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Symmetries of a fluid-gyrokinetic model are investigated using Lie group techniques.
Specifically, the nonlinear system constructed by Zocco & Schekochihin (Phys.
Plasmas, vol. 18, 2011, 102309), which combines nonlinear fluid equations with a
drift-kinetic description of parallel electron dynamics, is studied. Significantly, this
model is fully gyrokinetic, allowing for arbitrary k⊥ρi, where k⊥ is the perpendicular
wave vector of the fluctuations and ρi the ion gyroradius. The model includes integral
operators corresponding to gyroaveraging as well as the moment equations relating
fluid variables to the kinetic distribution function. A large variety of exact symmetries
is uncovered, some of which have unexpected form. Using these results, new nonlinear
solutions are constructed, including a helical generalization of the Chapman–Kendall
solution for a collapsing current sheet.

Key words: plasma nonlinear phenomena, plasma properties

1. Introduction
Symmetry transformations – changes in the dependent and independent variables

of a physical model that leave the model equations unchanged – are revealing and
useful throughout theoretical physics. The most general scheme for uncovering point
symmetries of a system of equations is Lie-group analysis (see, e.g. Olver 1993;
Cantwell 2002). This scheme has been used extensively in plasma physics, including
studies of the Vlasov–Maxwell model for an unmagnetized plasma (see Roberts 1985;
Kovalev, Krivenko & Pustovalev 1996), charged particle motion in electromagnetic
fields (Qin & Davidson 2006) and the Grad–Shafranov equation (White & Hazeltine
2009). A special case of Lie symmetry, scaling symmetry, was fruitfully employed
by Connor & Taylor (1977). In this work we apply the Lie procedure to a particular
nonlinear gyrokinetic fluid model used in magnetized plasma turbulence and magnetic
reconnection studies.

The symmetries of any physical model have intrinsic interest, especially because one
often uncovers unexpected symmetries – beyond the usual rotations, translations and
so on which are obvious from physical considerations. Knowledge of the symmetries
can simplify numerical calculations, while providing useful tests on their accuracy.
When a variational principle is available, the symmetries can be used to identify
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dynamical constants. They can also be used to generate new solutions from old
ones – in particular, physically interesting solutions can be constructed by applying
the group operator to a trivial, less interesting solution. Finally, in many cases
symmetries can be used to reduce the order of a differential equation system, in
some cases leading to exact solutions.

1.1. Fluid-gyrokinetic model
A magnetized plasma is one in which the ion gyroradius, ρi, is small compared to
all equilibrium gradient scale lengths. However, scale lengths of perturbed quantities
in a magnetized plasma, measured by the perpendicular wavelength k−1

⊥ , can break
this ordering: k⊥ρi ∼ 1. Theories allowing for such finite-Larmor-radius (FLR) effects
increasingly dominate plasma physics research, entering both kinetic and fluid models
of plasma dynamics.

There are two ways in which conventional fluid equations fall short in their
description of magnetized plasma dynamics. First, they represent FLR effects crudely,
retaining at most terms of second order in k⊥ρi. Second, they entirely omit Landau
resonances, which, in the magnetized context, enter through wave–particle interactions
parallel to the field – effects conventionally treated by the drift-kinetic equation.
Gyrokinetics (Rutherford & Frieman 1968; Taylor & Hastie 1968; Catto 1978; Catto,
Tang & Baldwin 1981; Frieman & Chen 1982; Dubin et al. 1983; Lee 1983, 1987;
Hahm, Lee & Brizard 1988; Brizard 1992) addresses both shortcomings, providing
in particular a full FLR treatment of the perturbed fields, with however the expense
and complexity of computation (analytical and numerical) in five dimensions of
phase space. Gyrofluid models reduce this overhead by restricting the FLR physics
to coordinate space (see, for example, Hammett & Perkins 1990; Hammett, Dorland
& Perkins 1992; Dorland & Hammett 1993; Hammett et al. 1993; Beer & Hammett
1996; Snyder & Hammett 2001; Waelbroeck, Hazeltine & Morrison 2009; Bian &
Kontar 2010). However, the validity of the approximations made in their derivation
can be hard to ascertain, especially in nonlinear contexts (Dimits et al. 2000).

An alternative and conceptually straightforward approach combines a fluid treatment
of the perpendicular physics with a drift-kinetic description, including resonances and
collisions, of the parallel dynamics (Ramos 2010, 2011). Such a hybrid approach
was proposed and applied as early as 1956 (Chew, Goldberger & Low 1956; Grad
1956; Kruskal & Oberman 1958; Rosenbluth & Rostoker 1959). Called ‘kinetic
magnetohydrodynamics (MHD)’, the early approach neglected most FLR effects,
combining MHD with the drift-kinetic equation. However in other respects it
resembles the gyrokinetic fluid hybrid considered here.

We study a particular representative of the fluid-kinetic approach: the reduced
gyrokinetic model derived in Zocco & Schekochihin (2011), referred to below as ZS.
The model uses five fields – five functions of five independent variables (including
time). To make this work self-contained, and establish notation, we start by reviewing
the physical assumptions built into the ZS model in § 2.1, and then express the model
equations in normalized variables in § 2.2. The remainder of the paper exclusively
uses normalized variables, so the reader who is already familiar with the model can
skip § 2.1. The symmetries obtained from our analysis are shown in § 3. Section 4
presents new exact solutions of the reduced MHD (RMHD) equations – a limit of
the ZS model – obtained using symmetry transformations. In § 5 we display the
Lie-group generator and present the procedure used to derive the symmetries for
the (integro-differential) ZS model. We do not attempt any full exegesis of the Lie
procedure; readers unfamiliar with it may consult such texts as Olver (1993) or
Cantwell (2002). Our conclusions are summarized and discussed in § 6.
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2. Model equations
2.1. Introduction

The detailed derivation of the ZS model from the gyrokinetic equations is given in
Zocco & Schekochihin (2011). Here, we briefly survey the physical assumptions,
summarize the resulting equations and indicate the physical meaning of each of the
fields.

The plasma, composed of electrons with charge −e and ions with charge Ze, is
assumed to have a uniform background magnetic field B0 ẑ, and the equilibrium
electrons and ions are Maxwellian:

F0s = n0s

(2π)3/2v3
Ts

exp
(
− v2

2v2
Ts

)
, (2.1)

with vTs= (T0s/ms)
1/2. Here we deviate from the convention of Zocco & Schekochihin

(2011), where the Maxwellian is characterized by its most probable speed vth,s=
√

2vTs.
This translates to a slightly different definition of the Larmor radius, which for us is
defined by ρs = vTs/|Ωs|, with Ωs = qsB0/(msc). This modification eliminates many
factors of

√
2 in the final equations.

