
SOME CHARACTERIZATIONS OF c AND i 
o 

J . R . Re the r fo rd 

( rece ived July 4, 1966) 

1. In t roduc t ion . The space c c o n s i s t s of the s equences 

tending to z e r o with addi t ion and s c a l a r mu l t i p l i ca t ion defined 
1 

c o o r d i n a t e - w i s e and with the sup n o r m . The space i c o n s i s t s 
of the s e q u e n c e s b = (b.) under coord ina te»wise a r i t h m e t i c for 

CO 

which | | b | | = 2 | b . | < +oo . 
i= l 1 

S e v e r a l a n s w e r s to the ques t ion 

* When i s a B a n a c h space X l i nea r ly h o m e o m o r p h i c to c 
1 

or I ? 

have a p p e a r e d in the l i t e r a t u r e s ince Banach [4] showed that c , 
the space of conve rgen t s equences with the sup n o r m , is l i nea r ly 
h o m e o m o r p h i c to c 

o 

Our p u r p o s e in this p a p e r i s to examine the ques t ion # 
above f r o m the point of view of s i m i l a r b a s e s . While this point 
of view is c e r t a i n l y not new, our d i s c u s s i o n has the advantage 
of being unified by the u s e of a t h e o r e m due to Osgood, K u r a t o w s k i 
and B a n a c h . It s e e m s , to the au thor , that this t h e o r e m has been 
u n d e s e r v e d l y neg l ec t ed . 

The m a t e r i a l in th is p a p e r i s d r a w n f rom a s e r i e s of l e c t u r e s 
given a t Texas Chr i s t i an Un ive r s i t y in June, 1965. The paper was 
w r i t t e n while the au thor held a Louis iana State Un ive r s i t y F a c u l t y 
Council F e l l o w s h i p . 

2 . Defini t ions and Nota t ion. While a l l of our work could 
be c a r r i e d out over the c o m p l e x field, we a s s u m e , for s impl i c i ty , 
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that all of the spaces in question are over the field of rea l numbers . 

By a Schauder basis for a Banach space X we mean a 
sequence (x.) of elements of X such that for each xeX there 

i 

is a unique sequence of scalar s (a.) such that 

(2.1) x = lim 2 a.x. 
n l i i 

If X has a Schauder basis and if f.(x) is defined by f.(x) = a. , 
i i i 

oo 
where x = S 4 a.x. then f.(x.) = 5. . , the Kronecker delta and 

l i i i j i j 

[4, p . 107] each f. is a continuous linear functional on X , 

Suppose that (x.) and (y.) a re Schauder bases for the Banach 

spaces X and Y respectively, Then (x.) and (y.) are s imilar 

provided that 

(2.2) {(a.) | 2 , a.x converges} 
i 1 l i ; 

= {(a.) | 2 a.y. converges} 

It is obvious that if T is a linear homeomorphism from X onto 
Y , (x ) a Schauder basis for X and T(x.) = y. , then (y.) is 

i i i l 

a Schauder basis for Y and (x.) and (y.) are s imi la r . The 

converse of this fact is also true (see § 3 below) and is the founda­
tion for all our work. 

The concept we need is that of an unconditional bas i s . A 
oo 

ser ies 2 y. in a Banach space X converges unconditionally 
1 i 

(to y) if for every permutation r of the positive integers , 
00 00 

2 y /.x = y • A ser ies 2 y. in X is subser ies convergent if 
1 ^(i) 1 i " "~ 

for each increasing sequence (n.) of positive integers the ser ies 
00 

2 y converges to some element of X . It is well-known (see, 
1 n. 

i 

e .g . [7, p . 59]) that subser ies convergence and unconditional 
convergence are equivalent in Banach spaces and that each is 

oo 
equivalent to the following: 2 a.y. converges where a. = JH 1 

(arbi t rar i ly) . 
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A Schauder b a s i s (x.) for X is an uncondi t ional b a s i s if 
l ' : ! 

e a c h expans ion (2, 1) conve rges uncondi t ional ly to x . 

Le t 2 denote the co l lec t ion of a l l f inite s u b s e t s of the 
pos i t i ve i n t e g e r s d i r ec t ed by inc lus ion . 

2 .3 THEOREM. Let^ (x.) be a Schauder b a s i s for the 

B a n a c h space X . 

