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ON BOUNDED AND COMPACT 
COMPOSITION OPERATORS IN POLYDISCS 

F. JAFARI 

Recently MacCluer and Shapiro [6] have characterized the compact composi­
tion operators in Hardy and weighted Bergman spaces of the disc, and MacCluer 
[5] has made an extensive study of these opertors in the unit ball of C1. Angular 
derivatives and Carleson measures have played an essential role in these stud­
ies. In this article we study composition operators in poly discs and characterize 
those operators which are bounded or compact in Hardy and weighted Bergman 
spaces. In addition to Carleson measure theorems resembling those of [5], [6], we 
give necessary and sufficient conditions satisfied by the maps inducing bounded or 
compact composition operators. We conclude by considering the role of angular 
derivatives on the compactness question explicitly. 

1. Preliminaries. We adopt the notation described in [2], and [3]. We denote 
by IP the unit poly disc in C1, by T1 the distinguished boundary of IP, by fF 
the Hardy space of order p in IP, by Ap

a the weighted Bergman spaces of order 
p with weights n"=i(l — \zi\2)a, a > — 1, and by Ap

a the weighted Bergman 
spaces with weights given by (1 — ||z||2)wa, not > —1, where ||. || is the poly disc 
norm. We shall use mn to denote the n-dimensional Lebesgue area measure on T1, 
normalized so that m„(7™) — 1. By an we shall denote the volume measure on Un, 
defined so that crn{Un) — 1, and by an,a we shall denote the weighted measure on 
Un given by II"=i(l — |z/|2)a07i. We use R to describe rectangles on T1, and use 
S(R) to denote the corona associated to these sets. In particular, if I is an interval 
on T of length 6 centered at ^ o + l \ S(I) is 

5(7) = {ze U: 1-6 < r< 1,0O< 0 < 60+è} . 

Then if R = I\ x I2 x • • • x /„ C T1, with Ij intervals having length fy and having 

centers eli9j9+*\ S(R) is given by 

S(R) = S(h) x S(I2) x • - - x S(In). 

We use S to denote S(R) whenever convenient. If V is any open set in T1 we define 

S(V) = \JS(Ra) 
a 
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where { Ra } runs through all rectangles in V. A finite, nonnegative, Borel measure 
H on Un is said to be a (bounded) Carleson measure if 

fi(S(V)) < Cmn(V) for all connected open setsV C Tn. 

/x is said to be a compact-Carleson measure if 

lim sup = 0. 
mn(V)^0VcTn mn(V) 

\xa is said to be a (bounded) a-Carleson measure if 

Va(S(R)) <cf[ èf+a for all R C T\ 

and [ia is a compact a -Carleson measure if 

r / iq (5W) n 

lim sup -7r— — 0. 

We point out that Carleson measures as they are used in the literature are always 
bounded. The subscript a distinguishes between the a-Carleson measures, and 
the Carleson measures. One should also note that the definitions of these measures 
have nothing to do with Hardy or weighted Bergman spaces; however, Carleson 
measures are intimately related to Hardy spaces, and a-Carleson measures are re­
lated to weighted Bergman spaces Ap

a. Theorems A and B , given below, make this 
notion precise. 
In [3] we discuss these spaces and measures in detail, and give various charac­
terization and comparison theorems. These theorems which extend theorems of 
'similar' type in the disc or the unit ball of C1 to polydiscs form the foundation 
on which this paper is based. For the sake of readability and to make this paper 
self-contained we shall state the main results of reference [3] here without proof. 

THEOREM A. Let A be the identity operator sending Hp(Un) into Lp(fj,), 1 < 
p < oo. Then 
(i) A is bounded in fFiU") if and only if /i is a Carleson measure, 
(ii) Assume that IF^U71) C LP{ji). Then A is a compact operator if and only ifft is 
a compact Carleson measure. 

THEOREM B. Let Ia be the identity map from A^ilP) into Lp(^i\ and 1 < p < 
oo, a > — 1. Then 

(i) I a is a bounded operator if and only if p is an a-Carleson measure. 
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(ii) Ia is a compact operator if and only if [i is a compact a-Carleson measure. 

THEOREM C. Suppose that —l<a<j3 and Ia is the identity operator from 
A^iU") into Lp(p,a). Then if Ia is a bounded (compact) operator, then so is Ip. 

We point out that condition 1 < p arises in the proofs of theorems A and B, 
given in [3], because of use of strong (p,p) type inequalities for maximal functions 
in their proof. We do not know if these theorems are also true for/? = 1. The author 
wishes to thank his adviser Professor Walter Rudin for his many suggestions and 
helpful comments. He also thanks Professor Barbara D. MacCluer for informing 
him of the results of Sharma and Singh [9] and providing him with preprints of 
her w7ork on composition operators. 

