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Summary

A model of pleiotropy with TV diallelic loci contributing additively to N quantitative traits and
stabilizing selection acting on each of the traits is considered. Every locus has a major contribution
to one trait and a minor contribution to the rest of them, while every trait is controlled by one
major locus and N—\ minor loci. It is demonstrated that a stable equilibrium with the allelic
frequency equal to 0-5 in all A' loci can be maintained in such a model for a wide range of
parameters. Such a ' totally polymorphic' equilibrium is maintained for practically any strength of
selection and any recombination, if the relative contribution by a minor locus to a trait is less than
20 % of the contribution by a major locus. The dynamic behaviour of the model is shown to be
quite complex with a possibility under sufficiently strong selection of multiple stable equilibria and
positive linkage disequilibria between loci. It is also suggested that pleiotropy among loci
controlling traits experiencing direct selection can be responsible for apparent selection on neutral
traits also controlled by these loci.

1. Introduction

The maintenance of genetic variation under natural
selection in multilocus genetic systems controlling
quantitative traits is an important and long-standing
problem in population biology. Given that phenotypic
variation is practically always reduced by stabilizing
selection (Shnoll & Kondrashov, 1993), what bio-
logical mechanisms can counterbalance the effect of
selection and be responsible for the maintenance of
genetic variation in natural populations? For some
time the field of quantitative genetics was dominated
by polygenic models assuming that a quantitative
character is controlled by many loci contributing
additively and equally to the trait. It has been
demonstrated for such models that, if selection is
weak relative to recombination, no genetic variation
(except for a possible polymorphism in just one locus)
can be maintained under stabilizing selection without
an input of new variation (Wright, 1935; Robertson,
1956; Lewontin, 1964; Barton, 1986).

Models have been proposed in which mutations
provide new variation, and genetic variation in a
population is maintained by the balance between
stabilizing selection and mutations (Lande, 1975;
Turelli, 1984; Barton, 1986; Slatkin, 1987; Burger,
1988; Bulmer, 1989). In spite of an intensive study of

mutation-selection balance models, it remains un-
certain whether this mechanism can account for the
amounts of genetic variation in quantitative characters
that are observed in natural populations (Barton &
Turelli, 1989; Keightley & Hill, 1990).

In addition to models of natural selection acting
directly on the character of interest, models have been
proposed in which genetic variation for a given trait is
a result of polymorphisms in the loci controlling the
trait, but the forces maintaining the polymorphisms
are not related to the trait itself. The polymorphisms
can be maintained due to either overdominance for
fitness (Robertson, 1956; Gillespie, 1984; Barton,
1990), or selection against unconditionally deleterious
mutations (Barton, 1990; Keightley & Hill, 1990;
Kondrashov & Turelli, 1992), or epistatic viability
selection (Gavrilets & De Jong, 1993). Thus, the
character itself is neutral, but differences in fitness
between individuals with differing values of the trait
give an appearance of stabilizing selection on the trait.
It is important, however, that, while there is ex-
perimental evidence of unconditionally deleterious
mutations, overdominance for fitness or the particular
forms of epistasis for viability are just postulated in
the above models, but no known developmental or
hereditary mechanisms have been suggested which
would produce these phenomena. On the other hand,
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while the balance between deleterious mutations and
selection can explain the maintenance of polymorp-
hisms in mutating loci, it cannot explain the evolution
of phenotypes, and, hence, different biological mech-
anisms are supposed to be responsible for the
maintenance of genetic variation and for phenotypic
evolution, yet there is no evidence of this. Also, while
it is conceivable that some biological traits are neutral
with respect to natural selection, there must also be
traits (e.g. obvious adaptations) experiencing direct,
and possibly quite strong, natural selection. Models
are needed, therefore, that can explain the main-
tenance of genetic variation under selection acting
directly on quantitative traits.

It has become quite evident by now that genetic
variation can be maintained in a multilocus system
controlling a quantitative trait, even if it is under
direct stabilizing selection, if some of the assumptions
of the polygenic model are relaxed. This was shown
for unequal effects of loci (Gale & Kearsey, 1968;
Kearsey & Gale, 1968; Nagylaki, 1989; Gavrilets &
Hastings, 1993, 1994a, b), for selection strong relative
to recombination (Gavrilets & Hastings, 1993, 1994a,
b; Gimelfarb, 1995), for dominance (Lewontin, 1964)
and for epistasis (Gimelfarb, 1989).