The following a r e equiva len t : 

(a) The b a s i s (x.) i s uncondi t ional ; 

(k) t h e r e i s a K such that for & , cr !6S , crC cr1 and 
a r b i t r a r y s c a l a r s (a.) . , we have 

_ 1 — i i c c r 1 — 

Il 2 a.x. || < K || 2 a.x. II ; and 
. i l " ~ . , l l " -—— 
i € cr l € cr ' 

00 
00 I I 

(c) 2 t f.(x) x. conve rges for each x = S f.(x)x. eX 
l i i . , 1 1 

i = l 
and t h e r e is an M > 0 such that 

|| 2°°f . (x) x. || < M || 2°° |f .(x) | x. || , M independent of x . 

The equ iva lence of (a) and (b) i s due to M. M. Gr inb lyum 
[8] and the equ iva lence of (a) and (c) i s found in the work of 
B . E . Veic [13] . 

I t i s r e a d i l y s e e n that the unit vec to r b a s e s (e.) of c 
I th ° 

and £ ( i . e . e. c o n s i s t s of a l l z e r o ' s except the i—• en t ry which 
i s 1) a r e uncondi t iona l and thus a space l i nea r ly h o m e o m o r p h i c 

1 
to e i t h e r c o r i m u s t have an uncondi t ional b a s i s , 

o 

3 . The O s g o o d - K u r a t o w s k i - B a n a c h T h e o r e m . With obvious 
in ten t ions we r e f e r to the following as the OKB T h e o r e m . 

3 . 1 THEOREM. E X and Y a r e Banach spaces and 
(T ) a sequence of cont inuous l inear o p e r a t o r s f r o m X to Y 

n ! ' ! ' ~~ 
such that T(x) = l im T (x) ex i s t for each x e X then T is a 
. — n n - « — 
cont inuous l i n e a r o p e r a t o r . 

P roof . The proof i s m e r e l y an appl ica t ion of 
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[12, Thm. 4 . 4 - E , p . 2 0 4 - 2 0 5 ] . 

Let us observe how easily the isomorphism theorem we 
need follows from, the OKB theorem. 

•7 'TJ.I \ r r, i REM. If (x.) and (y.) are s imi lar b a se s f or 

Qj~}^:zlzJ*}Lè)riiJL "̂  ^HP ^ Respectively then there _is_a linear 
J^n^eor-

each, i 

ii£IIli^r2212£î.iËE2 ^ ^£,̂ 22 -^ QJBJg, "̂  gij^lLJhat T(x. ) *-= y. foj. 

ĵ rjcmfh By hypothesis we may represent an a r ib t ra ry 

point xcX as x = 2 4 f.(x)x. , Define T (x) = 2 f.(x)y and 
1 i ' i n l i i 

T(x) = 2 f.(x) y. , convergence being insured by the similari ty 

property. It is clear that each T is continuous, T is one-one 

and onto and that lim T (x) = T(x) for each xeX . By the OKB 
n n 

theorem T is continuous, A symmetr ic argument shows that 

i is also continuous. 

For generalizations of the isomorphism, theorem see [3] 

and [9], 

. 0 0 

3.3 DEFINITION, A serines S / y. ^.^..^^B^nacji^^g^ce X 

is w. u. c, _(weakly unconditionally cdivergent) if for each per­
mutation T* of the positive integers and each f e X* , 

,n 

the limit element exist. ) 

We now prove two well-known, lemmas before proceeding 
1 

to the character izat ions of c and I . The oroofs are included 
o 

to i l lustrate the scope of the OKB theorem, 

00 

3.4 LEMMA. If 2 a is a ser ies of rea l s such that 
— i i - — — — — — _ _ » ~ 

_oo , oo i i 
2 t.a converges whenever (t ) e c then 2 , a, < loo , 

1 i i &— K i o — ~ i f i! 