2. Introduction. Let <j> be a holomorphic map of IF into IF. We study the 
linear composition operator defined by 

for f belonging to Hardy or weighted Bergman spaces in IF. Our basic goal is to 
determine in terms of properties of <j> when C^ is bounded and compact on these 
holomorphic function spaces of IF. The idea of the following proposition dates 
backtoRyff [8]: 

PROPOSITION 1. Suppose <t>(zuzi,...,zn) = OM^iX^fe) , . - . ,<t>n(zn)) is a 
holomorphic map of IF into IF. Then </> induces a bounded composition oper­
ator on H? (IT), for 1 < p < oo. The same conclusion holds for A^IF). 

Combining this proposition with theorem 7.3.3 [7] implies: 

COROLLARY 2. Automorphisms of IF induce bounded composition operators on 

Will") aridAliU1), 1 <p< oo. 

Proof. Note that the composition of Poisson kernel and <j> is n-harmonic, and 
use the mean-value property for n-harmonic functions. • 
This proof also demonstrates that on IF (or AQ) 

Hr IK/TT
 1 + I<M0)I V 

By proposition 1 the boundedness of C^ on FFiU) is guaranteed. In fact it is easy 
to show that C<f> is bounded on ¥P for 1 < p < oo for every </> : IF —> U, <j> 
holomorphic. 
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PROPOSITION 3. Suppose </> : IP —> U is holomorphic. Then C<f> : IP(lf) —> 
IP (IP) is bounded for 1 < p < oo. 

Proo/ Since/ G IP(U) if and only if |/|^ has a harmonie majorant there is a 
real harmonie function u(z) on the disc so that \f\p < u. Since every harmonic 
function in the disc is the real part of a holomorphic function, and the real parts of 
holomorphic functions are n-harmonic, u o <j> is n-harmonic, and 

\focj)\P < M o f 

Hence/ o </> £ IF (IP). To complete the proof we need to show that if C^ : 
IP(U) —• / / ^ ( ^ ) for 1 < p < oo, then Q is bounded. This follows from the 
closed graph theorem. That is, if \\fj—f\\p —• 0 and ||/o</> —g||̂  —• 0 asy —> oo then 
for every z G Ufj(z) -+f(z) and/((/> (z)) - . g(z). In particular,/(</> (z)) — / ( ^ (z)). 
Hence g =f ocj). • 

The above proof uses the fact that evaluation at z G £/" is a bounded linear 
functional. 

3. Main Results. Since a harmonic function in several variables is not necessar­
ily the real part of a holomorphic function, the result of proposition 3 is not avail­
able when <t> : IT —• IP. In fact, if/ € H2(U2) and//) is the restriction of f to the 
diagonal of U2, then/ —>/D maps H2(U2) ontoA^U2). Hence (j> (z\, zi) = (z\, zi ) 
induces an unbounded composition operator on H2(U2). Sharma and Singh [9] 
give a lower bound for the norm of C<j> on H2(U2) which can be used to con­
struct other examples of maps <j> inducing unbounded composition operators. We 
postpone the precise statement of this result until we have given an application of 
theorems A, and B. This result will allow us to strengthen and complete the results 
of Sharma and Singh. We shall need the following lemma: 

LEMMA 4. Suppose </> : IP —> IP is holomorphic and C<f> is bounded (compact) 
on a dense subset of IF (IP) for 1 < p < oo. Then C<f> is bounded (compact). 

By compact on a dense subset E of IP we mean that if/ is a bounded sequence 
in E which converges to zero weakly, then fjO<f> converges to zero in the norm 
topology of IP. 

Proof. Suppose E C IP is dense and there is some M < oo such that \\fo(j> \\p < 
M\\f\\p for a l l / G E. Pick he IP. Then there exists fk G E so that ||/* - h\\p —• 0, 
11/* UP £ C < oo, for some C. Hence 

Mz)-^h(z)fora\\zeUn. 

Also, for r < 1 

i\(fko^)r\Pdmn<\\fko^\\P<MPCP. 
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By Fatou's lemma 

J \(ho<j>)r\
p dmn<MpCp for all r < 1. 

Hence /io(/> G LP, \\h o </> \\p < MC, where C can be taken as close to \\h\\p as 
desired. 
Therefore, || h o <j> \\p <M\\ h\\p. 
To show compactness, as before suppose E C IP is dense and Q is compact on 
E. Let/) C IP, \\fj\\p < C < oo, and suppose that^ converge to zero weakly. 
By lemma 1.4 [3], it suffices to prove \\f; o </> \\p —-> 0. This follows from standard 
arguments. • 

THEOREM 5. Let <j> : Un —•» £/" be holomorphic, and \ < p < oo. Put 

r—*1 

w/iewever f/n's //m/f exists, and associate a measure ji to <j> by setting 

H(E) = mn(<l>*rl(E)) {E<zW). 

In other words p is the measure that satisfies 

(*) Lhdp = f (h o<j)*)dmn (h e C(U»)). 

Likewise, define pa to be 

lia(E) = crri,a(<t>-l(E)) (ECU*). 