In spite of the scarcity of direct experimental
evidence of pleiotropy among quantitative traits, it is
supposed to be ubiquitous based on the widespread
genetic correlations between different traits (Falconer,
1989), on the complexity and interconnection of
biochemical processes underlying the development of
quantitative traits (Wright, 1968; Barton, 1990) and
on the general philosophical consequence of an
organism being 'a unity of an infinite number of traits
and finite number of genes' (Serebrovsky, 1973).
Recently, evidence of pleiotropy among quantitative
traits has been obtained experimentally based on
spontaneous and P-element induced mutations
(Mackay et al. 1992; Santiago et al. 1992; Clark et al.
1995). The effect of pleiotropy on genetic correlations
between quantitative traits has been studied quite
extensively, particularly in mutation-selection balance
models (Lande, 1980; Turelli, 1985; Wagner, 1989;
Slatkin & Frank, 1990). Relatively little work has
been done, however, investigating pleiotropy among
loci controlling several quantitative traits as a potential
factor directly responsible for the maintenance of
genetic variation in multilocus systems under natural
selection. Rose (1982) has shown that a stable
polymorphism can be maintained in two loci having
antagonistic pleiotropic effects on components of
fitness. Gimelfarb (1986) proposed a model of two loci
contributing additively to two traits with the contri-
butions by one locus being the same to both traits but
with antagonistic contributions to the traits by the
other locus. Such a model maintains a stable poly-
morphism in both loci for any recombination and any
strength of stabilizing selection on each character.
Hastings & Horn (1989, 1990) investigated multilocus

multicharacter systems, and have concluded that, if
selection is weak relative to recombination, the number
of loci maintaining a stable polymorphism cannot be
greater than the number of characters they control. A
stable polymorphism can, however, be maintained in
more loci than the number of traits they control, if
selection is sufficiently strong (Gavrilets & Hastings,
1994a). Indeed, a model of several loci contributing
additively to two traits with half the loci contributing
similarly to both traits and the other half contributing
antagonistically was shown to maintain a stable
polymorphism in as many as six (Gimelfarb, 1992)
and eight (Gavrilets & Hastings, 1994a) loci.

Even if as many loci are maintained polymorphic as
the number of traits they control, pleiotropy can still
be an important factor responsible for the maintenance
of genetic variation in natural populations, since the
number of pleiotropically related traits can be po-
tentially quite large. In this paper, we shall investigate
the maintenance of polymorphisms in a model of
pleiotropy with N loci controlling N quantitative
traits. The model is inspired by experimental evidence
that not all loci controlling a trait contribute equally
to the trait (Edwards et al 1987; Paterson et al. 1990;
Mackay et al. 1992). The majority of quantitative
traits whose genetic basis has been investigated appear
to be ' under control of a few major genes supported
by numerous genes with smaller effects' (Shrimpton &
Robertson, 1988).

2. The model

It is assumed that N diallelic loci contribute additively
to N quantitative characters. Each locus has a major
effect on one of the characters and a minor effect on
the rest of them. On the other hand, each character is
controlled by one major locus and by TV—1 minor
loci. The contribution to any trait by one of the alleles
in each locus is zero. The contribution by the other
allele depends on whether the locus is major or minor
for the trait. If Lt is a minor locus for a trait Xs{i =t= f),
its contribution is assumed to be a fraction, bip of the
contribution to the trait by the major locus, L}, i.e.
major and minor loci contribute to a trait in a
proportion \:bir It is also assumed without loss of
generality that the minimum and the maximum of any
trait are 0 and 1, respectively. Hence, the actual allelic
contributions to a trait X} are

a} = 0-5/B} (major locus), (1 a)
/?0 = 0-5bt]/B} (minor locus), (1 b)

where Bs = 1 +'Llc^jbkj. Notice that aj + 'Lks¥]/2kJ = 05
for any / Consequently, the genotypic value of a
'total heterozygote' (all AHoci heterozygous) is 0-5 for
any trait.