In accordance with the standard δf gyrokinetic ansatz, each field is split into its
background value plus a small perturbation, with δfs/F0s ∼ δB/B0 ∼ k‖/k⊥ ∼ ω/Ωs ∼
ε� 1. Additionally, βs= 8πn0sT0s/B2

0 is ordered via βs∼ Zme/mi, with the mass ratio
being treated as a second formal small parameter.

2.1.1. Electrostatic ions
After ordering out electromagnetic effects and parallel streaming in the ion

gyrokinetic equation, the leading-order ion distribution function is given by

δfi = ZeF0i

τT0e
(〈ϕ〉Ri − ϕ), (2.2)

where Ri(r, v)= r−Ω−1
i v × ẑ, Ωi = ZeB0/(mic), τ = T0i/T0e and 〈· · · 〉Ri denotes the

gyroaverage at fixed Ri.
It follows that the ion density perturbation δni and mean parallel flow u‖,i are given

by

δni

n0i
=−Z

τ
(1− Γ̂0)

eϕ
T0e
, (2.3)

u‖,i = 0, (2.4)

where Γ̂0 is an ion gyroaveraging operator:

Γ̂0[· · ·] ≡ 1
n0i

∫
d3v〈〈· · ·〉Ri〉rF0i(v). (2.5)

In Fourier space, Γ0 has the closed-form expression

Γ0 = I0(αi)e−αi, (2.6)

where I0 is the zeroth-order modified Bessel function and αi = k2
⊥ρ

2
i .
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2.1.2. Quasineutrality and Ampère’s law
Since u‖,i= 0, we have J‖=−en0eu‖e, and thus the parallel component of Ampère’s

law becomes

u‖,e = e
mec

d2
e∇2
⊥A‖, (2.7)

where de = c/ωpe and ωpe = (4πnee2/me)
1/2.

According to equation (2.3), quasineutrality is expressed by

δne

n0e
=−Z

τ
(1− Γ̂0)

eϕ
T0e
. (2.8)

2.1.3. Drift-kinetic electrons
The electrons are described by a distribution function ge from which the density

and parallel flow terms have been extracted:

ge = δfe −
(
δne

n0e
− v‖ u‖,e

v2
Te

)
F0e. (2.9)

The electron dynamics is described by fluid equations for the explicit moments,
together with a simplified drift-kinetic equation:

d
dt
δne

n0e
=−b̂ · ∇u‖e, (2.10)

me
d
dt

u‖e =−νeimeu‖e + e
(
∂ϕ

∂z
+ 1

c
d
dt

A‖

)
− T0eb̂ · ∇

(
δne

n0e
+ δT‖,e

T0e

)
, (2.11)

where

δT‖,e
T0e
= 1

n0e

∫
d3v

v2
‖
v2

Te
ge, (2.12)

is the electron temperature perturbation. We have also introduced the convective time
derivative

df
dt
≡ ∂f
∂t
+ c

B0
{ϕ, f }, (2.13)

with the Poisson bracket defined by

{ f , g} ≡ ∂f
∂x
∂g
∂y
− ∂f
∂y
∂g
∂x
, (2.14)

and the parallel gradient operator

b̂ · ∇f ≡ ∂f
∂z
− 1

B0
{A‖, f }. (2.15)

The remaining distribution function ge is determined by a simplified drift-kinetic
equation:

dge

dt
+ v‖b̂ · ∇

(
ge − δT‖,eT0e

F0e

)
−C[ge] =

(
1− v2

‖
v2

Te

)
F0eb̂ · ∇u‖,e, (2.16)
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in which electron FLR terms, as well as curvature drifts, are ordered out by the strong
guide field. Finally,

C[ge] = νei

[
v2

Te
∂

∂v‖

(
∂

∂v‖
+ v‖
v2

Te

)
ge −

(
1− v2

‖
v2

Te

)
δT‖e
T0e

F0e

]
(2.17)

is a model collision operator that conserves particles, parallel momentum and parallel
kinetic energy, and further gives a Spitzer-like electron–ion friction term in the
electron momentum equation (Zocco & Schekochihin 2011). This model operator –
a generalization of the so-called Lenard–Bernstein operator introduced by Rayleigh
(1891) – also satisfies an H theorem.

Note that (2.9) requires the integral constraints∫
d3v

(
1
v‖

)
ge(r, v‖, v⊥, t)= 0, (2.18)

which, if satisfied at any particular t= t0, will be satisfied for all t.

2.1.4. Summary
Given a background characterized by B0 and vTs, equations (2.7), (2.8), (2.10), (2.11)

and (2.16), are a closed system of equations governing small nonlinear perturbations
of the fields ϕ, A‖, u‖e, δne/n0e and ge. In the final formulation of the model presented
in equations (62)–(64) of Zocco & Schekochihin (2011), u‖e has been eliminated using
(2.7). We will do the same in the remainder of the paper.

2.2. Normalization
For the purposes of obtaining symmetries, it is convenient to reduce the number of
constants in the ZS model by normalizing all quantities. It turns out that the fields
can be normalized in such a way that there are only two dimensionless constants:
Z/τ and α ≡ ρ2

i /d
2
e , and these only appear in the integral closure relation relating

the electrostatic potential to the density perturbation.
The dependent variables are normalized via

δn= δne/n0e

〈δne/n0e〉 , ψ = A‖
〈A‖〉 , φ = ϕ

〈ϕ〉 ,

δT = δT‖e/T0e

〈δT‖e/T0e〉 , g= ge

F0e〈ge〉 ,

 (2.19)

with 〈
A‖
〉= B0νeid2

e/vTe, (2.20)

〈ϕ〉 = B0νeid2
e/c, (2.21)

〈δne/n0e〉 =
〈
δT‖e/T0e

〉= 〈ge〉 = 〈δ〉, (2.22)

where

〈δ〉 ≡ eB0νeid2
e

cT0e
= νei

Ωe

√
βe. (2.23)
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The independent variables are similarly normalized, with the following normalization
scales:

〈v‖〉 = vTe, 〈x⊥〉 = de, 〈z〉 = vTe/νei, 〈t〉 = 1/νei. (2.24a−d)

Defining the normalized convective time derivative, parallel gradient and perpendicu-
lar Laplacian by

dtf ≡ ∂tf + {φ, f }, ∇‖ f ≡ ∂z f − {ψ, f }, ∆≡ ∂2
x + ∂2

y , (2.25a−c)

and the normalized gyrokinetic and collision operators by

Ĝ ≡−Z
τ

e〈ϕ〉
〈δ〉 G, (2.26)

Ĉ≡ gvv − vgv − (1− v2)δT, (2.27)

respectively, the normalized reduced fluid-kinetic model takes the form

dtδn=−∇‖1ψ, (2.28)
dtψ + φz = λ[1(ψ + dtψ)+∇‖(δn+ δT)], (2.29)

dtg+ v∇‖(g− δT)= Ĉ+ (1− v2)∇‖1ψ, (2.30)