Then 
(i) C<j> is bounded on IP if and only if 

(1) p(S(V)) < Cmn(V). 

i.e. C^ is bounded on LP if and only if p is a Carleson measure, 
(ii) C<f> is compact if and only if 

lim sup = 0 
mn(V)-4) VcTn mn(V) 

i.e. Cfj) is compact if and only if p is a compact Carleson measure. 
(Hi) C<f, is bounded (compact) on A£ (£/"), oc > — 1, if and only if \ia is an (com­
pact) a-Carleson measure. 

We point out that this theorem states that if C<f> is a bounded (compact) operator 
for Hp or Ap

a (IT
1), I < p < oo, for some p, then it is a bounded (compact) operator 
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on those spaces for all p. This is analagous to the behavior of these operators 
observed by MacCluer and Shapiro for the disc [6] in dealing with the compactness 
question. As it is already pointed out the results here are stated only for p > 1. 
This is because theorems A and B, which are used in the proof of this theorem, 
are proved by using strong (p,p) type inequalities for maximal functions. [3] 

Proof. This theorem follows from an application of theorems A and B. We note 
that (*) guarantees that /x, or //a, is a well-defined nonnegative measure on Un 

since the right hand side is a bounded linear functional on C(Un). 
Let/ G HPilT) H C(U»). Then 

WC^fW^pifo^rwdmn 

= Jjn \f ° W *W dm" = (SiHCef ^ C ^ ) 

= /p(|/|W*)<*»n = 

= J_\f\pdmno(rrl. 

Hence 

(3) || C^f\\p = J-\f\p dfi for a l l / G Hp H C(W). 

If /i is a Carleson measure then by (3) and theorem A (i) Q> is bounded on Hp Pi 
C(U"). Since IF Pi C(~U") is dense in W by lemma 4 we conclude that Q> is 
bounded on IF. 
On the other hand if Q is bounded on IF {IT1) Pi C(W) then by lemma 4 it is 
bounded on IF, and hence by theorem A (i) /i is a Carleson measure. 
Conclusions (ii) and (iii) follow from theorems A (ii) and B in exactly the same 
manner. • 
Combining this theorem with theorem C we conclude: 

COROLLARY 6. Suppose — 1 < a < /? andC^ is abounded (compact) operator 
on A^iU"). Then the same is true onAPg(Un), 1 < p < oo. 

Proof. Recall that an,a = n"=i(l ~~ U/l 2 )"^ » a nd put p,a — an,a o ((f)*yl and 
lip — anfi o ((f) *)_1 . Then by theorem C boundedness (compactness) of Ia implies 
boundedness (compactness) of Ip. Hence \L$ is a bounded (compact) f3 -Carleson 
measure. Using theorem 5 it follows that C^ is bounded (compact) on APg(Un). • 

Hence the boundedness (compactness) of composition operators on Ap
a(U

n) is 
somewhat independent of a. That is if C<j> is bounded (compact) on A^(Un) for 
some — 1 < a, then C^ has the same property for A^lf1) for all (5 > a, and all 
p G (1, oo). An immediate consequence of this corollary and corollary 2 is that 

https://doi.org/10.4153/CJM-1990-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-045-0


COMPOSITION OPERATORS IN POLYDISCS 875 

the automorphisms of If1 induce bounded composition operators on A a (If1) for 
all a > 0. 
Theorem 5 permits us to restrict our attention to H2(lf) or A2

a(U
n), where it is 

more convenient to work with these Hilbert spaces. The conclusions obtained for 
these spaces then carry to IF and Ap

a without change. 
To identify the unbounded composition operators on /F(£/n) we extend the fol­
lowing result of Sharma and Singh which they obtained for H2(U2). We include 
its proof for completeness. 

PROPOSITION 7. C<f> induces an unbounded composition operator on Hp(Un)for 
1 < p < oo if 

A ( i - k l 2 ) 

Proof. By theorem 5 it suffices to show 

n 1 _ I - . I 2 

H Q i i 2 2 > s u P n ' ' ' 

i.e. it suffices to consider the case for p=2. For Ç G Un define 

n l 

and note that 

\gz\\2 = (8z,8z) = 8z(z)=f[ 
, = . 1 - l z / l 2 ' 

For a fixed z £ Un we have 

n \ n I 

h<f>(z)\\2 = ii n -,—TTT^H2 = ^ w ^ w ) = n i—u/^i2-
Since |/(z)| < ||/||2 nîLi(îZFTî)^ we also have 

- 1 — | z « - | 

l l2 
Mz) 

2 = ^(z)Wfe)) = (g<Hz) °<t>)(z) = (C0g0(z))(z) 

<l|C^fe)| |2(II-vr=ii-|^l2 

Hence for every zGf/" 

iiQii2
2>ii^te)ii2

2na-u.-i2) = n - 1 ~ l z / | 2 
=1 ,= , l - k . - ( z ) l 2 " 
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Taking supremum over all z G Un it follows that 

iicj>sup(nf^V. • 
zeu» \i=i l ~ \9i\ I 

Let us consider some examples of unbounded composition operators in HP(U2), 
1 < p < oo provided by proposition 7. Note that for the diagonal map <j> (z\, zi) = 
(zi,zi) we have 

I I ^ ii ^ 1 ~ M 2 

IIQII > SUp- r-T^. 