f 
Proof. For (t.) € c let t. = I t.a. I /a . if a. 4 0 , 
' — — — " - i o l i i i i 

i 
0 if a. = 0 . The (t.) € c and so by hypothesis 

i i o 
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00 1 j 00 * 

2 , t a = 2 , t a. < + oo . Thus we m a y define 
1 i i 1 i i 

1 
T = c -* i by T(t) = ( t .a .) w h e r e t = (t.)e c . Also define 

o i i i o 
T (t) by T (t) = (t a , . . . , t a , 0, 0, . . .) € i 1 » Clea r ly each 

n n 1 1 n n 
T is cont inuous and l im T (t) - T(t) for each t € c » Thus 

n n n • o 

by the OKB t h e o r e m T is con t inuous . Thus for 

t l = ( Î , 1, 1, . . . 1, 0, 0, 0, . . . ) € c we have 
n t e r m s 

^ ! a . | = | |T(t ( n )) | |< | |T | | | | t W | 

0 0 [ j 

whence 2 a < + oo 
1 i 

3.5 LEMMA, (see [5, p . 159]). The following condi t ions 

on a s e r i e s 2 x in a B a n a c h space a r e equivalent : 
i n 

00 
(i) 2 1 x i s w . u . c . ; 

1 n —"~ 

(ii) t h e r e is a cons tan t C such that for e v e r y bounded 
r e a l s equence (b ) the inequal i ty 
_ — _ _ _ a _ _ _ n _____A__-,t. 

sup I 2 , b .x . || < C sup. b . ho lds ; and, 
* n " 1 i l '' — i ' i 1 — — • * — — 

oo 
(iii) for e v e r y (t„) € c the s e r i e s Z) t x. c o n v e r g e s . 

~ ~ ™ ~ ™ ~ ^ 1 O — — — — — 1 1 1 — — — — £ 2 — 

* i 
Proof . (i) -** (ii) : F o r each n define T : X «•* £ 

by T (f) = (f(x.))f f ( x j , . . . , f(x ), 0, 0, . , . ) and define 
n i 2 n 

T(f) = (f(x.)) , for each f € X . By (i) 2°° | f (x . ) | < + ™ and so 

T i s we l l def ined. C lea r ly each T is cont inuous and 
* n 

l im T (f) = T(f) for each f € X . By the OKB t h e o r e m T is 
n n 

con t inuous . Le t C = || T || . If (b.) is" a bounded sequence of 

r e a l s we have 

|| Z * b .x . || = s u p ( l ^ b . x . ) ! : | | f | | < 1} 

< sup. | b . | , 
— i i 

i . e . (ii) h o l d s . 
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(ii) -• (iii) : This implication is obvious. 

(iii) -* (i) ; This implication follows trivially from lemma 
3.4. 

4. Characterizations of c . In view of theorem 3. 2, in 
— : . , = Q 

order for a Banach space X to be linearly horneomorphie to 
1 

c or £ it is necessary and sufficient that X have a basis 

i 
similar to the unit vector basis (e ) of c or £ . Thus all of 

i o 
the characterizations below place conditions on a Schauder basis 
(x.) for X which forces (x.) to be equivalent to the unit vector 

basis. 

4.1 THEOREM (see [5, Lemma 3, p, 160]) : If (x ) is a 
— n —— 

Schauder basis for X and if inf II x II > 0 and 2 x is w. u .c . 
—. _ n n n _ _ « _ ^ n _ 

then (x ) is similar to the unit vector basis of c 
« n — — _ — : , _ - Q 

00 

Proof. By lemma 3.5 (iii), S t.x. converges for every 

(t.)e c . Also, since inf x | > 0 , if 2 t x converges 
i o n " n" I n n 

then (t ) e c . Thus (x ) and (e ) are similar, 
n o n n 

4.2 DEFINITION. A basis (x.) for a Banach space X is 

of type P if and only if inf || x || > 0 and sup || 2 , x ||< + oo . 
n " n n " 1 n " 

This leads to the second characterization of c 

4.3 THEOREM (see [11, p.358]) : If a Banach space X 
n unconditional basis (i 

to the unit vector basis of c 

has an unconditional basis (x ) of type P then (x ) is similar 
— : — : • — • — • — n * ' — ™ " " n • — — 

Proof. Let K = sup || £ n x. || . By Theorem 2.3 (b) 

there is a K such that || 2 t.x. || < K || S t.x. || for 
i €0" i €cr1 

arbitrary t , iccr1 where cr , or! e 2 , cr < cr! . Thus, if n is 
i — cr 

chosen so that cr C {1, 2, 3, . . . , n } then 

n 
II Z x || < K || Z / x. II < K K . Thus 

1 €CT 
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(4 .4) sup _ S x. < K K , < +00 . 
cr e S " . i " — 1 

i € ( J 

Let (b.) be a bounded sequence and for each pos i t ive in t ege r n 
1 (n) * 

choose f c X such that 

f|f(n)|| = 1 and l l ^ b . x . H = f ( n , ( L j b . x i ) . 