δT = 1√
2π

∫
dv′ v′2e−v

′2/2g(v′). (2.31)

Here, the brackets are the same as (2.14) except the perpendicular coordinates are now
normalized, and λ(= 1) is a tag for the terms that are dropped in the ideal RMHD
limit. These differential equations are to be solved subject to the integral constraints(

0
0

)
= 1√

2π

∫
dv′
(

1
v′

)
e−v

′2/2g(v′), (2.32)

together with

δn= Ĝλφ. (2.33)

We introduce a normalized Alfvén velocity,

vA = 1
vTe

B0√
4πn0imi

(2.34)

(=√τα/Z), (2.35)

and the normalized kernel,

K̂(x)= −Z/τ
2π

∫
dk⊥ k⊥J0(k⊥x)[1− I0(αk2

⊥)e
−αk2

⊥] (2.36)
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obtained from (2.6). Then the operator Ĝ becomes

Ĝu =
∫

d2x′⊥K̂(|x⊥ − x′⊥|)u(x′⊥), (2.37)

= v−2
A ∆+O(α2∆2). (2.38)

The operator

Ĝλ = v−2
A ∆+ λ(Ĝ − v−2

A ∆) (2.39)

reduces to the small k⊥ρi limit of the operator Ĝ as λ→ 0.
Finally, to determine the symmetries of these equations, we must explicitly include

the trivial relations

∂vδn= ∂vφ = ∂vψ = ∂vδT = 0. (2.40)

2.3. RMHD limit
If we set λ = 0 in (2.29) and (2.38), the equations (2.28)–(2.29) become an
autonomous subsystem for φ and ψ :

dt1φ =−v2
A∇‖1ψ, (2.41)

dtψ + φz = 0, (2.42)

while g becomes a decoupled scalar field, constrained to satisfy the driven integro-
differential equation

dtg+ v∇‖(g− δT[g])= gvv − vgv + (1− v2)(∇‖1ψ − δT[g]). (2.43)

Equations (2.41) and (2.42) define ideal RMHD (Kadomtsev & Pogutse 1974;
Strauss 1976). There is no coupling to the kinetic equation.

3. Symmetries
Here, we present the symmetries of the system (2.28)–(2.33) in the form of

transformations of known solutions, rather than in terms of the infinitesimal generators
of the symmetries. The latter are obtained directly from the invariance criterion in § 5.

3.1. Gauge transformation
Given a solution (φ, ψ, δn, δT, g)(v, x⊥, z, t), and an arbitrary function H(z, t), one
can generate a new solution (φ̃, ψ̃, δ̃n, ˜δT, g̃)(v, x⊥, z, t) via

φ̃

ψ̃

δ̃n
˜δT
g̃

 (v, x⊥, z, t)=


φ
ψ

δn
δT
g

 (v, x⊥, z, t)+


−∂tH
∂zH

0
0
0

 . (3.1)

It is not hard to see that this symmetry is expressing gauge invariance. After
undoing the normalizations, equation (3.1) becomes(

ϕ̃

Ã

)
=
(
ϕ

A

)
+
−1

c
∂Λ

∂t
∇Λ

, (3.2)
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where Λ= c〈ϕ〉〈t〉H, and A= ẑA‖+O(
√
βs). Note that if H had x⊥ dependence, then

this gauge transformation would change A⊥ as well. However, in the low-β limit, A⊥
is ordered out of the model, so the gauge must be independent of x⊥.

Of course this symmetry also holds in the RMHD model – explaining the absence
of λ in the transformation (3.1).

The appearance of gauge symmetry in the ZS model is not surprising, but also not
without significance. The ZS model is based on a carefully constructed asymptotic
expansion. In particular, it extracts (the asymptotic behaviour of the) particular
solutions of the full gyrokinetic model which, in the subsidiary limit Zme/mi→ 0+,
with βs ∼ Zme/mi, behave according to the many ordering assumptions employed
in the derivation. Since the full gyrokinetic model is gauge invariant, any particular
solution extracted by specifying its behaviour in an asymptotic limit must also obey
gauge invariance. More generally, any symmetry of the full model should be preserved
in an asymptotic reduction. In view of the complex ordering scheme used in the ZS
construction, the emergence of gauge invariance here provides a consistency check
on the model equations.

3.2. Translations

Let ξ (⊥)(z, t) be an arbitrary displacement in the x–y plane, and ξ (z), ξ (t) be arbitrary
constants. Then ξ(z, t)= (ξ (⊥)(z, t), ξ (z), ξ (t)) produces the symmetry transformation

φ̃

ψ̃

δ̃n
˜δT
g̃

 (v, x, y, z, t) =


φ

ψ
δn
δT
g

 (v, x⊥ + ξ (⊥)(z, t), z+ ξ (z), t+ ξ (t))

+


−∂t

(
ẑ · ξ × x⊥

)
∂z(ẑ · ξ × x⊥)

0
0
0

 . (3.3)

In the case where ξ (⊥) is a constant, we recover the obvious result that the model is
translation invariant in the x⊥ plane. In the more general case, the transformations of φ
and ψ follow the same pattern as the gauge symmetry, but the overall transformation
of these fields is not a gauge transformation: note the additional (z, t)-dependent
translation of the initial fields, as well as the fact that the gradient of ẑ · ξ × x⊥ has
non-zero x̂⊥ components.

3.3. Alfvénic rotations
Let Θ(z, t) be a solution to the one-dimensional (Alfvén) wave equation

v−2
A Θtt =Θzz. (3.4)

This function will determine the z–t-dependent rotation of the original solution about
the z axis. After transforming to polar coordinates in the x–y plane, x⊥ = rr̂(θ), the
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symmetry transformation takes the form
φ̃

ψ̃

δ̃n
˜δT
g̃

 (v, r, θ, z, t)=


φ

ψ

δn
δT
g

 (v, r, θ +Θ, z, t)+


−∂t(r2Θ/2)
∂z(r2Θ/2)
−2∂tΘ/v

2
A

0
G

+ λ

F
0
0
T
0

. (3.5)

Here the function G(v, z, t) appears as a displacement for the distribution function g:

g→ g+G. (3.6)

A detailed discussion of G appears in the following subsection. We have also
introduced

F = 2(Θ + ∂tΘ)− 2∂tΘ/v
2
A + T , (3.7)

and

T = 1√
2π

∫
dv′ v′2e−v

′2/2G(v′). (3.8)

The first term on the right-hand side of (3.7) is due to the combination of resistivity
and electron inertia; the second term arises from the density contribution to the
perturbed electron pressure; and the last term is due to the electron temperature
perturbation.