Thus allowing |zi| —» 1 while keeping |z2| < 1 it is easily observed that the 
composition operator induced by such a map will be unbounded. Since the class 
of bounded invertible composition operators are exactly those induced by the 
automorphisms of IF (see Appendix A, theorem A.4 [4]) all maps (j>(z\,zi) — 
(<l>\(z\),<j>\(z\)) with (j)\{z\) G Aut(U) induce an unbounded composition operator 
on HP(U2). To explain this point a little more, put D = (z\,z\) and note that all 
these maps <j> are obtained by taking Doxfj, where -0 G Aut(U2). Thus C^ = CpC^. 
Since C^ is invertible, it has a bounded inverse, and since Co is unbounded Q, is 
unbounded. Furthermore if 

<KZ\,Z2) = (ZufiZuZl)), 

where |/(zi,Z2)| < 1> and/ has the property that | / | —•» 1 as z —+ C f° r some 
C G â [ / 2 n {|z2| < l j .Then 

\\n II ^ 1 ~ iZ2!2 

I I Q I I > s u P " j • - y x | 2 -

Allowing z —• £ it is easy to see that the right hand side of the above expression 
tends to infinity. Hence the composition operators induced by all such maps will 
be unbounded. 
Also, if Q is bounded on IP (IF), 1 < p < oo, then 

n I I _ U.I2 \ 

(*> sup n -— ' < oo. 
zeu»i=\ \ 1 -\<t>i(z)\2) 

We point out that on the disc, if <j> (0) = 0, Schwarz's lemma implies that 

i-|<Hz)|2 " ' 

This is no longer so in polydiscs. However, by (*) for C^ to be bounded \</>i(z)\ 
cannot approach 1 much faster than any of \ZJ\. This result can be significantly 
strengthened by combining theorem 5 with the following proposition. Part (i) of 
this proposition for the case n=l is given in [1, lemma 3.3, p. 239]. 
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PROPOSITION 8. Let [ibe a nonnegative, Borel measure on Un. Then 
(i) [i is a Carleson measure if and only if 

(1) sup Lf[.\~\{lf]2 dn(z) <M< oo 

(ii) ji is a compact Carleson measure if and only if 

(2) lim sup L I I n F T H I d^z) = 0 <w ||zo|| — 1. 

Proof First, suppose that (1 ) holds. We show that this implies that \i is a Carleson 
measure. Recall that /? denotes 

tf= {(A...,**")€ T : |0/-(0O),|<M , 

and 

5 = 5(/?) - { ( n ^ 1 , . . . , rne
w") e Un : 1 - ft < r, < 1 , | Bt - (0O)/| < ft} • 

Since if zo — 0(1) implies that ^(Un) < M < oo we can suppose that ft < | for 
all i. Take 

Then for z G 5 

l - | ( zo) / | 2 ^ C 
> 

\l-Go)iZi\2 ~ l - | ( z o ) / | 2 ' 

Hence 

n 1-|(zo)i|2 > n c 

hh \i-çô)iZi\2 " i 1 , i-|(zo)/|2 

and 

,(S) = fdv = e g i - Kzo),|2 /5nL|1_ | ( zo) i |2 4 * ) 
n r n 1 _ U 7 n V | 2 

< 2C ft «/ / ç II i, _° , 2 <W < CMmfl(/î). 
,•=1 •> si=\ 1 -(20)iZi | 
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Hence /x(5) < Cmn(R), i.e. /i is a Carleson measure. 
Conversely, suppose that /i is a Carleson measure and let zo G If. If ||zo|| < | , it 
is easy to see that (1) holds, since the integrand can be bounded uniformly. Also, 
if | ̂ /1 < | the term corresponding to this i in the integrand in (1 ) can be bounded. 
So suppose | (zo)i| > | for all i, and let 

[ i ( l - | ( Z ô ) / | ) J 

By the Carleson condition 

/ i ( ^ ) < c n 2 * ( l - | ( z o ) « | ) . 

Note that if z G Ex then 

,Uli-(â),-d2 -l\ ,= 1 |1 -(Zo)iZ,\2 , = i 1 - |(Zo)<| 

and for k > 2 if z G £* — £*-1 

« i _ | f 7 „y l 2 " c 

,= , | l - (zô) /z / | 2 ;=, 22*(1 - |(g,),!)-

Hence 

^2nti22^(i- |(zo), | ) 

< C > : — < C < OO. I 

- snti22^(i-|(zo),|) ~ 
This finishes the proof of (i). 
To prove (ii), first suppose that (2) holds. We show that \x is a compact Carleson 
measure. That is, if S and R are defined as before we need to show that 

lim sup = 0. 
\R\-^RcJn mn(R) 

Making the same observations as in (i) for z G S, we get 

— 7 ^ / c ^ = - 7 5 Ï A d - lfeo),|2)/crTn , C
u U2dii(z) mn(R)J s mn(R) ,= , J s]J"=] 1 - |(zo)i|2 
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i=\ |1 - U o t o l 