Each trait, Xs{j = \,2,...,N), is assumed, inde-
pendently of other traits, to be under stabilizing
selection with a quadratic fitness function:

\-Q£X,-0F, (2)
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and the fitness of an individual with a set of characters
{X,} is

n (3)

Random mating is assumed, and the effect of
environment is neglected.

The number of parameters {btp Q} and 0}) is very
large, making it impossible to analyse a general
model. We shall, therefore, consider in detail a
simplified model which assumes symmetry in the
effects of loci (btj = b for any / =|= j , hence a.} = a, fi(j =
/?) and symmetry in selection (Q; = Q and 6} = 0). It
will be demonstrated, however, that the symmetry
assumptions are not necessary, and genetic poly-
morphisms can be maintained in models that are not
symmetric. If 0 = 0-5 (the optimum phenotype is that
of a total heterozygote), the value of Q cannot,
obviously, exceed four in order for fitness of any
phenotype to be non-negative, and, hence, Q = 4
represents the strongest possible quadratic selection
on a trait.

0 for ir 4= j , a N x N model becomes a trivial model of
N independent traits each controlled by one (major)
locus. Since each trait experiences selection favouring
the heterozygote, there is total overdominance for
fitness (the fitness of an individual is an increasing
function of the number of heterozygous loci in the
individual's genotype) in such a model. The over-
dominance will, obviously, be preserved if contri-
butions by minor loci are small. It can be said,
therefore, that aNxN model of pleiotropy with small
contributions by minor loci produces total over-
dominance for fitness. This is not necessarily true,
however, if the contributions by minor loci are not
very small. It follows from Appendix B that in order
for total overdominance for fitness to exist in a
symmetric model, the relative contribution by a minor
locus must be below the following limits: 0-268, 0121,
0-079, 0-058 and 0025 for N = 2, 3, 4, 5 and 10,
respectively. It is seen that for N > 2, these limits are
below the limits required for the stability of a
polymorphic equilibrium. Hence, polymorphisms in
NxN pleiotropic models can be maintained without
total overdominance for fitness.

3. Weak selection analysis

A complete dynamical analysis is not possible even for
a symmetric NxN model. It is possible, however, to
analyse its 'weak selection' approximation, assuming
selection sufficiently weak relative to recombination,
so that linkage disequilibrium between loci can be
neglected. An analysis of an TV x N model under such
selection is presented in Appendix A. It is demon-
strated there that, if selection is weak, a symmetric
model with btj = b, 0t = 0, Qj = Q, has an equilibrium
with allelic frequency

0-0*
1 - 2 ( 9 * '

where 0* =
\+(N-\)b2

4[\+(N-l)b]2 (4)

at each locus. It is seen that, if the optimum phenotype,
6 — 0-5, the equilibrium allelic frequency, p = 0-5.
Generally, in order for 0 <p < 1, i.e. for a poly-
morphic equilibrium to exist, the optimum phenotype
must be within the limits 6* < 0 < 1 -6*. If, for
example, b = 0-2, the limit, 0* = 0181, 0138, 0109,
0090 and 0043 for N = 2, 3, 4, 5 and 10, respectively.
Thus, if the number of loci in the model is large, a
polymorphic equilibrium exists for practically any
selection optimum.

It is also shown in Appendix A that, if the value of
b (the relative contribution by a minor locus) is below
a certain limit determined by N, the equilibrium (4) is
locally stable. Thus, for values of b not exceeding
0-268, 0-250, 0-236, 0-225 and 0188, a stable poly-
morphism is maintained under weak selection in a
symmetric NxN model with /V= 2, 3, 4, 5 and 10,
respectively.

If minor loci do not contribute to traits, i.e., btj =

4. General analysis

A symmetric 2x2 model under selection with 0 = 0-5
represents a special case of the ' symmetric viability'
model (e.g. Karlin & Feldman, 1970) whose para-
meters are as follows:

(5)

a = 2(0-5-2z)2e-(0-5-2z)4g2,

where z = 0-5/(1 +b). Such a model always has a
symmetric (allelic frequency 0-5 in both loci) equi-
librium. It may also have asymmetric equilibria, but
we shall not be concerned with them here. The linkage
disequilibrium at a symmetric equilibrium is described
by a cubic equation (e.g. equation 2.1 of Karlin &
Feltman, 1970). The equation may have as many as
three admissible solutions. Parameters (5), calculated
for different values of relative allelic contribution, 0 ^
b^\, and strength of selection, 0 < Q ^ 4, were
substituted into the cubic equation, and the equation
was solved to obtain the equilibrium values of linkage
disequilibrium. The stability of a solution was tested
for four values of recombination, r = 0-5, 0-3, 01 ,
0-05, using criteria suggested by Karlin & Feldman
(1970).