Note that our symmetries apply to the limiting case of RMHD, where the functions
G and T can be ignored.

This subgroup is reminiscent of the residual gauge freedom in the Maxwell
equations ∂µ∂µAν = (4π/c)jν when the Lorentz gauge condition

∂µAµ =∇ ·A+ 1
c
∂φ

∂t
= 0 (3.9)

is imposed. Even with the (covariant) gauge condition (3.9), the system still has the
restricted gauge symmetry

A→A+∇Λ, φ→ φ − 1
c
∂Λ

∂t
, (3.10a,b)

where

∇2Λ− 1
c2

∂2Λ

∂t2
= 0. (3.11)

Here, the constraint equation (3.11) for Λ is similar to the condition (3.4) for Θ .
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3.4. The function G
3.4.1. Linear drift-kinetic equation

The function Θ determines G implicitly, through the kinetic equation

Ĉ[G] − vGz −Gt =He2(v)2Θtt/v
2
A −He1(v)Tz, (3.12)

with the constraints (
0
0

)
= 1√

2π

∫
dv′
(

1
v′

)
e−v

′2/2G(v′). (3.13)

In (3.12), the Hen are the ‘probabilist’s’ Hermite polynomials.
Aside from the coefficients on its right-hand side, equation (3.12) is identical to

the linearized version of the drift-kinetic equation (2.16), which has been previously
studied in detail (see, for example, Zocco & Schekochihin 2011; Hatch et al. 2014;
Schekochihin et al. 2016; White & Hazeltine 2017). In the symmetry context, the
linearity of (3.12) does not result from approximation; the linearity follows from the
general structure of Lie groups. In particular, the infinitesimal generators of any Lie
group form a vector space, so the determining equations for symmetry transformations
are always linear. Similarly, the absence of the electrostatic potential in (3.12) is not
an approximation; it reflects exact Lie symmetries, such as (5.11), (5.12) and (5.17).

3.4.2. Closed-form solution for G(v, z, t)
Using special choices for such functions as

Θ(z, t)=Θ+(z+ vAt)+Θ−(z− vAt), (3.14)

it is not hard to find a closed-form solution for G. Here we are content to display a
single example: the choice

Θ =−T0

48
[(z+ vAt)3 + (z− vAt)3], (3.15)

where T0 is a constant, together with

T = T0

4vA

[
(z+ vAt)2 − (z− vAt)2

]= T0zt (3.16)

allows an exact solution with

G(v, z, t)= T0

2

[
tzHe2(v)− 1

3

(
t− 1

3
+ c e−3t

)
He3(v)

]
, (3.17)

where c is an arbitrary constant. It is easily verified that this function satisfies the
differential equation as well as the integral constraints. In addition to furnishing an
explicit symmetry, this relatively simple function is in fact an exact solution to the full
nonlinear integro-differential model, and thus can be used for benchmarking codes.
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3.4.3. Fourier–Hermite expansion of G
A conventional approach to the drift-kinetic equation (Watanabe & Sugama 2004;

Zocco & Schekochihin 2011; Hatch et al. 2014; Kanekar et al. 2014) expands the
distribution function, in this case G(v, z, t), as a series in Hermite polynomials. Here
it is convenient to use ‘probabilist’s’ Hermite polynomials, and to Fourier analyse the
z- and t-dependent Hermite coefficient, thus expressing G as

G(v, z, t)=
∞∑
0

Hen(v)√
n!

∫
dω dk
(2π)2

Gn(ω, k)ei(kz−ωt). (3.18)

We note that this expansion restricts our consideration to solutions which have a
Fourier transform; it would exclude, for example, equation (3.17).

The constraints (3.13) become

G0 =G1 = 0, (3.19)

while (3.8) gives

G2 = 1√
2
T . (3.20)

The remaining Gn are determined by the recursion relation

k
(√

n+ 1Gn+1 +
√

nGn−1

)
− inGn −ωGn = 0, n> 2. (3.21)

Although (3.21) is a simple, linear recursion relation, solving it requires some
care: there is a spurious divergent ‘solution’ (White & Hazeltine 2017) that must
be avoided by appropriate determination of initial data – in this case the ratio
∆ ≡ G3/G2. In numerical applications, one is only interested in calculating a finite
subset {Gn}n6N because g is represented by a finite sum of Hermite polynomials.
In this case, ∆(N) can be determined by the same closure scheme adopted by the
numerical method to solve the full nonlinear model. For example, if one simply
truncates by setting GN+1 = 0, then (3.21) can be iterated backward to determine
{GN/GN−1, GN−1/GN−2, . . . , ∆(N)}. See Zocco et al. (2015), Loureiro et al. (2016)
for alternate closure schemes. The choice of ∆, as well as other approaches to solving
the recursion relation, will be considered in a future publication.

Finally, T is expressed in terms of the functions Θ and ∆ via

T (z, t)=
∫  2ik

ω/k
2
−√3∆(ω, k)

Θ(ω, k)e−ikz+iωt dω dk
(2π)2

. (3.22)

This expression, like (3.21), is obtained by direct Fourier–Hermite transformation of
(3.18).

4. Sample applications
The value of knowing the symmetries of a some mathematical description is

appreciated in nearly all areas of physics. In addition to their relation to conservation
laws (discussed below), symmetries can be used to test numerical solution schemes,
to motivate approximation hypotheses and to generate novel exact solutions. In an
important sense, the symmetries of a system carry information about its deep structure.
The following discussion, touching upon a few examples of potential application, is
merely intended to be suggestive.
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4.1. Transforming the trivial solution
The most straightforward way to use symmetry transformations is to generate new
solutions from known solutions. One obvious exact solution is the trivial solution, with
all of the fields identically zero. In this case, by specifying the functions H, ξ and
Θ , one can generate non-trivial exact solutions by transforming the trivial solution
using the symmetries presented in § 3. In fact, one can directly verify that all of the
nonlinear terms in the set of solutions obtained this way are exactly zero. In other
words, by transforming the trivial solution, one obtains solutions to the linearized
version of the model which happen to be exact solutions to the full nonlinear system.

4.2. Transformed Chapman–Kendall solution
As a second illustration of the use of the transformations presented in § 3, we consider
the exact solution

φ = Γ xy, ψ = x2

a0e−2Γ t
− y2

b0e2Γ t
(4.1a,b)

of the RMHD equations (2.41) and (2.42) derived in Chapman & Kendall (1963). Here
the arbitrary rate parameter Γ , which is set by boundary conditions, is assumed to
be fast compared to any diffusion time scale. This solution corresponds to a thinning
and elongating magnetic neutral line at x= 0, as would be found at the centre of a
localized collapsing current sheet (Waelbroeck 1989, 1993; Loureiro et al. 2005).