By hypothesis the limit of right hand side tends to zero as \R\ —• 0. Hence 

hm sup = 0, 
\R\-ORC:T« mn{R) 

i.e. [i is a compact Carleson measure. Conversely, suppose that x̂ is a compact 
Carleson measure. We need to show that (2) holds. Proceeding as in the proof of 
the converse direction in (i), we get 

- s n;u 2*0 -1 (*>)«•! )" 

Since // is a compact Carleson measure ^ ^ —> 0 as | £5| —> 0. Hence given e > 0 

we can pick ||zo|| sufficiently close to 1, so that rr« ^\E_slz ,\ < e. Then 

1 - l f e o ) / 1 2 

Combining this proposition with theorem 5 we get our main result for a map to 
induce bounded or compact composition operators on Hardy spaces of poly discs. 

THEOREM 9. For 1 < p < oo 

(i) C^ is bounded on Hp if and only if 

l - l ( z o ) , - 2 
sup / J ! ———p;dmn < oo. 

( ii) C^ is compact on fP if and only if 

l i m SUP L ft H J?'i2dmn = 0 as \\zo\\ 

Proo/ Let // = mn o (</>*)" *. Then by theorem 5 C^ is a bounded (compact) 
operator on Z/77 if and only if n is a bounded (compact) Carleson measure on Un. 
By the above proposition /i is a bounded (compact) Carleson measure if and only 
if (1) (or, for compactness (2)) hold. The assertion follows from these equations 
by setting \i — mn o ((/> *)_1 and making a change of variable, as done in theorem 5. 

• 
The following useful corollary can also be derived from theorem 5. 
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COROLLARY 10. If C^ is bounded in IP (IP), 1 < p < oo, then </>* cannnot 
carry a set of positive measure on T1 into a set of measure zero on T1. 

Proof See [5] or [4, proposition 7.9]. • 
Turning attention to the weighted Bergman spaces, proposition 7 can be modified 
to give a similar result for bounded composition operators on these spaces. 

PROPOSITION W.IfC^ is bounded on Ap
a{lP) then 

(1) ^ z ^ n ^ + i ) - ^ <OQ-

where the ususal multi-index notation is used, i.e. \s\ — s\ + • • • + sn, and \z\s = 
I z i \S] I 7 \Sn 

| M | • • • \<.n\ • 

Proof By theorem 5 it is sufficient to consider p=2. As in proposition 7 we show 
that 

I|Q||2
2>(1). 

Let g^(Ç ) be the reproducing kernel for the weighted Bergman space A2
a of poly-

disc Un. Then as in proposition 7 

\\gz\\22,a = (g",g") = g"(z). 

For z £ IP fixed, we have on the one hand 

(2) \\g+iz)Wl* = (g*(z)>4(z)) = 8+lz)(Hz)). 

On the other hand, since by Cauchy-Schwarz inequality and proposition 1.1 [3] 

(3) l/wl2<ll/ll2
2« E nfe + D1+"kl25 

[1.1=01=1 

%iz)mz)) = \c+ga
m{z)\ <\\c^ga

Hz)\\la £ Ilfo + D^M2* 
\M=o*=i 

Combining (2) and (3) gives: 

|2 *?«)(*(*)) 
(4) l | c ^ l 2 '«-E^ = 0 nr = l te + i)l+*|z|2s-

Taking supremum over all z E IP and substituting 

oo n 

g"(o= E n^+i)-'-acv 
l.vl=0/=l 
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into (4) gives the desired inequality in (1). 
To complete the proof we need to show that g® is in fact a reproducing kernel for 
A^iLT1). This follows from the following computation. Let 

c(j,a) = nfe + i r 1 ^ = (jLici25^,^))""1, 

and note that if/(z) = Eĵ î 0 asf then 

/= j^/(C)fta(C)^a(C) = 

= L E E ^CH^K z don^. 
JUn \s\=0 \J\=0 

Interchanging the order of summations and integration and using orthogonality 
this becomes 

oo ~ 

/ = £ asc(s,a)(j_\(\2s dan,a)z\ 
\s\=0 

which by the définition of c(s, a) is 

oo 

/ = E as€=f{z\ • 
l*l=o 

Note that if a = —1 proposition 11 duplicates the result of proposition 7. Parallel 
to the characterization of bounded and compact composition operators in Hardy 
spaces of poly discs (proposition 8 and theorem 9), a similar proposition would lead 
to the characterization of these operators in weighted Bergman spaces of polydiscs. 
Similarity of the arguments involved points out that the conditions of theorems 9 
and 13 are in some sense the correct characterizations of bounded and compact 
composition operators. 

PROPOSITION 12. Let / ia be a nonnegative, Borel, measure in Un. 
(i) fjia is an a-Carleson measure if and only if 

(1) sup Lfl 
Zo€UnJU i = l 

i-i(zo),r2+* 
1 - (Zo)iZi 7V. V 7 • ^ 

d[xa < M < oo. 