No analytical methods exist for obtaining equilibria
explicitly and investigating their stability in models
with more than two loci. It is possible, however, to
find stable equilibria for such a model by numerically
iterating equations describing the dynamics of gametic
frequencies:
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Fig. 1. Areas of existence of stable totally polymorphic equilibria on the plane of selection strength and relative allelic
contribution for a given recombination rate, r (stable equilibria exist in areas above a corresponding curve), (a), 2x2;
(b), 3 x 3 ; (c) 4x4, (d), 5x5. , r = 0-05; , r = 01 ; , r = 0-3; , r = 05.

(6)

where, g,, g2, g3 are gametes, and pk, pk+1 are the
frequencies of gametes in generations k and k+\. The
fitness, w{gx,g^), of a genotype is obtained by
computing the value of each of the N characters for
the genotype and substituting the values into formulas
(2) and (3). The function ff(g3\gi,g2) in (6) is the
probability that a gamete produced by an individual
with the genotype (gj,^2) will be g3. This function is
determined by the pattern of recombination between
the loci in a model. It is assumed throughout the paper
that recombination is the same between any pair of
adjacent loci and there is no interference.

For a given set of parameters, system (6) was
iterated on a computer starting from an initial
distribution of gametes, and when the distance,

between gametic distributions in two consecutive
generations became less than 10~12, it was assumed
that an equilibrium had been reached. To test the
local stability of the equilibrium, the equilibrium
gametic frequencies were perturbed by adding to
each of them its own very small (of the order 10~5)
random number, and then normalizing them so that
their sum was unity. Iterations were repeated starting
with the perturbed gametic frequencies, and an

equilibrium was classified as stable or unstable
depending on whether the perturbed system returned
to it or not. Gimelfarb (1989) argued that it is
impossible to misclassify an unstable equilibrium as
stable by using this method, although it is possible in
principle to miss a locally stable equilibrium with a
very small domain of attraction. Computer iterations
for any given set of parameters were initiated from a
random point in the vicinity of the centre of the
simplex of gametic frequencies. The centre is the point
at which frequencies of all gametes are the same, i.e.
the allelic frequency is 0-5 in each locus and the loci
are in complete linkage equilibrium. If {x,} denotes
coordinates of the centre of a simplex, a starting point
was chosen with random coordinates {_)>,} such that,
besides the usual constraints defining the simplex:
I,. yj = 1 and yt ^ 0, they also satisfied an additional
constraint:

(7)

i.e. a starting point was located at a distance p from
the centre. It is not a good idea to choose the same p
for models with different numbers of loci, since a
given distance may be regarded as 'small' in one
simplex but as 'large' in a simplex of a higher
dimension. For example, a sphere of radius 0-05 lies
completely within the two-locus simplex, but the same
sphere 'sticks out' of the five-locus simplex. For this
reason, the distance for a starting point was chosen as
/9 = /9*/100, where p* is the maximum radius of a
sphere completely contained within the AMocus
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simplex. For 3 x 3, 4 x 4 and 5x5 model, the distance
is equal to 00013, 00006 and 00003, respectively.

Fig. 1 shows regions of existence of stable equilibria
in N x N models on the plane of relative allelic
contribution, b, and strength of selection, S, for four
values of recombination, r. Only 'totally polymor-
phic', i.e. with allelic frequency 05 at each locus,
equilibria are considered. Such equilibria are, ob-
viously, symmetric for a 2 x 2 model, but not for a
model with N > 2, since linkage disequilibria generally
differ between different pairs of loci. For a given value
of r, a locally stable totally polymorphic equilibrium
exists in the area above the corresponding curve (left
side of the graph), whereas no such equilibrium exists
in the area below the corresponding curve (right side
of the graph). It should be remembered that a stable
equilibrium in Fig. 1 is approached from a random
point in a vicinity of the centre of the simplex of
gametic frequencies. Other totally polymorphic equil-
ibria, to which trajectories originating in different
parts of the simplex converge, may in principle exist.