Let t ing cr (n) = {i < n | f(n) (x.) > 0 } and cr (n) = {i < n |f ( n ) ( x . ) < 0 } 

we obta in 

II < V j l l 2 Ib. | f ( n )(x)_ 2 |b |f (n )(x) 
x c c r i n ) leer (n) 

+ 

< sup | b . | ||f(n)|| (|| 2 x j + ll 2 x . l l ) 
^Li£ . n i€cr (n) iecr (n) 

< 2KK sup lb I . 
~ 1 n n 

00 

Thus by L e m m a 3 .5 (ii) , X . x. is w . u . c . and so by T h e o r e m 4 . 1 
1 i 

(x.) i s s i m i l a r to (e.) . 
i l 

The next c h a r a c t e r i z a t i o n of c was given, without proof, 
o 

by J o s é Abdelhay [ l ] . 

4 . 5 THEOREM. Suppose (x.) i s a b a s i s for a Banach 

space with the following p r o p e r t i e s : 

(i) | | x . | | = 1, i = 1,2, . . . , 

(ii) t h e r e i s a cons tan t C > 0 such that || 2 x. || <̂  C, 

n = 1 , 2 , . . . , 

(iii) if (f.) i s the a s soc i a t ed sequence of coefficient 
— i • ! ! 

funct ionals and |f .(x) | :> |f. (y) | for each i then | |x | | >_ || y || ; 

and, 

(iv) for each y e X t h e r e i s an x e X such tha t 
f.(x) = m a x [0 , f . (y) l , i = l , 2, . . . . 

i l 

Then (x ) i s s i m i l a r to the unit vec to r b a s i s of c . 
x . « .. , : : : .. Q 
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oo 
Proof, Let x = 2 f.(x) x. € X . By applying (iv) to both —- | 1 l 

x and «x we see that 2 If (x) x converges, By (iii) we have 
l i i 

11 Z ° ° f . ( x ) x . » < |i s " | f . ( x ) | x . | | 
1 1 1 " i l 1 

and thus by T h e o r e m 2*3 (c) (x ) i s an uncondi t iona l b a s i s for 
n 

X . By (i) and (ii) we s e e that (x ) is of type P . The r e s u l t 

follows f r o m T h e o r e m 4 * 3 . 

In a l l the above c h a r a c t e r i z a t i o n s we have a s s u m e d that (x.} 
i 

i s a b a s i s for X . We now give a c h a r a c t e r i z a t i o n of (c } using 
o 

see m i n g ly w e ak e r hyp o t h e s e s . 

4 . 6 DEFINITION. Le t (x . , f . ) be a b i o r t h o g o n a l s y s t e m 
1 X * 

in a B a n a c h space X (i . e. (x.) C X , (f.) t__ X , f .(x.) = 5 .. ) . 
i i i j i j 

The s y s t e m (x . ? f . ) i s of type Y if 
i i ~ " — -

(i) X = [x.] , the c losed l inea r span of (x. ) ; 
i" i 

(ii) t h e r e i s an M > 0 such that ||f. |j <_ M 

for each i and 

(iii) t h e r e i s a cons t an t v> 0 such tha t sup If ( s ) | > v 
n n ~~ 

for each s c S = { x e X j ||xj[ = 1 } . 

S. Y a m a z a k i [14] showed that if X a d m i t s a b io r t hogona l s y s t e m 
of type Y then X m u s t be n o n - r e f l e x i v e . The following t h e o r e m 
shows tha t m u c h m o r e i s true» 

4 . 7 T H E O R E M . Jf X a d m i t s a b i o r t h o g o n a l s y s t e m 
(x , f ) of type Y then (x ) i s a b a s i s for X s i m i l a r to the unit 

i i — ~ " ^ ~ — i -^^^--^^^^^-^ - — _ _ _ _ 

v e c t o r b a s i s of c 
. . —— - o 

P roof . F o r e a c h x e X let |jj x ||| = sup | f (x) | , F r o m 

(ii) and (i i i) , HI x HI < M |jx| | and | | |x ||| > v | | x | | . Thus X i s 
l i n e a r l y h o m e o m o r p h i c with the s p a c e of a l l s e q u e n c e s 
( f . ( x )} , x çX , wi th the c n o r m . The se t of a l l f ini te l i nea r 