(ii) [ia is a compact a-Carleson measure if and only if 

(2) lim sup L f [ ( ^ l
 | 2 1 diia=0as ||z0 

https://doi.org/10.4153/CJM-1990-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-045-0


882 F. JAFARI 

Proof. Let S and R be chosen as in the proof of proposition 8, and note that if 
ZQ = 0 (1) implies that pia{Un) < oo. So, we can assume that 6/ < \ for all i. 
Take (z0)/ = (1 - | y m . Then for all z G S 

Hence 

A / i-lto),!2 

,y i i i-®)*!2 

2+a 

>n 
C 

a- Kw) 
2\2+a 

= cn ( i-i(zo),i2)2 + a / ,n 
/=! 

< 2CM n St 2+a 

1 |(zo),-| 
i 2 + a 

1 - (Zo)iZi\ 
d[ia 

Thus \ia is an a-Carleson measure. 
Conversely suppose that [ia is an a-Carleson measure. Then proceeding exactly 
as in the proof of proposition 8 we get: 

2+a 

< 
J E\ , _ 7 J Ek n 

i (*>),-

— Z_^ T-rn 

^ 2 ^ c*-£*-i y,y 11 - (zo)iZi\ 
dlJLa 

fenL,2*(i-|te>)«-l)2+0f 

- 2 k ( 2 + a ) Va(Ek) < C £ 2 
k=\ n?=i fc 

2+a ' 

Since /Lia is assumed to be an cx-Carleson measure [ia{Ek) < CU?=l 6i2+a , the 
above integral is finite. The proof of (ii) follows proposition 8(ii) in exactly the 
same manner that (i) followed proposition 8(i). • . 
Combining this proposition with theorem 5 gives the following characterization 
of those maps that induce bounded or compact composition operators on weighted 
Bergman spaces of polydiscs. 

THEOREM 13. For a > - 1 and 1 < p < oo 

(i) Cff, is a bounded composition operator onA^LP) if and only if 

\2+a 

d(Jn,a < M < oo. sup L n 1 |(zo)/| 

11 - (z6Ui • I
2 
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(ii) C(j) is a compact composition operator on A^ijf) if and only if 

- n 

lim sup / n 
l-\(zo)i\ 

1-®W>/I 2 dan^ = 0 as\\zo\\ —> 1-

Proo/ Let fia = a n a o </>_1 and use proposition 12, as in theorem 9. • 
Corollary 6 can be used to obtain a uniform condition for composition operators 
to be bounded or compact on Ap

a for all a > —1+ E by replacing the exponents 
2 + a in theorem 13 by (—1+ G). Also note that if a —•» — 1, theorem 13 gives the 
result of theorem 9, since as a —• — 1, A^ —-> //2, by corollary 1.2 [3]. We conclude 
this section by giving the following analog of a theorem of MacCluer and Shapiro 
[theorem 6.4, 6] for those composition operators on A2

a induced by the univalent 
holomorphic maps of polydiscs. The essential role played by the Schwarz's lemma 
in this proof makes results of this type not reproducible for A« (ET1). This result 
also points out that from a function theory standpoint the spaces Ap

a are the correct 
analogs of the weighted Bergman spaces in the disc. 

THEOREM 14. Suppose </> : If —> Un is holomorphic and univalent and that 
the Frechet derivative of <\>~x is bounded on ^{IF1). Then for every a > 0 the 
composition operator C^ is bounded on A^LF1). 

Proof See [4, theorem 7.12]. • 
By the equivalence established between the weighted Bergman spaces, Ap

a, and the 
Dirichlet spaces in part (iv) of corollary 5.4 [4] theorem 14 can be restated for the 
Dirichlet spaces of polydiscs. We also note that the hypotheses of theorems 9 and 
13 can be restated in the context of theorem 4.1 [2] using the notion of angular 
derivative. However, these restatements would involve some weakening of the 
hypotheses of theorems 9 or 13, as they would put pointwise bounds on estimates 
of the integrands involved. We conclude by giving a description of some direct 
results (as in [6]) relating angular derivatives and compact composition operators 
in Hardy and weighted Bergman spaces of polydiscs. These reults make use and 
serve as an application of the results reported in [2]. 

4. Angular derivatives and composition operators in polydiscs. The main 
tools in our study will be theorem 5 and the Julia-Caratheodory theorems for poly­
discs (4.1-4.3 [2]). We shall use the following basic lemma about compact oper­
ators. Suppose that </> is holomorphic map of Un into If1. Then on all function 
spaces of Un in which the automorphisms induce bounded composition operators, 
we have: 
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LEMMA 15. Ĉ , is compact if and only ifC^C^ or C^C^ is compact for some 
\j) G Aut(Un). 