It is seen in Fig. 1 that totally polymorphic stable
equilibria exist in Nx N models for a wide range of
parameters, and, if the contribution by a minor locus
is less than 0-2 of that by a major locus, there is a
totally polymorphic stable equilibrium for any model
with practically any strength of selection and any
recombination, which is in accordance with the
analysis of weak selection discussed previously. It can
also be noticed that the effect of recombination
diminishes with increased dimensionality of the model.
In a 5 x 5 model, the existence and stability of totally
polymorphic equilibria are mostly determined by the
strength of selection, whereas recombination has very
little effect, unless linkage is quite tight (r = 005).

It is not possible to investigate completely the
dynamics of Nx N models. However, a good idea
about dynamic properties of a model with a given set
of parameters can be obtained by employing a
computer procedure introduced by Karlin & Carmelli
(1975) to investigate two-locus symmetric viability
models, and used by Gimelfarb (1995) to investigate
two- and three-locus models of a quantitative trait
under strong stabilizing selection. A large number of
trajectories of system (6) are generated starting from
points randomly chosen in the total simplex of gametic
frequencies, and equilibria are observed to which the
trajectories converge. The proportion of trajectories
converging to a particular equilibrium can be regarded
as a measure of the size of the domain of attraction to
the equilibrium. Obviously, only equilibria that are
stable and have domains of attraction that are not
extremely small can be discovered by this method, but
on the other hand only such equilibria are of biological
significance. If all the randomly initiated trajectories
converge to one equilibrium, we shall call such an
equilibrium 'apparently' globally stable.

This procedure (with 500 random trajectories
generated for each set of parameters) was applied to

Table 1. Percentage of trajectories converging to an
equilibrium with linkage disequilibrium D under
selection of strength Q in a 2x2 model with relative
allelic contribution, b = 01, and recombination, r =
0-05 (all equilibria are symmetric)

D

01
31
3-2

40

- 0 0 1 0
- 0 1 9 8

-0-201
0147

-0-215
0-208

100
100
81
19

59
41

Table 2. Percentage of trajectories converging to an
equilibrium with linkage disequilibria Dfj under
selection of strength Q in a 3x3 model with relative
allelic contribution, b = 01, and recombination, r =
005 (all equilibria are totally polymorphic with the
allelic frequency 0-5 in each locus)

Q

01
1-5
2-3
2-4
2-6
2-7

3-5

-0008
-0072
-0091
-0098
-0115
-0125

0083
-0171
-0182

0178
-0-204

0186

-0004
-0032
-0005

0003
0026
0041

-0084
0084
0129

-0151
-0151

0142

-0008
-0072
-0091
-0098
-0115
-0-125
-0171

0-083
-0182
-0-204

0-178
0186

%

100
100
100
100
100
70
15
15
32
32
32
4

quite a large number of parameter sets in 2 x 2 and
3x3 models, but to fewer parameter sets in models of
a higher dimension (computing time becomes prohi-
bitively long for the latter models). The general
picture emerging from this is that the dynamic
properties of NxN models are determined, not
surprisingly, by the relative strength of recombination
and selection. If r > 0-05, i.e. linkage is not very tight,
a totally polymorphic stable equilibrium, if it exists,
seems to be the only equilibrium with non-zero allelic
frequencies in all loci. It is apparently globally stable
under selection that is only slightly stronger than the
minimum required to maintain a stable equilibrium in
a model with given b and r (the minimum strength of
selection is represented in Fig. 1 by the vertical
coordinate of the point on the curve for a given r,
whose horizontal coordinate is b).