This is a particularly relevant solution for the ZS model, as the orderings were
constructed with magnetic reconnection studies in mind. For example, a prototypical
model problem would be a localized thinning current sheet whose evolution is
eventually disrupted by a reconnecting instability (Uzdensky & Loureiro 2016).
Typically, in a high temperature plasma, the length scales associated with the
reconnecting instability are much smaller than the width of the current sheet itself. In
this circumstance, a localized model of the current sheet such as (4.1) can capture the
salient features of the background which play a role in the physics of the instability,
and subsequent nonlinear evolution.

Using very simple solutions of (3.4), one can generate more exotic versions of the
Chapman–Kendall solution. For example, by choosing Θ = z/z0, the initial solution
(4.1) transforms to

φ̃ = Γ x̄ȳ, ψ̃ = x̄2

(
1

a0e−2Γ t
+ 1

2z0

)
− ȳ2

(
1

b0e2Γ t
− 1

2z0

)
, (4.2a,b)

where

x̄= x cos(z/z0)+ y sin(z/z0), ȳ= y cos(z/z0)− x sin(z/z0) (4.3a,b)

are the helically rotated coordinates. Physically, this transformation corresponds to a
linear helical twisting of the original current sheet with a uniform current (amplitude
proportional to the helical pitch) added. Note that if b0 < 2z0, then the flux surfaces
will initially be hyperbolic, but at a later time tc when b0 exp(Γ tc) = 2z0, they
topologically transform to elliptic surfaces. This behaviour is shown in figures 1
and 2.

This three-dimensional magnetic structure is a simple, analytically tractable
model configuration of an evolving three-dimensional magnetic structure that will
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FIGURE 1. Flux surfaces near magnetic null for (4.2) at a fixed time t = 0, with
parameters a= 1, b= 0.5 and z0 = 1.

FIGURE 2. Flux surfaces near magnetic null for (4.2) at a fixed longitudinal coordinate
z= 0, with a= 1, b= 0.5, Γ = 1 and z0 = 1.

eventually become unstable to reconnection-driven instabilities. The formation of
helical three-dimensional magnetic fields – and the potential subsequent magnetic
reconnection thought to occur in such structures – is highly relevant for solar
flares (Janvier, Aulanier, Pariat & Démoulin 2013).

As a second example, by choosing Θ = (z− vAt)/z0, we find a solution which, at
time t = 0, is in the same helical configuration as (4.2), but now moves along the
guide field at the Alfvén speed.
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5. Symmetry analysis
5.1. Infinitesimal generators

The maps given in § 3 can be viewed geometrically as a continuous family of
transformations of the graph of the solution, which is a set of points in the
(ten-dimensional) space labelled by (v, x, y, z, t; φ, ψ, δn, δT, g). These subgroups of
transformations can be characterized by their infinitesimal generators Ξ .

For example, consider the action of an infinitesimal gauge transformation δH(z, t)
on the graph of a solution (φ, ψ, δn, δT, g):

(ṽ, x̃⊥, z̃, t̃, φ̃, ψ̃, δ̃n, ˜δT, g̃) = [1− δHt∂φ + δHz∂ψ +O(δ2)]
× (v, x, z, t; φ, ψ, δn, δT, g). (5.1)

Here, the infinitesimal generator is seen to be

ΞH =−Ht∂φ +Hz∂ψ . (5.2)

Similarly, the infinitesimal generators for (3.3) and (3.5) are

Ξξ =−ξ · ∂x⊥ + ∂zẑ · ξ × x⊥∂ψ − ∂tẑ · ξ × x⊥∂φ, (5.3)

and

ΞΘ = Θ∂θ + ∂z

(
r2

2
Θ

)
∂ψ +

[
−∂t

(
r2

2
Θ

)
+F

]
∂φ

+
[
−v−2

A 1∂t

(
r2

2
Θ

)]
∂δn + T ∂δT +G∂g, (5.4)

respectively.
There is a one-to-one correspondence between Lie-group transformations and their

infinitesimal generators. For a rigorous but readable introduction to this formalism, see
Olver (1993, chapter 1).

5.2. Generators acting on differential equations
As an extension to a standard graph, one can take a solution of the ZS model and
produce a graph in the higher-dimensional space consisting of the independent and
dependent variables, as well as all higher derivatives up to second order (the highest
order that appears in the model equations). In this higher-dimensional jet space,
labelled (v, x, y, z, t; φ, ψ, δn, δT, g; φv, . . . , φt, . . .) ≡ (xi, uα, uαi , uαi,j), the action
of a symmetry transformation will also involve the coordinates associated with the
derivatives:

Ξ∗ = ξ i(x, u)∂xi +Uα(x, u)∂uα︸ ︷︷ ︸
=Ξ

+
∑

i,j

Uα;i,j(x, u)∂uαij . (5.5)

In this higher-dimensional space, the model equations, generically expressed in the
form

F(xi, uα, uαi , uαi,j)= 0 for all xi, (5.6)

are formally algebraic equations.
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A transformation generated by (5.2) is a symmetry of the model if the model
equations themselves are invariant under the transformation while transforming a
solution. That is

Ξ∗F= 0 whenever F= 0⇔Ξ is a symmetry of F. (5.7)

This invariance criterion is a fundamental theorem in symmetry analysis of differential
equations.

The second key result is the prolongation formula, which expresses the functions
Uα;i,j in terms of the Uα and ξ i. In other words, given an infinitesimal generator Ξ

in the space (xi, uα), the prolongation formula provides an explicit expression of the
form of the generator Ξ∗ in the jet space (xi, uα, uαi , uαij).

Using the prolongation formula, the invariance criterion (5.7) becomes a working
procedure to obtain symmetries. Starting from the general symmetry generator

Ξ = ξ i(x, u)∂xi +Uα(x, u)∂uα , (5.8)

with unknown coefficients ξ i and Uα, one uses the prolongation formula to compute
the form of this symmetry generator (denoted here as Ξ∗) in jet space. Once this is
computed, the invariance criterion imposes conditions on the coefficients of Ξ∗ which
must be satisfied in order for (5.8) to correspond to a symmetry of the system. By
solving these determining equations, the most general symmetry of the form (5.8) is
obtained.

There are two characteristics of this procedure that will be leveraged to extend
the procedure to the ZS model, which also has integral relations. First, in a model
consisting of more than one equation, the invariance criterion can be applied to one
equation at a time. After all, any symmetry of the full model must leave each of
its equations unchanged (on the space of solutions of the model). Thus we can find
the symmetries of the under-determined system (2.28)–(2.30) before considering the
integral relations (2.31) and (2.33).