Proof Immediate. • 
The idea of the following theorem comes from [10]: 

THEOREM 16. Suppose <j> : Un —• Un is holomorphic, and C^ : Hp(Un) —• 
Hp(Un) is compact for 1 < p < oo. Then for each £ Ç T there is an i so that 

1 -\<j)i\2 

liminf —r^ = oo. 
*-< i - N 2 

/Voo/ To show a contradiction suppose otherwise. Then there exists a ( G f 
so that the conclusion of the theorem is not reached. By lemma 15 no loss of 
generality will occur if we suppose that £ = ( 1,1, . . . , 1 ) and <\> (0 ,0, . . . , 0) = 0. 
Then for all i 

. \-\Hz)\2 ^ „ ^ 
liminf „ „ ' < M < oo. 

z-Kl,l,...,l) 1 — ||z||2 

By theorem 4.1 (c) [2] for every 

Da= lz: max * ~,Z/ < a, Rz,- > 0 
I < 1 - \zi\ 

and all i, j 

< M(a) = M. 

In these circumstances we prove the noncompactness of C^ by exhibiting a se­
quence^ C Hp which converges to zero weakly, whereas C^f does not converge 
to zero in the norm topology of//77 (Lemma 1.4 [3]). Fix p and let 

/*(Zl,Z2,...,Sn)= ( l - « m O - Z / ) ' -<5 

fs forms a bounded family in Hp as 6 —* 0. To see this, we need to show that 
there exists a 6o so that \\f\\ < M for all S < So. Since fs(z\,Z2, ••• ,zn) = 
fè (z\ ) • • -fs (Zn), it is sufficient to consider one term in the iterated integral for \\f \\p. 
Let z = rel° and write 

sup (\-bf(f 11 — z | -^ dm(6)) 
<r<\ \J T ' 

= sup (1 -6f(f |1 -reiB\-2X dm(0)) , 

\\P — 
\\p 

0<r<l 

0<r<l 
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where 2À = p6. Since | re101 < 1, using binomial expansion and integrating, by 
orthogonality we get 

"«•«-"Kwr)' 
By Stirling's formula 

r (A + /Q ,+A 4 _ , 

k\ 

Hence 
oo 1 

| | / , | |P
p <ai-^E-^- . 

Now it is clear that if <$o is chosen such that p8o < 1, then for all 6 < <5o f is a 
bounded family in IP. Furthermore f$ —• 0 as è —•> 1~ on compact subsets of £/". 
For zGD« 

\HZuZ2,.^,Zn)o<t>\P=\{\-b)nfl{\-HzuZ2^--,Zn)rè\ 
i=\ 

and since on Da, I TE^ I < M 

>A/- r f ( i -5) n ni i -z , | - 6 . 

Hence 

Uo<l>\\Z>(l-6rnM-nS sup / f l I ! - «5\~Sdmn 
0<r<\JT" ,'=1 

This inequality contradicts the compactness of C^. • 
Interpreting theorem 16 in the context of Julia-Caratheodory theorems [2] states 
that if C$ is compact then for each ( G T some component of <j> cannot have 
angular derivative at £. In fact one has: 

PROPOSITION 17. Let <j> : Un —• Un be holomorphic. IfC^ is compact on IP (IT) 
for some 1 < p < oo then </>*(£) G IT1 for almost every £ G 7™. As wswa/ 
</>*(C) = l i m ^ (/>(<). 

Proof Suppose that Q> is compact on Hp(Un) for some p fixed. Let 

£,- = {( er:|4>,*(C)l = i} 
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We show that m„(£() = 0 for all i. Let ekJ(z) = zt
k. Then ekJ G HP (IT), \\ekJ\\p = 

1, and eu converge to zero weakly. By lemma 1.4 [3], since C^ is compact, C<f, ekj 
converge to zero in the norm topology of FF. Thus 

m„(E,) < p^Tdmn = ||(^*)||£ - 0 

Since || <j> || = 1 if and only if | <j>*\ = 1 for some i 

mn { II 0 II = 1} = mn { | </>/* I — 1 f ° r SOme / } 

<£/«„(£,-) = 0. 

Hence ||</>(C)|| < 1 for almost all ( G f . • 
Theorem 16 and proposition 17 give two necessary conditions for compactness 
in HP (If1), 1 < /? < oo. For the disc MacCluer-Shapiro ask whether these two 
conditions provide a sufficiency result for compactness in HP{U). They answer 
negatively by constructing an example <j> : U —•»• U so that | </> | < 1 on T, and </> has 
no angular derivatives on T, yet <j> fails to induce a compact composition operator. 
It is easy to show that essentially the same construction works for polydiscs. 

Example. Take <t>(z\,Z2,".,zn) = (^i(zi),^2fo)»---,<A«(Z/i)). where 0/fc) are 
the same as those given by MacCluer-Shapiro [6, Example 3.8]. To show that Q, 
is noncompact, let {fn(zd} C HP(U) be sequences converging to zero weakly, for 
which C^fn does not converge to zero in the norm topology of HP. Put 

n 

fn(Zl,Z2,.>-,Zn) = YlfniZi). 
i=\ 

This sequence shows that C<f> is not compact. 
As in the disc, compactness in Ap

a(IT), 1 < p < oo, and a > —1 can be described 
more precisely in terms of conditions related to angular derivatives. Define 

Kj = i - N 
THEOREM 18. (i) IfC^ is a compact composition operator on Af)

a{Un)y then for 
each ( G F there is an (i,j) so that 

(1) liminfRij — oo. 
z-< 

(ii) If for each ( G f there is an (ij) so that (j) satisfies condition (1), Rjj are 
bounded away from zero for all i and], and ifC^ is bounded on Ai (If1) for some 
— \<(3<a then Q> is compact on Ap

a(If
1). 