If, however, linkage is tight (r = 005), dynamic
properties of NxN models are more complex,
particularly for small contributions by minor loci.
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Multiple totally polymorphic stable equilibria may
exist simultaneously under sufficiently strong selection
in such a case. For example, Tables 1 and 2 show the
percentage of trajectories (out of 500 initiated ran-
domly) converging to totally polymorphic equilibria
in 2 x 2 and 3x3 models with r = 005 and b = 01 .
The 2x2 model has only one stable symmetric
equilibrium with negative linkage disequilibrium,
which is apparently globally stable, under selection
with Q < 3-1. If, however, Q > 3-2, two stable sym-
metric equilibria exist simultaneously, one with nega-
tive and the other with positive linkage disequilibrium.
As for the 3x3 model, it has only one stable totally
polymorphic equilibrium, which is apparently globally
stable, under selection with Q ^ 26, whereas three
and even four stable totally polymorphic equilibria
can exist simultaneously under stronger selection. It is
also interesting that, while linkage disequilibria be-
tween adjacent loci, D12 and £>23, in the 3x3 model
are always negative under selection with Q ^ 2-6, and
their absolute value increases with stronger selection,
the behaviour of linkage disequilibrium between the
distant loci, Dl3, is more complex. It is negative and its
absolute value increases with stronger selection until
Q remains less than 1-5. If, however, Q > 1-5, its
absolute value decreases until it reaches zero, after
which Dl3 becomes positive and increases with
increasing strength of selection. If selection is suffi-
ciently strong {Q ̂  2-7), linkage disequilibrium can be
positive between any two loci, including a possibility
of all three linkage disequilibria being positive.
Existence of stable equilibria with positive linkage
disequilibrium was first discovered by Gavrilets &
Hastings (19946) in a two-locus model of an additive
quantitative trait under strong stabilizing selection.

5. Discussion and conclusions

The results demonstrate that Nx N models of pleio-
tropy can maintain a stable equilibrium with the
allelic frequency 0-5 in all N loci for a wide range of
parameters. If the relative contribution by a minor
locus is less than 20% of that by a major locus, a
'total polymorphism' is maintained for practically

any recombination and any strength of selection.
Since contributions by loci to traits are additive, the
genotypic variance of any trait is equal to the additive
genetic variance of the trait, and it can be utilized by
natural selection in the process of phenotypic evol-
ution.

A question can be raised concerning symmetries in
the TVx N models analysed so far: it is assumed that
the relative contributions of all minor loci to any trait
are the same, and that any trait experiences the same
selection. Are the models robust to deviations from
these assumptions? The answer is 'yes'. It is easy to
see from the analysis in Appendix A, that a stable
totally polymorphic equilibrium may exist under weak
selection, even in a model that is not symmetric. Also,
consider a 5x5 model with parameters shown in
Table 3. Even though the model is clearly not
symmetric with respect to either contributions by
minor loci or selection, there is a stable equilibrium
with a polymorphism in all five loci (equilibrium
allelic frequencies are shown in the bottom row of the
table), and it is apparently globally stable. It is
important to notice that the equilibrium mean value
of a trait, m}, deviates from the selection optimum, 0},
which means, as discussed by Gavrilets & Hastings
(1993), that each character will exhibit a directional
component of selection even in a population at
equilibrium. It can also be noted that the allelic
contributions by minor loci in Table 3 are not of the
same sign. This means that minor loci do not have to
act in the same direction on all traits for a stable
polymorphism to be maintained. Actually, Table 3 is
only one example of a N x TV model with parameters
chosen randomly from the following intervals: —0-2
s= bi} ̂  0-2; 0-3 < g, < 1-0; 0-4 < 0, < 0-6. Five hun-
dred such models were generated for each N = 2, 3, 4,
5, and a stable equilibrium with a polymorphism at all
N loci existed for 96 % of 2 x 2 models, 95 % of 3 x 3
models, 81% of 4x4 models and 56% of 5 x 5
models.

Another potential concern about the models dis-
cussed here is the assumption that every locus
contributes to all N characters, and, consequently,
every character must be genetically correlated with all
other characters, which may not be true in reality.