i o 
combina t i ons of m e m b e r s of (x ) c o r r e s p o n d s to the d e n s e sub -

n 
se t of c cons i s t i ng of the f in i te ly n o n » z e r o s e q u e n c e s . Th i s 
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implies X is linearly homeomorphic with c and that (x ) is 
o n 

similar to (e ) . 
n 

1 
5. Characterizations of I , We give three characterizations 

r 1 
of i , 

5.1 THEOREM (see [6, p . 165]) . If (x ) is an uncon­

ditional basis for a Banach space X and if sup II x II < + oo and 
_ n n _ if there is an f € X such that inf f(x } > 0 then (x ) is 

- — — _ « — — — n i n i « _ _ n _ 

similar to the unit vector basis of i * . 

Proof. If (a.)€ I then, since sup ||x II < oo , 2 , a.x. 
_ _ l ^ n " n " l i i 

00 

converges. On the other hand if 2 a.x. converges it converges 

unconditionally and thus for any g;€ X* , 2 |g(a.x.)J < 4- oo, 
0 0 i I i I 

Thus for the f in the hypotheses we have 2 a. f (x ) < + oo 
1 i i 

and since inf f(x ) > 0 we infer that 2 , la. | < + oo . Thus 
n ' n 1 ' i ' 

(x ) and (e ) are s imilar , 
n n 

5.2 DEFINITION. A basis (x.) for a Banach space X is 

of type P* if and only if sup II x || < + oo and sup 1 2 , f. || < + oo, 
n n n 1 i " 

where (f.) is the associated sequence of coefficient functionals. 

Let us recal l two facts from the theory of linear topological 
spaces . 

(i) .Let E be a linear topological space and B a convex 
circled compact subset of E . Let F be a family of continuous 
linear functionals on E . Then there is a point x € B with 

o 
f (x ) = 1 for all f € F if and only if 

o 

(5-3) i 2 ^ a . | < s u p x € B ' | s ^ a i f i ( x ) | 

for a rb i t ra ry f , . . . , f in F and arbi t rary scalars a, , . . ., a ; 
I n I n 

and 
(ii) If E is a locally convex space and C an e qui continuous 

subset of E# then the w(E , E) - closed convex circled extension 
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of C is w(E , E) - compact. (For (i) see [10, p. 151] and for (ii) 

see [10,p.170].) 

5.4 THEOREM. (see [11, p. 358]) . If (x ) is an uncon-

ditional basis of type P for a Banach space X then (x ) is 

similar to the unit vector basis of I 

Proof. If (f.) is the sequence of coefficient functionals 
«—_ 1 

for (x ) then, since by hypothesis (Z, f. ) is norm-bounded, 
i 1 i 

(Z f. ) is e qui continuous. Thus by (ii) above, C , the w(X*, X) -
1 i 

closed convex circled extension of (Z f. ) is w(X*,X) » compact. 

Thus by (i) above there is an f e C such that f (x ) = 1 for each 
o o n 

n ((5.3) holds for 

sup, _ | 2 * a.x. (f) I > |S? ax . (Z?f.) I = IS? a I). The result 
f e C 1 l l - — ' 1 i i l j l i 

now follows from Theorem 5.1 . 

Our last result is a dual to Theorem 4.7. 

5.5 DEFINITION. A biorthogonal system (x.,f.) in a 
i i 

Banach space X is of type Y* if and only if 

(i) X = [x.] ; 

(ii) there is an M> 0 such that || x. || <_ M for all i , and, 
(iii) there is a constant ô > 0 such that sup |f(x ) > 6 

n n — 
for each f € S* = {f €X* | ||f || - 1 } . 

5.6 THEOREM. If X admits a biorthogonal system of 
type Y* then (x.) is a basis for X similar to the unit vector 

T~ x ~ " ' ~ 
basis of i 

Proof. For xeX let ||| x ||| denote the formal sum 

E I f (x) I . For an arbitrary finite linear combination of (x ) , 
1 ' n

x ! y ' n 
say x = Z^ f (x) x , we have II x || < M Z^ | f (x) | < M ||| x ||| . 