Let us note that since for all j 

(2) l^M>1-^2 
i - N I 2 - i-\zj 2 
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condition (1) implies that for some i the greatest lower bound of the quotient on 
the left side of (2) is infinite as z tends to £ G771. 

Proof, (i) To show a contradiction suppose that (1) is false. Then by (2) there 
exists a £ G T1 so that for all (i,j) 

lim/?^ < L < oo. 
z—< 

In particular then, since jjftL = max Rtj 

liminf ^-^r < L < oo for all i. 
z-< l - | | z | | 2 

Then by part (a) of (theorem 4.2 [2]) the Julia-Caratheodory theorem, for all i 

|1-<MZ)|2 ^T l l - Z / l 2 

— — < L max r-̂ -pr, 
1-\MZ)\2~ J l - k y | 2 

i.e. for all 0 < c < { 

(j)(Ec) CELC. 

Thus 

<t>-l(Eu)DEc. 

Define fia = a n a o <j>_1, where <rn>a is the Lebsegue volume measure on Un with 
weights n"= i ( 1 — \zi: 12)a -By theorem 5, to show that C<j> is not compact on Ap

a (If1) 
it suffices to show that for all 6 > 0 there exists c > 0 so that 

Ha(ELc) = an,a O < / > - 1 ( £ L C ) > 5 > 0. 

Fix 0 < 6 < 1 and choose c > 0 (depending on 6 ) sufficiently small so that 

S = S(R(£,6))DEC. 

Hence by Julia's lemma (theorem 4.1, part a [2]) 

* - ' ( S ) D | . 

Therefore 

(3) /xa(5) = cr„,« o ^ ( S ) > crn,«(££) 
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>C(6n)2+a = C8na+a). 

Taking èt = 6 in theorem B (i) or in theorem 5, we see that \ia is a compact 
a-Carleson measure if and only if 

hm sup ——-—- = 0. 
S-OEUCU» tn(2+a) 

Therefore by (3), /xa is not compact a-Carleson, and hence Q> is not compact. 
From this contradiction, (i) follows. 
(ii) Conversely, fix(GT and suppose that condition (1) holds for some (i,j), viz. 
O'o Jo)- We show that \ia is a compact a-Carleson measure. By lemma 15 we may 
assume that <f> (0) = 0. Put 

,4) /*> = "*{^T*& i i : ," l , l <4 
By hypothesis 

\imhh(S) = 0 

and all hj are bounded. Let R(C, , <5 ) be the rectangle on T1 centered at £ and radius 6 
in each coordinate, and let S = S(R) denote the corona associated with this region. 
Suppose that 4>(z) G S. Then since 11 — 0/(z)| < 25 

\-\ct>h\
2<4S 

and by (4) 

l-\zJ\
2<(l-\(t>io\

2)hJ(6)<4Shj(è). 

So for 7 > 0 

na-i^i2)7<n(«*«-(*))7-
/=1 i=\ 

Recalling that 

we have 

PaiS) = cjn,ao<j>-\S) = / fid - \zù2)adan 
J si=\ 

f l ^ h ^ r ^ (f\{\-\zi\2fdan 
1=1 J s i=\ 

< s«a-ft) f[(4hi(S))(°-(» f fl(l - \Zl\
2fdan 

i=\ J S /=1 

< 
i = i 
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Let n-UOMitë))a^ = e(S). Then by hypothesis, e(6 ) - • 0 as « - • 0. Since also 
by hypothesis C^ is bounded on APo {IP), \i$ is a bounded /? -Carleson measure. 
Hence 

M a ( 5 ) < C É ( ^ n ( a ^ V ( 2 + ^ 

= Ce(<5)^(2+a). 

Hence /ia is a compact a-Carleson measure. Therefore by theorem 5 C<j> is a com­
pact composition operator on A« (LP1), 1 < /? < oo, a > f3 > — 1 . 
Using our remark following the statement of theorem 18 we can restate the con­
ditions of theorem 18 in terms of our definition of angular derivative given by 
theorem 4.1 [2]: 

RESTATEMENT OF THEOREM 18. (i) If C^ is a compact composition operator 
on A^xilT) then for each £ G T1 some component of '</> cannot have an angular 
derivative at £. 
(ii) If for each £ G T1 some component of <j> fails to have an angular derivative 
at £, R~l are bounded for all i and j , and if C^ is bounded on APg(Un)for some 
— \<f3<oc then C^ is compact on Ap

a(U
n). • 

As it is pointed out by the referee the proofs of theorems 16 and 18 might also be 
approached through consideration of the adjoint of composition operators applied 
to appropriate kernel functions. Propositions 7 and 11 may also be stated in these 
terms. The author thanks the referee for pointing out this and several corrections. 
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