Table 3.5x5 model without symmetry: relative contributions by locus Lt to character Xp parameters of
selection (0;. and Qj) on character Xp the equilibrium mean, mp and variance, vp of character Xp the
equilibrium allelic frequencies, p,. Recombination pattern, r = {0-5, 04, 0-3, 0-2}

100
- 0 1 4

018
015
011
0-56

013
1-00
010

- 0 1 2
- 0 1 0

0-24

-0-20
- 0 1 3

100
008

- 0 1 8

0-71

- 0 1 9
018

- 0 1 4
100
009
0-74

017
- 0 1 1

009
012
100
0-55

0-49
0-41
0-56
0-60
0-48

0-32
0-48
0-36
0-44
0-40

0-47
0-33
0-61
0-70
0-55

0047
0041
0048
0048
0059
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However, this assumption is also not necessary, and a
total polymorphism can be maintained even more
easily in a model of N loci controlling N traits with
some of the loci contributing to fewer than N
characters (an extreme and trivial case is that of every
locus contributing to a different trait). Consider, for
example, a model of five loci controlling five quan-
titative traits with bHi+l) = b{i = 1-4), bbX = b and b(j

= 0 otherwise, i.e. each locus contributes to only two
traits, and any two traits have either one or no loci in
common. It follows from Fig. 1 d that the minimum
strength of selection necessary to maintain a total
polymorphism in a 5 x 5 model with b = 0-3 and r =
0-5 is Q= 1-5. On the other hand, a totally stable
polymorphism is maintained in the discussed model
with the same parameters b and r under selection with
Q as small as 001. Under such weak selection, linkage
disequilibria are very close to zero and, consequently,
only characters having a locus in common are
genetically correlated (e.g. character Xl is genetically
correlated with characters X2 and Xh, while its genetic
correlation with other traits is practically zero).

The model of antagonistic pleiotropy for fitness
components by Rose (1982) predicts a negative genetic
correlation between the traits. Yet, many experimental
estimates of the genetic correlation between fitness
components are either zero or positive (Rose et ai,
1987). On the other hand, the genetic correlation
between characters in models discussed here can be
either positive or negative or zero, depending on the
signs and values of allelic contributions and on the
pattern of pleiotropy.

A question may be asked whether it is actually
pleiotropy that is responsible for the maintenance of a
total polymorphism in Nx N models. Would not
stabilizing selection acting on just one of the characters
produce a similar result? Indeed, a stable poly-
morphism in several loci with unequal contributions
to a quantitative trait can be maintained under
stabilizing selection on the trait, provided selection is
sufficiently strong relative to recombination (Gavrilets
& Hastings 1993, 1994a, b; Gimelfarb, 1995). If,
however, selection is relatively weak, it is in fact
pleiotropy among traits, each experiencing selection,
that is responsible for the maintenance of a total
polymorphism in N x N models. Consider, for ex-
ample, a 5 x 5 model with btl = b = 0-2 and r = 0-5
between any pair of loci. If selection acts only on one
of the traits, no totally polymorphic equilibrium can
be maintained under stabilizing selection of any
strength (including the strongest possible stabilizing
selection which culls all individuals except those
whose phenotype is exactly 6). Yet, as Fig. \d
demonstrates, a stable totally polymorphic equilib-
rium exists for the same values of b and r even under
extremely weak selection, if selection acts on each of
the five traits.

Pleiotropy among characters experiencing stabi-
lizing selection can also be a mechanism responsible

for apparent selection on 'neutral' traits. Indeed,
consider a N x N model, and let there be some other
traits which do not experience direct selection but are
controlled by the N loci (or some of them). If
parameters of the Nx N model are such that a total
polymorphism is maintained, there will be apparent
stabilizing selection on any 'neutral' trait to which
these loci contribute. The apparent selection can be
quite strong if the number of traits experiencing direct
selection is large, even if selection on each individual
trait is weak.

Appendix A

The following analysis was suggested by Nick Barton.
Given that the loci controlling traits are at linkage
equilibrium, i.e. the distribution of genotypes in the
loci are independent, the mean and the variance of a
character X} are

(Al)

(A 2)
k

where pk is the frequency of the non-zero allele in
locus Lk(gk = 1 —pk) and fijk is the actual contribution
by locus Lk to character X}(fi1} = a,). According to
equations (2) and (3) in the text, the fitness of an
individual is

i

Assuming that selection is sufficiently weak that terms
in (A 3) of the order Q2 and higher can be neglected,
the fitness of an individual is approximately

W = 1 - 2 Qj{Xi - 6>3.)
2. (A 4)

i

Consequently, the average fitness in a population is

(A 5)