The second noteworthy point is that determining equations are usually straightfor-
ward to solve, even for highly complicated nonlinear models, provided there are no
integral terms. This justifies the operation of deriving the (generally more complicated)
symmetry group of the under-determined model first. Once the symmetry group of the
under-determined model is obtained, this class of transformations is used to simplify
application of the integral constraints.

5.3. Determining equations
We begin our analysis with a generator of the form

Ξ = ξ (t)∂t + ξ (z)∂z + X∂x + Y∂y +Φ∂φ +Ψ∂ψ +G∂g + T ∂δT +N∂δn, (5.9)

where ξ (a) are constants, and the remaining unknown functions depend only on the
independent variables. This is not the most general form. Our motivation for choosing
this simpler but less general form is based on exploratory computational analysis,
using software provided by Cantwell (2002). This exploration suggests that all of the
symmetries are of the form (5.9).
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5.3.1. Local determining equations
Following the procedure sketched in the preceding subsection, we obtain from (2.28)

and (2.30) the following determining equations:

Xv = Yv =Φv =Ψv = Tv =Nv = 0, (5.10)
Xx + Yy = 0, (5.11)
Xx = Yy = 0, (5.12)

Ψx − Yz =Ψy − Xz = 0, (5.13)
Φy + Xt =Φx − Yt = 0, (5.14)

Nx =Ny = 0, (5.15)
Tx = Ty = 0, (5.16)
Gx =Gy = 0, (5.17)

Nt =1Ψz, (5.18)
Ψt −1Ψt =1Ψ −Φz −Nz − Tz, (5.19)

Gt + v(Gz + T )=Gvv − vGv + (1− v2)(Nt + T ). (5.20)

These linear differential equations are sometimes called the ‘local’ determining
equations; symmetries of the non-local, integral relations (2.31)–(2.33) remain to be
considered.

5.3.2. Integral determining equations
For integro-differential equations, the notion of the jet space (itself a generalization

of the graph space) can be extended to include the moments of independent variables
which appear in the model. We denote the variables in this space generically as
(xi, uα, uαi , uαi,j, mµ ≡ ∫Kµ

α (x, x′)uα(x′)). For the ZS model, the two moment variables
are δn and δT . What is needed for the invariance criterion (5.7) is the expression for
Ξmµ in terms of the generator coefficients Uα and Xi.

For this purpose, there is a very useful fact: one can re-express Ξ in canonical form,
where it acts only on the dependent variables:

Ξ =
∑
α

Qα∂uα , (5.21)

with

Qα =Uα −
∑

i

Xiuαi . (5.22)

It turns out (see e.g. Kovalev et al. 1996) that the action of the canonical generator
(5.21) on an integral – a functional of the uα – is obtained by replacing ordinary
derivatives by functional derivatives in the canonical expression

Ξmµ =
∑
α

Qα

∫
dx′

δmµ

δuα(x′)
. (5.23)

Using (5.23), the invariance criteria Ξ (2.31) = 0 and Ξ (2.33) = 0 give the integral
determining equations

T = 1√
2π

∫
dv′v′2e−v

′2/2G(v′), (5.24)
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and

N = ĜΦ, (5.25)

respectively. Similarly, the integral constraints (2.32) lead to the determining
equations (

0
0

)
= 1√

2π

∫
dv′
(

1
v′

)
e−v

′2/2G(v′). (5.26)

Thus our full system of equations for the generator coefficients consists of the
local equations (5.11)–(5.20) together with the integral relations (5.24)–(5.26). Note
in particular that this system of equations also involves a gyroaveraging operator, as
well as other integral relations which usually lead to analytical intractability. However,
in this case, the local determining equations form an autonomous subsystem; we are
able to obtain their general solution before even deriving the remaining (integral)
determining equations.

5.4. Solution of determining equations
The general solution of the local determining equations (5.10)–(5.20) is

X =Θy+ x̂ · ξ , (5.27)
Y =−Θx+ ŷ · ξ , (5.28)

Ψ = ∂z

(
Θ

x2 + y2

2
+ ẑ · ξ × x⊥ +H

)
, (5.29)

Φ =−∂t

(
Θ

x2 + y2

2
+ ẑ · ξ × x⊥ +H

)
+ [2(Θt +Θ)+ T +N], (5.30)

N =−2v−2
A Θt (5.31)

T = T (z, t), (5.32)
Gt + vGz =−Gvv + vGv − (1− v2)(Nt + T )− vTz. (5.33)

Here x̂ · ξ(z, t), ŷ · ξ(z, t) and H(z, t) are arbitrary functions, while Θ(z, t) is an
arbitrary solution to the wave equation (3.4).

In obtaining this result, we have used

ĜΦ = 1
v2

A
1Φ, (5.34)

= − 2
v2

A
Θt. (5.35)

In other words, the leading FLR approximation to Ĝ, shown in (2.38), here becomes
exact, since the Φ given in (5.30) is quadratic in the perpendicular coordinates.

The function G is determined implicitly by (5.33) and constrained to satisfy

0=
∫

dv′G(v′)e−v
′2/2, (5.36)

0=
∫

dv′ v′G(v′)e−v
′2/2. (5.37)

The symmetries discussed in § 3 follow from equations (5.27)–(5.37).
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6. Conclusion
We have found that the fluid-gyrokinetic ZS model has a rich symmetry group,

with the full set of symmetries spanned by five arbitrary functions H(z, t), x̂ · ξ(z, t),
ŷ · ξ(z, t) and Θ±(z ± vAt), and the two constants ξ (z) and ξ (t), corresponding to
translations in z and t. These symmetries are discussed in § 3, and summarized by
(5.9), with (5.27)–(5.37).

To our knowledge, this is the first time symmetry analysis has been applied to
a model with a gyroaveraging operator. Gyroaveraging, viewed as a constitutive
relation linking φ to δn, turns out to not pose a serious obstacle in our analysis,
largely because the x⊥ dependence of the infinitesimal generator for φ allowed the
exact gyroaverage to be expressed in closed form. Similarly, the generator G for
displacement symmetry of the distribution function is found to satisfy exactly a linear
drift-kinetic equation. The success of symmetry analysis for the ZS model suggests
that a similar study for the full gyrokinetic equations might also be possible.

Our analysis assumes, based on computational exploration, a special form for the
symmetries, so it is possible that additional symmetries remain undiscovered. In fact,
even if we did begin our analysis with the most general possible transformation, the
integral terms in ZS place it beyond the scope of the theorems that would prove
completeness. Our analysis also excludes consideration of the discrete symmetries,
such as transforming to a left-handed coordinate system: x→ y, y→−x. The most
general symmetry group of the model is obtained by composing the connected Lie
subgroup, which is obtained by exponentiating the infinitesimal generators, with the
discrete subgroup of symmetry transformations admitted by the model. Rigorous
methods exist for finding the discrete symmetries of differential equations, but they
are generally limited in scope and can require the solution of complicated determining
equations (Gaeta & Rodríguez 1996). We save this complementary analysis for future
work.