I n n " " I n 

sgn[fn(x)] 
For this same x , x ^ 0 , let f = Z •—• s—=—- f 

1 2?|f (x)| n 

I n 
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2^ sgn[fn(x)]fn 

Let g =- - — . From 5.5 (iii) we have 
||sjsgn[fn(x)]fn|| 

sup I g(x ) I > 6 whence | |zqsgn[f (x)]f II < - . Thus 
n n ~ " 1 ° L n n 6 

ll fll< —— • Also, 1 =f(x)< ||f|| ||x|| and so 

5 S j | f (x)| 
1 ' n ' 

! < 11 II » ^ i ^ m x m < _ | | x | | ^ T h e inequalities clearly 

6sJ|fn(x)| 5 

hold if x = 0 . Now, by 5.5 (i), the set of all finite linear com­
binations of members of (x ) is dense in X . With the norm 

n 
HI HI these finite linear combinations correspond to a dense 

1 
sub space of £ whose members have only a finite number of 

non-zero components. From r~ ||x|| <̂  |||x||| <̂— ||x|| on this 
M ô 1 

dense sub space we infer that X is linearly homeomorphic to £ 
and that (x ) and (e ) are similar, 

n n 

APPENDIX 

We give here alternate proofs of Theorems 4.7 and 5.6. 
The proofs given in the main body of the text are perhaps more 
elegant but the following proofs seem, to the author, to be more 
instructive. 

Again let (x., f. ) be a biorthogonal system and let 2 denote 

the collection of all finite subsets of the positive integers, w , 
directed by inclusion. For cr € 2 let L = [x. = i € cr 1 , the linear 

cr l 
span of {x. : i € cr} , L, = [x. :i€co\cr] , S = {xe L» : ||x|| v= 1} 

and S = {xe L : ||x|| = 1} . Similarly, let F = [f. :ie cr ] , 

F^ = [f. : i € oi\cr ] , T = {f € F : || f || = 1} and T°" = {f € L°" : || f || = 1} 

Then Theorem 2.3 (b) is easily seen to be equivalent to the 

following : (*) dist (S , S ) >̂  (3 > 0 , p a constant independent 

of cr € S . 

49 

https://doi.org/10.4153/CMB-1967-005-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1967-005-7


The proof of the following lemma is straightforward and is 

omitted. 

LEMMA. If (x , f ) is a biorthogonal system then 
i i 

(i) ||f H"1 < dist (x , L ^ ) , and 
n11 — n 

(ii) ||x H"1 < dist (f , F ^ ) . nn — n 

Proof of 4 . 7 . Suppose (x , f ) is a biorthogonal system 
~ ~ ~ _ n n -

of type Y . Then by 4.6 (ii) and the lemma dist (x , 1 / )> — , 
d n. - M 

i.e.» inf II x || > r\ . Let <x e 2 and s € S . By 4. 6 (iii) there 
n n M g-

is an new such that |f (s) | >. ? • Since s € L , s = 2 f .(s)x, 
i € v 

and thus ne cr , for otherwise, f (s) = 0 contradicting the above. 
n 

Thus for te S we have 

||s + t | | = |f (s)[|| S f.(s)x./f (s )+x +Y—T || 
n ico\{n} * 1 n n f n ( 5 ) 

> ^ dist (x , L ^ n ' ) > r ^ r , 
~~ Z . n ~~ ZM 

Thus by (*) and 4.6 (i) (x.) is an unconditional basis for X . 

For each pew , sup || f ( 'S^x . / || Z^ x II ) Il > y and it follows 
n n 1 i 1 i" / !l — 

D 1 
that || S x || < — . Thus (x.) is an unconditional basis of type 

' 1 l -* y i 
P and the theorem follows from 4 . 3 . 

Proof of 5 .6 . Suppose (x. , f. ) is a biorthogonal system 

of type Y , An argument similar to the above shows 

dist (T , T ) > -~ and so by (*) (f.) is an unconditional basis 
cr — M i 

for ff : ne CJ] . If $ denotes the canonical map from X into 
n x 

ff : ne coF defined by $(x) (f) = f(x) for each f e [f : n e w] then 
n n 

it follows that (c[>(x.)) is an unconditional basis for [§(x.):ieoo ] 

and hence (x.) is an unconditional basis for X (since [x.] = X) . 
1 c n 1 

As above it follows that inf || x || > — and sup || 2 f.|| < °r , 
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i . e . (x.) is an unconditional basis of type p t and the theorem 

follows from 5.4 . 
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