of continuous
linear functionals on E ., Then there is a point x ¢ B with

f(xr) =4 for all fe¢e F if and only if

n 4 n
=

(5.3) IZ1 a; | < sup_ g | 1 aifi(x)l

for arbitrary ,{1, e fn in F and arbitrary scalars ai, ey an H

and

(ii) If E is a locally convex space and C an equicontinuous

E3
subset of E% then the w(E , E) - closed convex circled extension
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*
of C is w(E ,E) - compact. (For (i) see[10, p.4151] and for (ii)
see [10,p.170].)

5.4 THEOREM. (see [11,p.358]) . If (x ) is an uncon-
) is.anuncon-

ditional basis of type P for a Banach space X then (xn) is

similar to the unit vector basis of ¢

Proof. I (fi) is the sequence of coefficient functionals

for (x,} then, since by hypothesis (Zz1 f.) is norm-bounded,
i i
n
! n
closed convex circled extension of (Z1 fi) is w(X*,X) - compact.

(= fi) is equicontinuous. Thus by (ii) above, C, the w(X*,6 X) -
Thus by (i) above there is an {_ ¢ C such that fo(xn) =4 for each
n ((5.3) holds for
n n n n
z p> = i
S C | 1 aixi(f) | > !21 aixi( 1 fj) | ,21 a, |). The result

now follows from Theorem 5.1.
Our last result is a dual to Theorem 4.7.

5.5 DEFINITION. A biorthogonal system (xi, fi) in a
Banach space X is of type Y* if and only if

(i) X = [Xi] ;

(ii) there is an M > 0 such that ”X1” <M for all i, and,

(iii) there is a constant § > 0 such that sup If(xn)l > 8
for each fe % = {feX* | [f]l =17} .

5.6 THEOREM. I X admits a biorthogonal system of
type Y* then (Xi) is a basis for X similar to the unit vector

basis of £

Proof. For xe¢X let [|x]| denote the formal sum
Z;’O l f (X), . For an arbitrary finite linear combination of (xn) ,
n iinite

say x=33% (x)x , we have [x|| <M Zq]f (=) <M || <]l -
1 n n - 1" n

sgnlt_()]
For this same x, x# 0, let f=21———————’ fn .
Z(ﬂfn(x)[
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Z;l sgn[fn(x)]fn
Let g = q . From 5.5 (iii) we have
=
123 sgnls_ G|

sup ' g(xn) | > 6 whence ”2(11 sgn[fn(x)]fn” _<_§ . Thus

It <« —2—— . Also, 1=£x)< |f] x| and so
=] |1 ()]
1< ——'”'5”—— ,ie x|l 5_‘1 |l . The inequalities clearly
q 5
6=, |£_(x)]

hold if x=0. Now, by 5.5 (i), the set of all finite linear com-
binations of members of (xn) is dense in X . With the norm

I” ll these finite linear combinations correspond to a dense
subspace of [ 1 whose members have only a finite number of
non-zero components. From I\i/I ”x” < I“x”l S% ”x” on this

dense subspace we infer that X is linearly homeomorphic to 21
and that (xn) and (en) are similar.

APPENDIX

We give here alternate proofs of Theorems 4.7 and 5. 6.
The proofs given in the main body of the text are perhaps more
elegant but the following proofs seem, to the author, to be more
instructive.

Again let (xi’fi) be a biorthogonal system and let = denote

the collection of all finite subsets of the positive integers, w,
directed by inclusion. For ce¢ZXZ let L = [xi =ieco], the linear
o

span of {xi:ie o , L = [xi:iew\cr], SO_ = {xe L.: =]l =1}
and S° = fxe L’ : ||x| =1) . Similarly, let F_=[t:icc],
F =[fricone], T ={feF_:[f] =1} and TV = {£eL7: )] =1}.

Then Theorem 2.3 (b) is easily seen to be equivalent to the

following : (%) dist (SU , SU)Z B>0, B aconstant independent

of ceZ .
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The proof of the following lemma is straightforward and is
omitted.

LEMMA. I (x.,f) is a biorthogonal system then
i

(i) ann“i < dist (x_, LBy and
(ii) Hxn[['1 < dist (€, rint

Proof of 4.7. Suppose (xn, fn) is a biorthogonal system
of type Y . Then by 4.6 (ii) and the lemma dist (xn, L{n} )> 5'1/1 ,
i.e., 1nfrl ”xn”ZM, Let oe¢Z and se SG . By 4.6 (iii) there
is an new such that ]f (s)l > L | Since seL ,8 =2 f (s)x.
n = 2 (o . i i
ieo
and thus ne o, for otherwise, fn(s) = 0 contradicting the above.

Thus for te SU we have

Fs el = le N = f(s)x /1 (s) 4 +

t
o |
ieo\{n} n

. {n} .
> > dist (xn, L ) > Vi

Thus by (¥) and 4.6 (i) (Xi) is an unconditional basis for X .

For each pew , sup ”fn(Z}Z Xi/ I 21:; xi”)”Z\/ and it follows

that " Zi x || < Thus (Xi) is an unconditional basis of type
i

1
Y
P and the theorem follows from 4.3.
Proof of 5.6. Suppose (xi, fi) is a biorthogonal system
of type Y . An argument similar to the above shows
dist (TU, TG)_>_ 51 and so by (¥) (fi) is an unconditional basis
for [f :ne w]. If § denotes the canonical map from X into
n
[f :new]® defined by §(x) (f) = f(x) for each fe [t :new] then
n

it follows that (q;(xi)) is an unconditional basis for [d(x.)iiew ]
: i

and hence {x.,) is an unconditional basis for X (since [xi] =X).
i
5

n 1
> and sup ” Zifiuﬁé ,

As above it follows that inf ” xn” >
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. . . . . *
i.e. (xi) is an unconditional basis of type p , and the theorem

follows from 5.4.
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