Because RMHD is a limit of the ZS model, our analysis also provides a large family
of symmetries of RMHD. RMHD is a simpler and better studied model, so there are
more exact solutions available to transform by our methods. In particular, the results
obtained here can be used to generate new exact solutions to RMHD by transforming
the Elsasser solutions (Elsasser 1950), which play an important role in MHD theories
of turbulence (for a review, see, e.g. Biskamp 2003).

For illustrative purposes, the modified Chapman–Kendall solution obtained in § 4.2
employed a very simple particular symmetry transformation. More generally, using the
full set of transformations obtained here, the original two parameter Chapman–Kendall
solution becomes a large family of solutions, spanned by the arbitrary functions H, ξ
and Θ .

In the context of the full kinetic model, one can, for example, leverage simulation
results that start from a Chapman–Kendall-like two-dimensional current configuration
to infer the behaviour of a whole family of (generally three-dimensional) initial current
profiles, such as the helical collapsing current sheet given in (4.2).

Noether’s theorem applies to all of the symmetry transformations obtained here. If
one is able to construct an action for this model (see Charidakos et al. 2014; Morrison,
Lingam & Acevedo 2014; Burby 2017, for manifestly action-preserving derivations
of reduced models), and if the action is invariant under any of these transformations,
then one can use Noether’s theorem to derive conserved quantities which, like
the symmetries themselves, may not be obvious from physical considerations.
Symmetry analysis can thus enhance the value of a reduced model by uncovering
quantities which, while perhaps not exactly conserved in the full Maxwell–Boltzmann
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description, are approximately constant in particular regimes of interest. For the ZS
model, this context would be nonlinear fluctuations in a high temperature strongly
magnetized plasma.

Acknowledgements

R.L.W. was supported by the U.S. Department of Energy Fusion Energy Sciences
Postdoctoral Research Program administered by the Oak Ridge Institute for Science
and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated
Universities (ORAU) under DOE contract number DE-SC0014664. All opinions
expressed in this paper are the author’s and do not necessarily reflect the policies
and views of DOE, ORAU, or ORISE. The work of R.D.H. was funded by the
U.S. Department of Energy under contract no. DE-FG02-04ER-54742 and by The
University of Texas at Austin. N.F.L. was partially funded by US Department of
Energy grant no. DE-FG02-91ER54109. We also acknowledge the use of Brian
Cantwell’s Lie-group software, implemented on Mathematicar.

REFERENCES

BEER, M. & HAMMETT, G. W. 1996 Toroidal gyrofluid equations for simulations of tokamak
turbulence. Phys. Plasmas 3, 4046.

BIAN, N. H. & KONTAR, E. P. 2010 A gyrofluid description of Alfvénic turbulence and its parallel
electric field. Phys. Plasmas 17, 062308.

BISKAMP, D. 2003 Magnetohydrodynamic Turbulence. Cambridge University Press.
BRIZARD, A. 1992 Nonlinear gyrofluid description of turbulent magnetized plasmas. Phys. Fluids B

4, 1213.
BURBY, J. W. 2017 Magnetohydrodynamic motion of a two-fluid plasma. Phys. Plasmas 24 (8),

082104.
CANTWELL, B. J. 2002 Introduction to Symmetry Analysis. Cambridge University Press.
CATTO, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20, 719.
CATTO, P. J., TANG, W. M. & BALDWIN, D. E. 1981 Generalized gyrokinetics. Plasma Phys. 23,

639.
CHAPMAN, S. & KENDALL, P. C. 1963 Liquid instability and energy transformation near a magnetic

neutral line: a soluble nonlinear hydromagnetic problem. Proc. R. Soc. Lond. A 271, 435–448.
CHARIDAKOS, I. K., LINGAM, M., MORRISON, P. J., WHITE, R. L. & WURM, A. 2014 Action

principles for extended magnetohydrodynamic models. Phys. Plasmas 21 (9), 092118.
CHEW, G. F., GOLDBERGER, M. L. & LOW, F. E. 1956 The Boltzmann equation and the one-fluid

hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. Lond. A 236,
112–118.

CONNOR, J. W. & TAYLOR, J. B. 1977 Scaling laws for plasma confinement. Nucl. Fusion 17 (5),
1047.

DIMITS, A. M., BATEMAN, G., BEER, M. A., COHEN, B. I., DORLAND, W., HAMMETT, G. W.,
KIM, C., KINSEY, J. E., KOTSCHENREUTHER, M., KRITZ, A. H. et al. 2000 Comparisons
and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7
(3), 969–983.

DORLAND, W. & HAMMETT, G. W. 1993 Gyrofluid turbulence models with kinetic effects. Phys.
Fluids B 5, 812.

DUBIN, D. H., KROMMES, J. A., OBERMAN, C. & LEE, W. W. 1983 Nonlinear gyrokinetic equations.
Phys. Fluids 26, 3524.

ELSASSER, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183.
FRIEMAN, E. A. & CHEN, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic

waves in general plasma equilibria. Phys. Fluids 25, 502.

https://doi.org/10.1017/S0022377818000247 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000247


20 R. L. White, R. D. Hazeltine and N. F. Loureiro

GAETA, G. & RODRÍGUEZ, M. A. 1996 Discrete symmetries of differential equations. J. Phys. A
29 (4), 859.

GRAD, H. 1956 A guiding center fluid. AEC Report TID-7503, p. 495.
HAHM, T. S., LEE, W. W. & BRIZARD, A. 1988 Nonlinear gyrokinetic theory for finite-beta plasmas.

Phys. Fluids 31, 1940–1948.
HAMMETT, G. W., BEER, M., DORLAND, W., COWLEY, S. C. & SMITH, S. A. 1993 Developments

in the gyrofluid approach to tokamak turbulence simulations. Plasma Phys. Control. Fusion
35, 973.

HAMMETT, G. W., DORLAND, W. & PERKINS, F. W. 1992 Fluid models of phase mixing, Landau
damping, and nonlinear gyrokinetic dynamics. Phys. Fluids B 4, 2052.

HAMMETT, G. W. & PERKINS, F. W. 1990 Fluid models for Landau damping with application to
the ion-temperature-gradient instability. Phys. Rev. Lett. 64, 3019.

HATCH, D. R., JENKO, F., BRATANOV, V. & BANON NAVARRO, A. 2014 Phase space scales of
free energy dissipation in gradient-driven gyrokinetic turbulence. J. Plasma Phys. 80, 531.

JANVIER, M., AULANIER, G., PARIAT, E. & DÉMOULIN, P. 2013 The standard flare model in three
dimensions. III. Slip-running reconnection properties. Astron. Astrophys. 555, A77.