The dynamics of allelic frequencies under weak
selection is described approximately by the following
system of differential equations (Wright, 1935; Barton,
1986):

dWdp,

Given (A 5), (A 1) and (A 2),

dP *
_ = Ap-c,

(A 6)

(A 7)

where p is a vector whose elements are allelic
frequencies, whereas A and c are a matrix and a vector
with elements

(for i*./), {A 8 a)
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Provided matrix A is non-singular, allelic frequencies
at an equilibrium are obtained as

= A1c. (A 9)

For a symmetric model with Qi = Q, 0} = 6, fiu = a.
and f}(j = /? for / 4= j , the elements of matrix A and
vector c are

Atj = -8Q[2a/l + (N-2)/12] (for / * j), (A 10a)
ct = 2Q[d-a2-(N--i)/32]. (A 10b)

Consequently, the equilibrium allelic frequencies are

d-d*
Pi=P = 1-2(9*

, where*?* = a2 + (/V-l)^2.

(All)

Substituting the values of a and /? from equations (1 a,
b) in the text,

(A 12)

In order for 0 < p < 1, the optimum phenotype must
be within the limits 6* < 6 < 1 -6*.

The local stability of the equilibrium (All) is
determined by the eigenvalues of the matrix A. A
NxN matrix with elements R on the main diagonal
and elements S elsewhere has one eigenvalue A1 =
R + S(N-1) and (N-\) eigenvalues A2 = R-S. For
the matrix A,

+ 6(N-l)a/3+2(N-\)(N-2)/32],
(A 13a)

-4a/?-(7V-3)/?2]. (A 136)

The first value is always negative, whereas in order for
the second value to be negative, and, hence, for the
equilibrium to be locally stable, the expression in
square brackets of (A 136) must be positive, i.e. the
following inequality must hold:

l - 4 6 - ( / V - 3 ) 6 2 > 0 .

This requires that

(A 14)

b <(VN+ l-2)/(N-3) (N>3).

Appendix B

(A 15a)
(A 156)
(A 15c)

Consider individuals with identical genotypes in N— 1
loci, but having different genotypes (AA, Aa or aa) at
one locus, say Ly In a symmetric NxN model, such
individuals will have the following values of the
characters:

XjiAA) = x, + 2a,
X}(Aa) = Xj + a,
Xjiqa) = x,

Xk(AA) = xk

Xk(Aa) = xk

Xk(aa) = xk

(k + j) (B 1 a)
(k + j) (B 1 b)
(k * j) (B 1 c)

where a = 0-5/[l +(JV-l)6]and/? = 0-56/[l +(N-\)
b] are the actual contributions by a major and a minor
locus, respectively, whereas xt denotes the total
contribution to character Xt by the identical N— 1
loci. The fitness of an individual under weak selection
is described by (A 4). Hence, the fitnesses of individuals
differing only at locus Lt will be

W(AA) = 1 -Q[(x} + 2cc-0-5)2+ £ (xk + 2fi-0-5)*\,

W{Aa) = 1 -Q[(x] + a-0-5

(B2a)

(B26)

(B2c)

Total overdominance for fitness means that for any
genotype at N— 1 loci, a heterozygote at locus L1 has
a higher fitness than a homozygote, i.e. the difference
in fitness between a heterozygote and a homozygote
must be positive. Hence the difference

*#;
-\)/3\ (B3)

W{Aa)- W{aa) =

must be positive for any values contributed by the
TV—1 loci, including their maxima. The maximum
of xs is (N—\)p, whereas the maximum of xk is
a + (N—2)/3. Hence, the following inequality must be
satisfied:

8(/V-l)a/? + (7V-l)(4/V-7)/?2 + a2-0-5 > 0. (B4)

Substituting the expressions for a and /? from
equations (1 a, b) of the text yields

(7V-l)(2/V-5)62 - l ) 6 - l < 0 (B5)

It can be shown that the same inequality must hold in
order for the difference W(Aa) — W(AA) to be positive.
Hence, total overdominance for fitness is present in a
NxN model if

(TV = 2) (B6a)

b <
V[3(JV-l)(2/V-3)]-2(/V-l)

(N-l)(2N-5)
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