KADOMTSEV, B. B. & POGUTSE, O. P. 1974 Nonlinear helical perturbations of a plasma in the
tokamak. Sov. Phys. JETP 38, 283.

KANEKAR, A., SCHEKOCHIHIN, A. A., DORLAND, W. & LOUREIRO, N. F. 2014 Fluctuation-
dissipation relations for a plasma-kinetic Langevin equation. J. Plasma Phys. 81 (01),
305810104; doi:10.1017/S0022377814000622.

KOVALEV, V. F., KRIVENKO, S. V. & PUSTOVALEV, V. V. 1996 Symmetry group of Maxwell–Vlasov
equations in plasma theory. J. Nonlinear Math. Phys. 3 (1–2), 175–180.

KRUSKAL, M. D. & OBERMAN, C. R. 1958 On the stability of plasma in static equilibrium. Phys.
Fluids 1 (4), 275.

LEE, W. W. 1983 Gyrokinetic approach in particle simulation. Phys. Fluids 26, 555.
LEE, W. W. 1987 Gyrokinetic particle simulation model. J. Comput. Phys. 72, 243.
LOUREIRO, N. F., COWLEY, S. C., DORLAND, W. D., HAINES, M. G. & SCHEKOCHIHIN, A. A.

2005 X-point collapse and saturation in the nonlinear tearing mode reconnection. Phys. Rev.
Lett. 95, 235003.

LOUREIRO, N. F., DORLAND, W., FAZENDEIRO, L., KANEKAR, A., MALLET, A., VILELAS, M. S. &
ZOCCO, A. 2016 Viriato: a Fourier–Hermite spectral code for strongly magnetized fluid-kinetic
plasma dynamics. Comput. Phys. Commun. 206, 45.

MORRISON, P. J., LINGAM, M. & ACEVEDO, R. 2014 Hamiltonian and action formalisms for
two-dimensional gyroviscous magnetohydrodynamics. Phys. Plasmas 21 (8), 082102.

OLVER, P. J. 1993 Applications of Lie Groups to Differential Equations. Springer.
QIN, H. & DAVIDSON, R. C. 2006 Symmetries and invariants of the oscillator and envelope equations

with time-dependent frequency. Phys. Rev. Spec. Top. Accel. Beams 9, 054001.
RAMOS, J. J. 2010 Fluid and drift-kinetic description of a magnetized plasma with low collisionality

and slow dynamics orderings. I. Electron theory. Phys. Plasmas 17, 082502.
RAMOS, J. J. 2011 Fluid and drift-kinetic description of a magnetized plasma with low collisionality

and slow dynamics orderings. II. Ion theory. Phys. Plasmas 18, 102506.
RAYLEIGH, L. 1891 Dynamical problems in illustration of the theory of gases. Phil. Mag. 32, 424.
ROBERTS, D. 1985 The general Lie group and similarity solutions for the one-dimensional Vlasov–

Maxwell equations. J. Plasma Phys. 33 (2), 219.
ROSENBLUTH, M. N. & ROSTOKER, N. 1959 Theoretical structure of plasma equations. Phys. Fluids

2 (1), 23.
RUTHERFORD, P. H. & FRIEMAN, E. A. 1968 Drift instabilities in general magnetic field

configurations. Phys. Fluids 11, 569.
SCHEKOCHIHIN, A. A., PARKER, J. T., HIGHCOCK, E. G., DELLAR, P. J., DORLAND, W. &

HAMMETT, G. W. 2016 Phase mixing versus nonlinear advection in drift-kinetic plasma
turbulence. J. Plasma Phys. 82, 905820212.

SNYDER, P. B. & HAMMETT, G. W. 2001 Electromagnetic effects on plasma microturbulence. Phys.
Plasmas 8, 744.

https://doi.org/10.1017/S0022377818000247 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377814000622
https://doi.org/10.1017/S0022377818000247


Symmetries of the ZS model 21

STRAUSS, H. R. 1976 Nonlinear, three dimensional magnetohydrodynamics of noncircular tokamaks.
Phys. Fluids 19, 134–140.

TAYLOR, J. B. & HASTIE, R. J. 1968 Stability of general plasma equilibria-I formal theory. Phys.
Fluids 10, 479.

UZDENSKY, D. A. & LOUREIRO, N. F. 2016 Magnetic reconnection onset via disruption of a forming
current sheet by the tearing instability. Phys. Rev. Lett. 116, 105003.

WAELBROECK, F. L. 1989 Current sheets and the nonlinear growth of the m= 1 kink-tearing mode.
Phys. Fluids B 1, 2372.

WAELBROECK, F. L. 1993 Onset of the sawtooth crash. Phys. Rev. Lett. 70, 3259.
WAELBROECK, F. L., HAZELTINE, R. D. & MORRISON, P. J. 2009 A Hamiltonian electromagnetic

gyrofluid model. Phys. Plasmas 16, 032109.
WATANABE, T.-H. & SUGAMA, H. 2004 Kinetic simulation of steady states of ion temperature

gradient driven turbulence with weak collisionality. Phys. Plasmas 11 (4), 1476–1483.
WHITE, R. L. & HAZELTINE, R. D. 2009 Symmetry analysis of the Grad–Shafranov equation. Phys.

Plasmas 16, 123101.
WHITE, R. L. & HAZELTINE, R. D. 2017 Analysis of the Hermite spectrum in plasma turbulence.

Phys. Plasmas 24, 102315.
ZOCCO, A., LOUREIRO, N. F., DICKINSON, D., NUMATA, R. & ROACH, C. M. 2015 Kinetic

microtearing modes and reconnecting modes in strongly magnetised slab plasmas. Plasma
Phys. Control. Fusion 57, 065008.

ZOCCO, A. & SCHEKOCHIHIN, A. A. 2011 Reduced fluid-kinetic equations for low-frequency
dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas
18, 102309.

https://doi.org/10.1017/S0022377818000247 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000247

	Symmetries of a reduced fluid-gyrokinetic system
	Introduction
	Fluid-gyrokinetic model

	Model equations
	Introduction
	Electrostatic ions
	Quasineutrality and Ampère's law
	Drift-kinetic electrons
	Summary

	Normalization
	RMHD limit

	Symmetries
	Gauge transformation
	Translations
	Alfvénic rotations
	The function G
	Linear drift-kinetic equation
	Closed-form solution for G(v,z,t)
	Fourier–Hermite expansion of G


	Sample applications
	Transforming the trivial solution
	Transformed Chapman–Kendall solution

	Symmetry analysis
	Infinitesimal generators
	Generators acting on differential equations
	Determining equations
	Local determining equations
	Integral determining equations

	Solution of determining equations

	Conclusion
	Acknowledgements
	References




